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GEOMETRY OF ROUGH PATHS

Outline of course

Goal:
investigate geometry of individual (rough) paths, typically trajectories of
stochastic processes, by means of techniques from the theory of dynamical
systems

• Lecture 1: explain Ciesielski’s isomorphism between path space and
sequence space along series decompositions of paths

• Lecture 2: exemplify the use of series decompositions by looking at the
Haar-Schauder expansion of Brownian motion

• Lecture 3: embed individual paths into dynamical systems and use
stability theory to study the paths’ geometry
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GEOMETRY OF ROUGH PATHS

Lecture 1: Ciesielski’s isomorphism
Isomorphism between Cα = Cα([0, 1],R), normed by

∥f∥α := ∥f∥∞ + sup
0≤s<t≤1

|fs,t|
|t− s|α

, fs,t := f(t)− f(s),

and ℓ∞(R), based on Haar functions (Hpm, p ≥ 0, 1 ≤ m ≤ 2p): H00 ≡ 1,

Hpm(t) :=


√
2p, t ∈

[
m−1
2p , 2m−1

2p+1

)
,

−
√
2p, t ∈

[
2m−1
2p+1 ,

m
2p

)
,

0, otherwise.
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Figure 1: Haar functions: generations p = 1, 2, 3
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GEOMETRY OF ROUGH PATHS

Show: (Hpm)p∈N,1≤m≤2p is a CONS in L2([0, 1]).
1. Orthogonality: Case 1: p = q, n ̸= m. Then

⟨Hpn, Hpm⟩ = 0,

since the supports of the two functions are disjoint, and

⟨Hpn, Hpn⟩ = 2pλ([
m− 1

2p
,
m

2p
]) = 1.

Case 2: p > q: Then for 1 ≤ n ≤ 2q, 1 ≤ m ≤ 2p, either the supports [n−1
2q ,

n
2q ]

and [m−1
2p , m2p] are disjoint. Or, [m−1

2p , m2p] ⊂ [n−1
2q ,

n
2q ] and then Hqn|[m−1

2p
,m
2p

] = c is
constant on the support of Hpm, and hence

⟨Hpm, Hqn⟩ = c

∫ m
2p

m−1
2p

Hpm(x)dx = 0.
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GEOMETRY OF ROUGH PATHS

2. Completeness: The linear hull of the set of indicator functions of intervals
[m−1

2p , m2p] is dense in L2([0, 1]) (measure theory). Moreover 1[m−1
2p

,m
2p

] is in the
linear hull of (Hpm)p≥0,1≤m≤2p. To see this, use induction, starting by

1[0,1] = H00,

1[0,12]
=

1

2
(H00 +H01),

1[12,1]
=

1

2
(H00 −H01).

For convenience of notation: Hp0 ≡ 0 for p ≥ 1.
– Typeset by FoilTEX – 4



GEOMETRY OF ROUGH PATHS

Primitives of Haar functions, Schauder functions: Gpm(t) :=
∫ t

0
Hpm(s)ds for

t ∈ [0, 1], p ≥ 0, 0 ≤ m ≤ 2p.

We have G00(t) = t and for p ≥ 1, 1 ≤ m ≤ 2p

Gpm(t) =


2p/2

(
t− m−1

2p

)
, t ∈

[
m−1
2p , 2m−1

2p+1

)
,

−2p/2
(
t− m

2p

)
, t ∈

[
2m−1
2p+1 ,

m
2p

)
,

0, otherwise.
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Figure 2: Schauder functions: generations p = 1, 2
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GEOMETRY OF ROUGH PATHS

Further for convenience: G−10(t) := 1 for t ∈ [0, 1];

t0pm :=
m− 1

2p
, t1pm :=

2m− 1

2p+1
, t2pm :=

m

2p
,

for p ≥ 1 and 1 ≤ m ≤ 2p;

t0−10 := 0, t1−10 := 0, t2−10 := 1, and t000 := 0, t100 := 1, t200 := 1, and tip0 := 0 for
p ≥ 1 and i = 0, 1, 2; definition for i = 1 simplifies statement of Lemma 1.

