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GEOMETRY OF ROUGH PATHS

Outline of course

Goal:

iInvestigate geometry of individual (rough) paths, typically trajectories of
stochastic processes, by means of techniques from the theory of dynamical
systems

e Lecture 1: explain Ciesielski’s isomorphism between path space and
sequence space along series decompositions of paths

e Lecture 2: exemplify the use of series decompositions by looking at the
Haar-Schauder expansion of Brownian motion

e Lecture 3: embed individual paths into dynamical systems and use
stability theory to study the paths’ geometry
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GEOMETRY OF ROUGH PATHS

Lecture 1: Ciesielski’s isomorphism
Isomorphism between C* = C'“(|0, 1], R), normed by

’fs,t
[flla := [[flloc + sup

0<s<t<1 |t — 8|

fs,t = f(t) o f(8)7
and ¢>°(R), based on Haar functions (H,,,,p > 0,1 < m < 2P): Hyy = 1,

(\/2p’ t E |:m2;17 25?—:11) 9
Hym(t) :={ —/2p, te [%7%) ,
0, otherwise.

Figure 1: Haar functions: generations p = 1,2, 3
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GEOMETRY OF ROUGH PATHS

Show: (H,,,)pen.1<m<2r is @ CONS in L#([0, 1]).
1. Orthogonality: Case 1: p = ¢,n # m. Then

<Hpnv Hpm> = 0,

since the supports of the two functions are disjoint, and

m—1 m

<Hpn7 Hpn> — 2p)\([ P ’ P

) =1

Case 2: p > q: Thenfor1l <n <291 <m < 2P, either the supports [“5 ,Qq]
and "+, 53] are disjoint. Or, ["5+, 53] C [%5, 35] and then Hy,|, moi m) = CIS

2]? ) 2P 2p 5 92p ' 5D
constant on the support of H,,,, and hence

2p
(Hpm, Hyn) = c . Hpm(z)dz = 0.
o
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GEOMETRY OF ROUGH PATHS

2. Completeness: The linear hull of the set of indicator functions of intervals

(=L, ) is dense in L?([0, 1]) (measure theory). Moreover Lim_1 ) is in the
20 02

linear hull of (H,,,),>01<m<2r. TO See this, use induction, starting by

Loy = Hoo,
1

Loy = §(H00+H01)7
1

1[%,1] — §(HOO — HOl)

For convenience of notation: H,y, = 0 for p > 1.
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GEOMETRY OF ROUGH PATHS

Primitives of Haar functions, Schauder functions: G, (1) := f !

H,.(s)ds for
0 pm
te€[0,1],p>0,0 <m < 2P,

We have G(t) =tandforp>1,1<m < 2P

(229/2 (t o m_—l) . te [m—l 2m—1) ,

oD 2p v 9p+1
Gom(t) = { —2pr/2 (t — 72”—]9) , te& [22”;111, Qmp) )
0, otherwise.
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Figure 2: Schauder functions: generations p = 1, 2
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GEOMETRY OF ROUGH PATHS

Further for convenience: G_1(t) := 1 fort € [0, 1];

forp>1and 1 <m < 2P;

t210:=0,tL10:= 0,125 :=1,and tg, := 0, 3 := 1, t5y := 1, and t}, := 0 for
p>1and: = 0,1, 2; definition for : = 1 simplifies statement of Lemma 1.

For f € C(|0,1,R), p e N,and 1 < m < 2P, write
2((F (tyn) = £ (890)) = (f (E2) = £ (tpm))]
2 12f (tpm) = f (tom) = F (tn)]

and (Hoyo.df) = f(1)— f(0), (H_10,df) = f(0). We only defined G_,(, and

not H_qy.
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GEOMETRY OF ROUGH PATHS

Assume f = f(0 +f0 s)ds, with f € L?([0,1]). Thenforp e N,1 < m < 2P

(Hom, f) = 22| © f(s)ds = | © f(s)ds
— <Hpm7 df>
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GEOMETRY OF ROUGH PATHS

Since (H,,,) is a CONS of L?([0,1],R%), we can further write

f = (Hoo, f)Hoo + Z (Hpm, ) Hpm.-

p>1,1<m<2p

Integrating and interchanging limits gives

;o= f0)+ /O F(s)ds = (H10,df)G 10 + (Hoo, df) /0 Hu(s)ds (1)

S (H /0 Hyp(s)ds

p>1,1<m<2p

= (H_10,df)G_10+ (Hoo.df)Goo + Y (Hpm,df)Gpm.

p>1,1<m<2p

The following Lemma shows that this can be generalized to (Holder)
continuous functions.
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GEOMETRY OF ROUGH PATHS

Lemma 1 ([8]). 1. For f: [0,1] — R and k € N, the function

k2P

fr = (H_10,df)G_10+ (Hoo,df) G00+ZZ pm> Af)Gpm

p=0m=1

Y St

p=—1m=0

is the linear interpolation of f between the points
t1—107t(1)07 pm? 0 <p < k 1 < m < 2P,

2. If f is continuous, then || fi — f|lcc — 0 @ask — oc.

3. Leta € (0,1). A continuous function f : [0,1] — R is in C* if and only if

sup 2p(a_1/2)‘<Hpm,df>| .
— Typeset by FoilTgX - b,m



GEOMETRY OF ROUGH PATHS

In this case

Sup op(e 1/2)‘< pms df)| ~ | flla and (2)

p,m

I = fi- 1Hoo—HZZ! s 1) G| S I70a27%, kN

p=k m=0

Here x < y means x < Cy with a universal constant C. And x ~ y means
r<yaswellasy < x.

Proof. 1. Let g, be the linear interpolation of f between the points
t 1 0: t0s thms 0 < p < k,1 <m < 2P. Then g, € C~.

Show:

gr — Jr = 0.

By (1) f. — gx as n — oo. But by definition of G,,,, the contributions of dyadic
generations bigger than k have to vanish at the points ¢, t§o, t},,,

0<p<k 1<m<2P
— Typeset by FoilTgX — 10



GEOMETRY OF ROUGH PATHS

2. follows from 1. and uniform continuity of f on [0, 1].

3. Show: For f € C*

sup 2P V2 |(H . df)] < oo.

p,m

Fix p > 1,1 < m < 2P. Then by definition of the Holder norm

(Hpm, df)] < 28[(|F(thn) — FEO D+ 1F(E2) — F(EL)]]
. F(th) — FEDL  1F (2 — F(EL)]
_ 5 a(p+1) pm pm pm pm
B S T T
< 2T Al
Hence

Sup 2p(a_1/2)|<Hpmadf>‘ < 2t HfHa < 0.

p,m

This proves one direction in claim 3., and one inequality in the equivalence of

NOrms.
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4. Show: For k € N we have

I = fialle = | 2

p=Fk m=

2P
[(Hpm: )| Gpm|| S 1 flla27",
0

We fix p € N and estimate the contribution of the pth dyadic generation.

H
L D
2 — — — —_ = - — — ——

m — 1 2m — 1 m

2 2r+1 2F

_2% —————————— ———

2___1 Gpm

m— 1 2m — 1 m

2r 2p+1 2_1

Figure 3: ||Gpml|oo
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GEOMETRY OF ROUGH PATHS

Observe that by disjointness of the supports of G, 1 < m < 2P and
HGpmHoo — 2§2—(p+1) — 2_§_17

we have

op
_pb_
1> Gpmllee =27271
m=1

Hence by 3.

2p
1Y " (Hypm, df)Gymlloo S || £llo22 T 7@ T27571 = gmald ) )],
m=0

Therefore by 2. for k ¢ N

— Typeset by FoilTgX —
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GEOMETRY OF ROUGH PATHS

f = fe—illoo < n}gﬂooﬂfm—fk—l”oo
m—1 opP
< lim Y |1 Y (Hpm, df)Gpml|
p=k =0
< D 27 flla S 271 flla-

p=k

5. Show: If f continuous and K = sup,, ,,, 2°(*~1/2)|(H,,,,df)| < oo, then
fec and || f|lo S K.

In fact, let 0 < s <t <1 be given. Assume that ¢ € N such that

9—(g+1) < ’t _ 8‘ <274,
— Typeset by FoIlTgX —

14



GEOMETRY OF ROUGH PATHS

Then by 2.
O = F)l L) = fi(s)
it — s|@ k—oo |t — s|®
o0 2
|Gpm<t) Gpm(5)|
< Hy,p,d
< D o |(Hom )] 0 =2
= G () = Gm(5)
< p(l—a) pm pm\S
SRS P