For f ∈ C([0, 1],R), p ∈ N, and 1 ≤ m ≤ 2p, write

⟨Hpm,df⟩ := 2
p
2
[(
f
(
t1pm

)
− f

(
t0pm

))
−
(
f
(
t2pm

)
− f

(
t1pm

))]
=2

p
2
[
2f

(
t1pm

)
− f

(
t0pm

)
− f

(
t2pm

)]
and ⟨H00,df⟩ := f(1)− f(0), ⟨H−10,df⟩ := f(0). We only defined G−10 and
not H−10.
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GEOMETRY OF ROUGH PATHS

Assume f = f(0) +
∫ ·
0
ḟ(s)ds, with ḟ ∈ L2([0, 1]). Then for p ∈ N, 1 ≤ m ≤ 2p

⟨Hpm, ḟ⟩ = 2
p
2 [

∫ t1pm

t0pm

ḟ(s)ds−
∫ t2pm

t1pm

ḟ(s)ds]

= 2
p
2 [(f(t1pm)− f(t0pm))− (f(t2pm)− f(t1pm))]

= ⟨Hpm,df⟩.
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GEOMETRY OF ROUGH PATHS

Since (Hpm) is a CONS of L2([0, 1],Rd), we can further write

ḟ = ⟨H00, ḟ⟩H00 +
∑

p≥1,1≤m≤2p

⟨Hpm, ḟ⟩Hpm.

Integrating and interchanging limits gives

f = f(0) +

∫ ·

0

ḟ(s)ds = ⟨H−10, df⟩G−10 + ⟨H00, df⟩
∫ ·

0

H00(s)ds (1)

+
∑

p≥1,1≤m≤2p

⟨Hpm, ḟ⟩
∫ ·

0

Hpm(s)ds

= ⟨H−10, df⟩G−10 + ⟨H00, df⟩G00 +
∑

p≥1,1≤m≤2p

⟨Hpm, df⟩Gpm.

The following Lemma shows that this can be generalized to (Hölder)
continuous functions.

– Typeset by FoilTEX – 8
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Lemma 1 ([8]). 1. For f : [0, 1] → R and k ∈ N, the function

fk := ⟨H−10,df⟩G−10 + ⟨H00,df⟩G00 +

k∑
p=0

2p∑
m=1

⟨Hpm,df⟩Gpm

=

k∑
p=−1

2p∑
m=0

⟨Hpm,df⟩Gpm

is the linear interpolation of f between the points
t1−10, t

1
00, t

1
pm, 0 ≤ p ≤ k, 1 ≤ m ≤ 2p.

2. If f is continuous, then ||fk − f ||∞ → 0 as k → ∞.

3. Let α ∈ (0, 1). A continuous function f : [0, 1] → R is in Cα if and only if

sup
p,m

2p(α−1/2)|⟨Hpm,df⟩| <∞.
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In this case

sup
p,m

2p(α−1/2)|⟨Hpm,df⟩| ≃ ∥f∥α and (2)

∥f − fk−1∥∞ =
∥∥∥ ∞∑

p=k

2p∑
m=0

|⟨Hpm,df⟩|Gpm

∥∥∥
∞

≲ ∥f∥α2−αk, k ∈ N.

Here x ≲ y means x ≤ Cy with a universal constant C. And x ≃ y means
x ≲ y as well as y ≲ x.

Proof. 1. Let gk be the linear interpolation of f between the points
t1−10, t

1
00, t

1
pm, 0 ≤ p ≤ k, 1 ≤ m ≤ 2p. Then gk ∈ Cα.

Show:
gk − fk = 0.

By (1) fn → gk as n→ ∞. But by definition of Gpm the contributions of dyadic
generations bigger than k have to vanish at the points t1−10, t

1
00, t

1
pm,

0 ≤ p ≤ k, 1 ≤ m ≤ 2p.
– Typeset by FoilTEX – 10
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2. follows from 1. and uniform continuity of f on [0, 1].

3. Show: For f ∈ Cα

sup
p,m

2p(α−1/2)|⟨Hpm,df⟩| <∞.

Fix p ≥ 1, 1 ≤ m ≤ 2p. Then by definition of the Hölder norm

|⟨Hpm,df⟩| ≤ 2
p
2 [(|f(t1pm)− f(t0pm)|+ |f(t2pm)− f(t1pm)|]

= 2
p
22−α(p+1)[

|f(t1pm)− f(t0pm)|
|t1pm − t0pm|α

+
|f(t2pm)− f(t1pm)|

|t2pm − t1pm|α
]

≤ 2
p
2+1−α(p+1)||f ||α.

Hence
sup
p,m

2p(α−1/2)|⟨Hpm,df⟩| ≤ 21−α ||f ||α <∞.

This proves one direction in claim 3., and one inequality in the equivalence of
norms.
– Typeset by FoilTEX – 11
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4. Show: For k ∈ N we have

∥f − fk−1∥∞ =
∥∥∥ ∞∑

p=k

2p∑
m=0

|⟨Hpm,df⟩|Gpm

∥∥∥
∞

≲ ∥f∥α2−αk.