To estimate the contributions of Schauder functions of generation p,
distinguish cases:

— Typeset by FoIlTEX —
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GEOMETRY OF ROUGH PATHS

Case1: p<gq

2r 2p+1 op 2P p

Figure 4: estimate of increments, small modes

Then either s and ¢ belong to the same dyadic interval [:2=+ 9] or to two
adjacent ones. In both cases

op
Z ‘Gpm(t) - Gpm<8)‘ < 2% ‘t o S|1—oc Sj 2%—(1(1—04).

— Typeset by FoilTgX —
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GEOMETRY OF ROUGH PATHS

Case 2: p > ¢

In this case s and ¢t each belong to a dyadic interval of generation p and hence

op
Z ‘Gpm@) - Gpm(SM < 2—% ‘t B S’—a 5 2—%+a(q—|—1).

[t — sl

m=0

Summarizing, we obtain

‘f(t)—f(8)| < Z2p(§—a)22 q(1— a)_|_ Z 2p(2 a)2 —I—oz(q—i—l)]

t—sl®
p=q+1
< K 2q(1—a)—q(1—a) 4+ g9—aatalatl) ~
Consequently
wp O =IO
0<s<t<1i |t — s|*
and f € C.

— Typeset by FoIlTgX — 17



GEOMETRY OF ROUGH PATHS

Theorem 2 ([8]). LetO < a < 1. Forp > 0,1 < m < 2P et
Cpm () = 2p<o‘_%)+o‘_1, cpola) =1, c_jo(a) =1.
Define

T, : C%—=I"(R)
[ = (ccio(a){(H-10,df), coo{Hoo,df), (cpm(a) (Hpm,d[f))p>1,1<m<2r).

Then T, is invertible and
T o I°(R) = C®

- 1
(M=105 100> (Mpm )p>1,1<m<2e) +— N—10G—-10 + M00Goo + Z Z ﬁnpm
p=11<m<2p Cpm |\

G

T, is an isomorphism, and for the operator norms we have the following

inequalities
2

T.|l=1, ||T7Y] < .
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GEOMETRY OF ROUGH PATHS

Proof. 1. Show: T, well defined, |75 || = supy ¢, <1 [Taslloo < 1,

By Lemma 1, forp > 1,1 < m < 2P we have

_ P 1
[(Hypm, df)] < 27 (PFDatb+ 71|, = 1£1]a- (3)

Cpm (@)

This proves the claim.
2. Show: ||T,|| > 1:

Note that for p > 1,1 < m < 2P we have

_ 959(—p—1)(1-a) _ 9p(a—j)+a—1
|Gpmlla = 222 2 ,

while
(Hpm, dGpm) = (Hpm, Hpm) = 1.

Hence
HGpmHa = Cpm(@)MHpmvdemH — HTa(Gpm)Hoo-
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GEOMETRY OF ROUGH PATHS

3. Let S be the operator defined on [*°(R) in the statement of the Theorem.
Show: S well defined, S(T.(f)) = f,T.(S(n)) = nfor f € C* n € I[>(R).

The claims follow directly from Lemma 1. This implies that T, is invertible and
that S is its inverse.

4. Show: [T 1] < (2a_1)(221_a_1>.

Let 7 = (7—10, 100, (Mpm)p>1,1<m<2e) € [*°(R), choose 0 < s < t < 1, and write
f=T.%(n). Then we have

() = F(s)] < |Inl]ool |t—s\+ZZ

p=1m=1

’Gpm t) — Gpm(s)|]- (4)

cpm
Now choose py > 1 such that
2 P < |t — 5| < 27P0,

Case 1: 1 < p < pg: s and ¢ can belong to at most two adjacent dyadic
— Typeset by FoilTgX — 20



GEOMETRY OF ROUGH PATHS

intervals of generation p. By inspection of the possible cases we get

3" — 5 1Gn(®) = ) 5

< 9—p(a—3)—a+l of it — s

< gr(l—a)—atl—po(l-a) it —s|% = (21—Oé>(1+p—po) it — s|®

Y

Case 2: p > po:

1
Gom(t) — Gpm 6
T;Cpm(a)’ p () p (S)| ( )
< 2—p(a—%)—a—f—1 2—%—1
< gmpamat(potla p _ glo — (2)(Po=P) | _ g|*,

Combining (4), (5) and (6), we obtain the estimate
f@)—f(s)] < 2 H ||
i=s = @r—nEIe-1) e
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Lecture 2: The Schauder representation of Brownian motion

Aim: description of (one-dimensional) Brownian motion in Haar-Schauder
series.

If X = (X¢)o<t<1 IS Brownian motion, then

Show: (H,,,,dX),p>0,1 <m <2Pisani.i.d. sequence of standard normal
variables.

Proof. 1. First of all, note that since increments of Brownian motion are
centered, we have

2. To calculate covariances, let (p, m), (¢, n) be given with
P, €N, 1 <m < 2P 1 <n<29

— Typeset by FoilTgX — 22
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Casel1: p=qg,n=m
In this case by independence of increments

E((Hpm,dX)*) = 2°[B((X(tm) = X(tpm) — (X (tpm) — X ()]

= 2[E((X(tp) — X (1)) + E(X(£,,) — X (£3,)))%)
_ 2p:2—(p+1) 4+ 2—(p+1)] — 1

Case2:p=qg.m<n

Here as a direct consequence of independence of increments

E(<Hpm7 dX> <Hpn7 dX>) = 0.

3

Case 3: p < ¢, [, 2] N[, 2] =0

In this case, as in the preceding one by independence of increments

E((Hppm,dX)(Hy,,dX)) = 0.
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Case4: p <q, [+ 2] D [24, 2]

Here even w.l.o.g. [, 2251 © (221, 2] Hence

E((Hym, dX) (Hyn, dX))

=277 [B[(X (t),,) — X (thn) (X (tg,) — X (tg,))]
~E[(X (tpn) — X (tpm)) (X () — X (tg,))
~E[(X (tpn) = X (tpm)) (X () — X (tg,))
HE[(X (t5) — X (1) (X (t3,) — X (tgn))]
= 2" THE[(X (t],) - X(£9,))?]
~E[(X(t,) — X(t,,))?]] (independence of increments)

= 0 (equal length of intervals).

This proves the claim. ]
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Given sequence of i.i.d. standard normal variables (Zoo, (Zpm)p>1,1<m<2r) ON

(2, F,P), define

By = ZooGool(t +§‘ N ZymGpm(t), te0,1].

p=11<m<2P

Aim: show that B = (B;)o<:<1 is Brownian motion.

Figure 5: Brownian paths: Euler (blue), (7), N = 10 (orange)
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GEOMETRY OF ROUGH PATHS

Lemma 3. There exists a real valued random variable C such that for
p>1,1<m < 2P we have

| Zpm| < C'y/pln2.
Proof. 1. Show:

2
P(|Zym| > /2810 27) < \ﬁz—ﬁp.

7

Forx>1,p>1,1 <m < 2P we have

R 2 [ u? 2 _a?
P(|Zym| > x) = \/:/ e 2du < \/:/ ue” Zdu R
T/ T /)y 7'('

Hence for 5 > 1

|
|
®

———— 2 2
A 7

— Typeset by FoIlTgX —
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2. Show: |Z,,,| < v4Bpln2fora.a. p > 1,1 < m < 2P with probability 1.

Forp>0,1<m<2FletA,, ={|Z,, < /45pIn2}. Then by part 1.

>y P4 S 2P <o,

p=11<m<2p p=0

since 8 > 1. So, the lemma of Borel-Cantelli yields

P(Ngen Up>q,1<m<ar Ay,,) = 0,

and so
P(UQEN mpzq,1§m§2p Apm) = 1.

This translates to: With probability 1 there exists ¢ € N such that for all p > ¢,
all1 <m < 2P we have |Z,,,| < v408In2pP.