We fix p ∈ N and estimate the contribution of the pth dyadic generation.
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Figure 3: ||Gpm||∞
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Observe that by disjointness of the supports of Gpm, 1 ≤ m ≤ 2p and

||Gpm||∞ = 2
p
22−(p+1) = 2−

p
2−1,

we have

||
2p∑

m=1

Gpm||∞ = 2−
p
2−1.

Hence by 3.

||
2p∑

m=0

⟨Hpm,df⟩Gpm||∞ ≲ ||f ||α2
p
2+1−α(p+1)2−

p
2−1 = 2−α(p+1)||f ||α.

Therefore by 2. for k ∈ N
– Typeset by FoilTEX – 13
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||f − fk−1||∞ ≤ lim
m→∞

||fm − fk−1||∞

≤ lim
m→∞

m−1∑
p=k

||
2p∑

m=0

⟨Hpm,df⟩Gpm||∞

≲
∞∑
p=k

2−αp ||f ||α ≲ 2−αk ||f ||α.

5. Show: If f continuous and K = supp,m 2p(α−1/2)|⟨Hpm,df⟩| <∞, then
f ∈ Cα, and ||f ||α ≲ K.

In fact, let 0 ≤ s < t ≤ 1 be given. Assume that q ∈ N such that

2−(q+1) ≤ |t− s| ≤ 2−q.
– Typeset by FoilTEX – 14
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Then by 2.

|f(t)− f(s)|
|t− s|α

= lim
k→∞

|fk(t)− fk(s)|
|t− s|α

≤
∞∑
p=0

sup
0≤m≤2p

|⟨Hpm,df⟩|
2p∑

m=0

|Gpm(t)−Gpm(s)|
|t− s|α

≲ K

∞∑
p=0

2p(
1
2−α)

2p∑
m=0

|Gpm(t)−Gpm(s)|
|t− s|α

.

To estimate the contributions of Schauder functions of generation p,
distinguish cases:
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Case 1: p ≤ q

2m − 1
2p+1

m − 1
2p

m
2p

2− p
2 −1 Gp m Gp m+1

2m + 1
2p

m + 1
2p

s t

Figure 4: estimate of increments, small modes

Then either s and t belong to the same dyadic interval [m0−1
2p , m0

2p ] or to two
adjacent ones. In both cases

2p∑
m=0

|Gpm(t)−Gpm(s)|
|t− s|α

≤ 2
p
2 |t− s|1−α ≲ 2

p
2−q(1−α).
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Case 2: p > q

In this case s and t each belong to a dyadic interval of generation p and hence

2p∑
m=0

|Gpm(t)−Gpm(s)|
|t− s|α

≤ 2−
p
2 |t− s|−α ≲ 2−

p
2+α(q+1).

Summarizing, we obtain

|f(t)− f(s)|
|t− s|α

≲ K [

q∑
p=0

2p(
1
2−α)2

p
2−q(1−α) +

∞∑
p=q+1

2p(
1
2−α)2−

p
2+α(q+1)]

≲ K 2q(1−α)−q(1−α) + 2−qα+α(q+1) ≃ K.

Consequently

sup
0≤s<t≤1

|f(t)− f(s)|
|t− s|α

≲ K,

and f ∈ Cα.
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Theorem 2 ([8]). Let 0 < α < 1. For p ≥ 0, 1 ≤ m ≤ 2p let

cpm(α) = 2p(α−
1
2)+α−1, cp0(α) = 1, c−10(α) = 1.

Define

Tα : Cα → l∞(R)

f 7→ (c−10(α)⟨H−10,df⟩, c00⟨H00,df⟩, (cpm(α) ⟨Hpm,df⟩)p≥1,1≤m≤2p).

Then Tα is invertible and

T−1
α : l∞(R) → Cα

(η−10, η00, (ηpm)p≥1,1≤m≤2p) 7→ η−10G−10 + η00G00 +

∞∑
p=1

∑
1≤m≤2p

1

cpm(α)
ηpm Gpm.

Tα is an isomorphism, and for the operator norms we have the following
inequalities

||Tα|| = 1, ||T−1
α || ≤ 2

(2α − 1)(21−α − 1)
.

– Typeset by FoilTEX – 18
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Proof. 1. Show: Tα well defined, ||Tα|| = sup||f ||α≤1
||Tαf ||∞
||f ||α ≤ 1.

By Lemma 1, for p ≥ 1, 1 ≤ m ≤ 2p we have

|⟨Hpm,df⟩| ≤ 2−(p+1)α+p
2+1||f ||α =

1

cpm(α)
||f ||α. (3)

This proves the claim.