Hence Z]
C = su s
p21,1§17?n§2p Vpln?2
is almost surely finite, and yields the desired inequality. ]
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According to the preceding Lemma, the convergence in (7) is absolute and
therefore the process continuous. We now show that its law has the
characteristics of the law of a Brownian motion.

Theorem 4. The series in (7) converges absolutely in the uniform norm to a
continuous process B which is a Brownian motion on |0, 1].

Proof. 1. Show: If B, (1) = ZooGoo(t) + 351 D1« ppeok ZamGrm(t), p € N,
then we have

|1B, — Byllo >0 as p,q — oo.

Consequently, B is a.s. continuous.
— Typeset by FoilTgX —
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Let p,q > 1 be such that ¢ > p. Then with C' of the preceding Lemma

q
SIS 1 Zuwl Gl

1By = Bgllos <
n=p 1<m<2"
< C’Z\/nln2]| Z Grml|oo
1<m<2n
<

C Z NG
n=p

which converges to 0 as p tends to oc.

2. Show: Fort € [0,1] E((B,(t) — B,(t))?) — 0 as p,q — oo. In particular,
B(t) is square integrable for ¢ € [0, 1].

In fact, for ¢t € [0, 1], p,q > 1 such that ¢ > p by the law properties of

Lpm,p > 1,1 <m < 2P,
— Typeset by FoilTgX —
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E(D . Y. ZunGum(t)]?)

n=p 1<m<2n

- > Gz

n=p 1<m<2n

E((B,y(t) — By(t))?)

which converges to 0 as p — oc.

3.Show: Forde N,0<t; < ---<tg<1l,and = (01, ---,04) € R?the
vector (B(ty1),--- , B(ty)) is Gaussian with

E(B(tz)) = 0, cov (B(tz),B(t])) = 1; N1y, 1 <4,7 <d.

We compute the Fourier transform ¢(0) of the vector (B(t1),--- , B(tq)) at 6.
— Typeset by FoilTgX — 30
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By dominated convergence and the law properties of Z,,,,,p > 1,1 <m < 2P,
we have

d
p(0) = E(exp(iy 6;B(t))))

o d
- 11 E(exp(iZpm » _ 0;Gpm(t;)))

p=00<m<2p j=1

— H I1 exp——ZQGpm

p=00<m<2p

— exp(—%x S: (ZHijm(tj))2>

p=00<m<2pP j=1

= exp(—% Z Qjek S: S: Gpm(tj)Gpm(tk»'

7,k=1 p=00<m<2P
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Now observe that Parseval’s equation implies for 1 < 5,k < d

L Nl = <1[0,tj]71[0,tk]>

= 2 2. (o) Hym) (Lo, Hom)

p=00<m<2P

= > > Gpm(t;)Gpm(tr).

p=00<m<2P

Therefore we finally obtain

d
1
o(0) = exp(—3 > 00k t; At).

7,k=1

This implies the claimed properties.

Goal: Holder continuity properties of B.

— Typeset by FoIlTgX —
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Theorem 5. The Brownian motion B = (B(t))o<:<1 IS Holder continuous of
order o < 1/2. Its trajectories are a.s. nowhere Hoélder continuous of order
a>1/2.

Moreover we have (Lévy’s modulus of continuity)

B(t) — B(s)
P<o§i€§1 h(]t — )

< oo) —1, (9)

where h(u) = /ulog(1/u),u > 0.
In particular, for o < % the trajectories of B are P-a.s. contained in C“.

Proof. 1. Let first a €]0, 1|, (cpm)p>1,1<m<2r D€ a sequence in R for which
there exists ¢ € R such that for p > 0,1 < m < 2P we have

‘Cpm’ < ¢\/p.

Let .
FO =YY cpmGpm(t), te][0,1].

p=11<m<2P
— Typeset by FoIlTgX — 33
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The trajectories of B fulfill this inequality by Lemma 3.

Show: supg ;< If&')t—_é(';)I < 00.

In fact, by continuity properties of GGyg, we may assume cqoo = 0. Then for
0<s<t<l1

oo 2P

F@) = FS <D D lepml IGpm(t) — Gpm(s)]. (10)

p=1m=1
Now choose py > 1 such that

2P0l < |t — 5] < 27P0,

W.l.o.g. we can assume that p, > 1. Then for 1 < p < pg, s and t can belong to

at most two adjacent dyadic intervals of generation p.
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By inspection of the different cases we get

op

Z [cpml| |Gpm (€) — Gpm(s)]

m=1

c p2g\t—s|

P—P0

<
< cy/p22 \t—s\%

while for p > pg
5P
Z [coml [Gpm () — Gpm(s)]
m—<1 p

— Typeset by FoIlTEX —
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Now
Z £2_p—2p0 Z 2_ —2190 <
0<p<po 0<p<po

And )
E:’vﬁ02m2p2£ CDVGQ .
>0 Po Po Jp,

o0 x 1 > 1
/¢ﬁmx:——frw+—/—4wx
y 2 Jy

In 2

|\
N
Ny
|
[\V/Nag
i
e
8
DO
e

VAN
™

|
+

—_— 2
m2V? (In2)?
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Now set y = pg, t0 see

_0
1/p = S 22 \/7—|—1) 5~ ~ 1.
p>p0 Po

Hence (10), (11) and (12) imply

t) —
O -5
0<s<t<1 \/’t — Sl lnﬁ

2. Part 1. implies all claims about Holder continuity for o < %
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Lecture 3: Takagi functions via dynamical systems

Now study Takagi function

1

Clz):=> AFf(2"z), z€]0,1],7 g1l f=dist(Z,).
k=0

Here is the Takagi base function f(2*-) for k = 0,1, 2, 3:

Figure 6: Takagi base function = — f(2*z),k = 0,1, 2, 3.

— Typeset by FoilTgX —
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Holder continuity

For v = 2%, k > 0 we just obtain

Forz,y €[0,1,k € Ns.th. 27% < |z —y| < 27%F1 o €]0,1[s. th. v = 27«

k o0
Cx)—C(y)| < eD Y2z —yl+ DY
[=0 l=k+1
< 2PV |p —y| + 277 < clw — y|*

Hence C' «o-HoOlder continuous.
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Takagi function: geometry

Graph of T for v = 273 (o = 1):

DN —

T(x)

1.0 -

0.8 A

0.6

0.4 -

0.2 A

0.0 A

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7: Graph of C: {(z,C(z)) : xz € [0,1]} C R2.

Goal: Investigate geometry of C, in particular local time.
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A metric dynamical system
Lit: Baranski et al. [2], Keller [18], Shen [20].

Goal: Describe C as attractor of a dynamical system on [0, 1]%, alternatively
Q= {0, 1} x {0, 1}

For w € Q, write w = ((w—n)n>0, (Wn)n>1), F product o-field.

Canonical shift on Q:
1 1
0:Q0 = w,wr (Wnyl)nez, V= ®nez(§5{0} + 55{1})

the infinite product of Bernoulli measures.

(2, F, v, 0) metric dynamical system.
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A metric dynamical system, baker’s transformation

Now let

D= (D1, D2): Q= [0,1]*, wrr (Y w_,2” N 27,
n=0 n=1
Then v o D! = )\? Lebesgue measure on [0, 1]2. D~ ': dyadic representation
of components in [0, 1]%. Let
B=DofloD '  bakers transformation.

The v-invariance of § implies B-invariance of \?. For (&, z) € [0, 1]° denote

D7H(& x) = ((€-p)nz0, (Tn)nz1)-

For (£,2) €]0,1]?and k > Oresp. k > 1

o+ - + T
B(e.x) = (26(modn), 1) Biew) = (S5 2n(mod)).
expansion contraction contraction expansion
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Self affinity: (' as attractor of a random dynamical system
Extend C from [0,1] to [0,1)2 by C(¢,2) = C(x), &,z €10,1].

By definition of B we have B, " (£, ) = 2"x (mod 1), and hence
=) "f(2ha)= ) (B
n=0 n=0
Therefore, taking k = n — 1,
C(By(,x)) = Z Y (By"TH(E )

= [(B2(§ 7)) +70(57 z).
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C as attractor of a random dynamical system
Define the map
F:[0,1* xR — [0,1)* xR,
Eoy) = (BE) F(BaA& ) +7y),

where B = (By, Bs).
Then

(B(&,2). C(B(,2))) = (B(&2),C(Bs(€)) ) = F(&x.C(¢,) ).

Hence C is an attractor for F' (on the skew product).

Here, with w = (£,2): A = (A(w) : w € [0,1]*) € R compact attractor for F:

(i) F(w, Aw)) = (B(w )A(B(w)),
(ii) d(FyD(B (w)), Aw)) —
(D(w) :w € [() 1]?) ¢ R compact,
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Lyapunov exponents and invariant structures

Calculate Jacobian: for £,z € [0,1],y € R

2 0 0 |
JF(Ezy) = |0 ! 0|
i 0 %f/(BQ(f,Qﬁ)) v

1
’ 99

~. Invariant vector fields: for xk = -

Hence Lyapunov exponents of F': 2 5

S(&x) = =2y k(B3 (&, 2)):

1 0 0
() e () (8)
0 S(&, x) 1

Hence X spans invariant stable manifold: for &,z € [0,1],y € R
1
JP(E . y)X (€ x) = S X (BEx)).
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The Sinai-Bowen-Ruelle measure

Calculate action of S on B: for &, x € [0, 1]
S(B(&,x)) = - &"f(Byt(E )
n=1

= —29) w"(B5(&2)) + ['(Ba(é,2))
k=1

= 2795(&,2) + f(Ba(€, 1)).

So

0
TF(E 2,y) X (6,7) = ( % ) = SX(B(E.2),
%f/(Bg(f,CC)) +75(€7a})

Sinai-Bowen-Ruelle measure p: marginals u., x € [0, 1], given for B € B(|0,1])
by

o (B) = / 15 (S(€, 2))dé.
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Smoothness of the SBR measure
Idea: use Fourier analysis to show absolute continuity of u

Fourier transform of p,:

@;(u):/O e:x;p(z'wg(f,a:))df7 u € R,z €[0,1].

SBR measure absolutely continuous (with L? density) if

/01/R|qu(u)\2dudx = /R/[O,1]3 exp (iu(S({,x) —S(ﬁax)))d:ﬂdﬁdndu < 0.

Hence we are interested in properties of S (&, 2) — S(n, x), (§,n,x) € [0,1]°.
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Self affinity and self similarity

For &,z € [0,1] (recall k = 5-)

Gi(&z) = =) w"[f(B3(& ) — f(B5(0,x))],
G_(&x) = > A"[f(B"(& m) — f(B;"(£,0))].
Then for z,y,&,m € [0, 1]
Gi(&x) = Gyu(nx) = = K"[f(By(& ) — f(BE(n, )

S(&x) = S, ),
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Self affinity and self similarity

G (§y) -G (&r) = Zv f(2"z)]

+ Zv‘"[f(BS(ﬁ,y))—f(BQ(fvf’f))]

Y

— C»-C) - [ Sz

xT

and self similarity holds:

G (B7'(¢ ) kG (€, 1),
G_(B(&,y)) —G_(B(&,x) = v[G_(&y) —G-(& )]
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Smoothness of the occupation measure

Idea: use Fourier analysis to show absolute continuity of occupation measure

C(¢,z) = Cz) — /O xS(f,z)dz, ve(A) = /O 1a(C(&, z))dx

¢, xe0,1], A C R Borel.

Fourier transform of v;:

(&, x))dz, ueREE(0,1].

=
782
=
|
c\
D
oo
®
N
@

Occupation measure absolutely continuous (with L? density) if

/01/R|¢€(u)!2dud§ //0 1]36Xp zu fy) (f,x)))dﬁdmdydu<oo,
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Microscopic and macroscopic measures for S and
Let

p(A) = N{(&nz)€[0,1]: GL(& ) — Gi(n,z) € A}),
) 1
= p(12 < le~ ).
x(4) = N{(&z,y) €[0,1]°: G_(&y) — G_(&,z) € A}),

A

1
X = X('b < |z —yl)

Proposition 1 (microscopic-macroscopic transformation):
For A Borel set we have

Zin —nA X 227@1 —nA)
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Smoothness of the SBR measure

Have to show:

/R/Rexp(iuaz)p(dfc)du < 00.

By microscopic-macroscopic transformation

/R /R exp(iuz)p(dz)du = nianl /]R /R exp(iuy)p(k~"dy)du
— /IR/]RTiZ”lexp(ium"y)ﬁ(dy)du
- /] ;iwexpuuy)ﬁ(dy)du

2(11_7)/H%/IRGXP(in)ﬁ(dy)du.

To show finiteness, use (macroscopic) properties of S(&,-) — S(n, ), i.e.

properties on the set {1 < [¢ — 1|}
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Macroscopic properties of S(&,-) — S(n,-)

Fix £, € [0, 1], with dyadic sequences £_,7_.,n > 0. Forn € N let

=inf{¢ > 0: &, #7—¢}, and 7,41 = Inf{l > 7, : E_y # 710},

Note: .
. 1 k¢ — 1 Tp+1 1_5—7
£=D (' E-n=) (DT,
k=0 /=1
We can show
Proposition 2:
Let &, n,x € [0,1]. Then
S(&.@) = S(n,x) = 2 ZW“ Dite
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Smoothness of the SBR measure

Now suppose & < & — 1. Then £, =1,7,=0,and {_, = ¢_, = 1. Hence for

k< 5 on{1/2 <&~}

inf ‘S(f,l’) o S(Uax)‘ > 07

x€[0,1]

and so thereis a > 0 s. th. supp(p) C [—a, al".

Therefore
//exp(iuy)ﬁ(dy)du < 00.
RJR
So we get
Theorem 6:
Let € |2, %]. Fora.e. x €[0,1], ur, = Ao S(-,x)~! is absolutely continuous

w. r. t. A, with L? density. The SBR measure 1 is absolutely continuous w. r. t.
A
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Macroscopic properties of C(-,y) — C(-, z)
Duality: SBR measure: Ao G (-, x)—l' occupation measure: Ao G_(&,-) L.

Recall: G_(¢&,y) — G_(&,2) = C(y) — [YS(¢,2)dz = C(&,y) — C (&, z).

Fix z,y € [0, 1] with dyadic sequences 7,,,7,,,n > 1. For n € N let

=inf{l >1:%;# 1y}, and o1 = inf{l > o, : Ty # Y4 }. (15)
Then we have

Proposition 4:
Let &, z,y € [0,1]. Then

C(&, ) = (=) S(B7Y(E, ), 0)

+4r Y A7 D(BY(By (€, y), By (€, 7).
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The existence of local time

For v < = this gives on {1/2 < |z — y|}

ot IC(&y) — C& )| =|C(y) — C(z) — (y — 2)S(£,0)] >0

So analogous Fourier analytic argument yields

Theorem 7:

Let v € [5.2]. Fora. e. £ € [0, 1]

G_(.2) = Clz) — C(0) — /0 " S(€.2)dz

possesses a square integrable local time.

Conjecture: regularity of local time in ¢ allows to remove drift |, S(, z)dz and
provides local time for C'.
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Outlook: Brownian paths as randomized Takagi functions

recall Takagi function:

=N "R f(2F), @€ [0,1],7 e]%, 1[, f=dist(Z,).
k=0

Haar-Schauder expansion of Brownian motion: let (Zym) >0 1<n<2r € an
array of i.i.d. standard normal vanables then the Haar-Schauder expansion of
Brownian motion is given for v = 2~ > by

— Z’yk Z ka 2k 1[7n 1 m]( )7 T & [07 1]

k k
k=0 1<m<2k E

Goal: investigate the geometry of individual Brownian paths by employing the
analysis presented to randomized Takagi functions
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The Hausdorff dimension of C

By microscopic-macroscopic conversion (of the measure ) , Theorem 7 and
recalling v = 27 “ we get

Theorem 8:
For any v € [1, 2] the Hausdorff dimension of the graph of C'is 2 — a.

Ongoing research:
e result on a.c. of the SBR measure for C holds for any « € [1, 1]

e by duality: a.c. of the occupation measure of C holds for any ~ € 2, 1]

e case ('is replaced by a Weierstrass function: a.c. of SBR measure known

for any k € [%, 1] (Shen '17), by duality most likely transfers to occupation

measures
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