2. Show: ||Tα|| ≥ 1:

Note that for p ≥ 1, 1 ≤ m ≤ 2p we have

||Gpm||α = 2
p
22(−p−1)(1−α) = 2p(α−

1
2)+α−1,

while
⟨Hpm,dGpm⟩ = ⟨Hpm, Hpm⟩ = 1.

Hence
||Gpm||α = cpm(α)|⟨Hpm,dGpm⟩| = ||Tα(Gpm)||∞.
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3. Let S be the operator defined on l∞(R) in the statement of the Theorem.

Show: S well defined, S(Tα(f)) = f, Tα(S(η)) = η for f ∈ Cα, η ∈ l∞(R).

The claims follow directly from Lemma 1. This implies that Tα is invertible and
that S is its inverse.

4. Show: ||T−1
α || ≤ 2

(2α−1)(21−α−1)
.

Let η = (η−10, η00, (ηpm)p≥1,1≤m≤2p) ∈ l∞(R), choose 0 ≤ s < t ≤ 1, and write
f = T−1

α (η). Then we have

|f(t)− f(s)| ≤ ||η||∞[|t− s|+
∞∑
p=1

2p∑
m=1

1

cpm(α)
|Gpm(t)−Gpm(s)|]. (4)

Now choose p0 ≥ 1 such that

2−p0−1 < |t− s| ≤ 2−p0.

Case 1: 1 ≤ p < p0: s and t can belong to at most two adjacent dyadic
– Typeset by FoilTEX – 20
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intervals of generation p. By inspection of the possible cases we get

2p∑
m=1

1

cpm(α)
|Gpm(t)−Gpm(s)| (5)

≤ 2−p(α−1
2)−α+1 2

p
2 |t− s|

≤ 2p(1−α)−α+1−p0(1−α) |t− s|α = (21−α)(1+p−p0) |t− s|α,

Case 2: p ≥ p0:

2p∑
m=1

1

cpm(α)
|Gpm(t)−Gpm(s)| (6)

≤ 2−p(α−1
2)−α+1 2−

p
2−1

≤ 2−pα−α+(p0+1)α |t− s|α = (2α)(p0−p) |t− s|α.

Combining (4), (5) and (6), we obtain the estimate
|f(t)−f(s)|

|t−s|α ≤ 2
(2α−1)(21−α−1)

||η||∞.
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Lecture 2: The Schauder representation of Brownian motion

Aim: description of (one-dimensional) Brownian motion in Haar-Schauder
series.

If X = (Xt)0≤t≤1 is Brownian motion, then

Show: ⟨Hpm, dX⟩, p ≥ 0, 1 ≤ m ≤ 2p is an i.i.d. sequence of standard normal
variables.

Proof. 1. First of all, note that since increments of Brownian motion are
centered, we have

E(⟨Hpm, dX⟩) = 0, p ≥ 0, 1 ≤ m ≤ 2p.

2. To calculate covariances, let (p,m), (q, n) be given with
p, q ∈ N, 1 ≤ m ≤ 2p, 1 ≤ n ≤ 2q.

– Typeset by FoilTEX – 22
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Case 1: p = q, n = m

In this case by independence of increments

E(⟨Hpm, dX⟩2) = 2p[E([(X(t1pm)−X(t0pm)− (X(t2pm)−X(t1pm))]2)]

= 2p[E((X(t1pm)−X(t0pm))2) +E((X(t2pm)−X(t1pm)))2)

= 2p[2−(p+1) + 2−(p+1)] = 1.

Case 2: p = q,m < n

Here as a direct consequence of independence of increments

E(⟨Hpm, dX⟩⟨Hpn, dX⟩) = 0.

Case 3: p < q, [m−1
2p , m2p] ∩ [n−1

2q ,
n
2q ] = ∅

In this case, as in the preceding one by independence of increments

E(⟨Hpm, dX⟩⟨Hqn, dX⟩) = 0.
– Typeset by FoilTEX – 23
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Case 4: p < q, [m−1
2p , m2p] ⊃ [n−1

2q ,
n
2q ]

Here even w.l.o.g. [m−1
2p , 2m−1

2p+1 ] ⊃ [n−1
2q ,

n
2q ]. Hence

E(⟨Hpm, dX⟩⟨Hqn, dX⟩)

= 2
p+q
2 [E[(X(t1pm)−X(t0pm))(X(t1qn)−X(t0qn))]

−E[(X(t1pm)−X(t0pm))(X(t2qn)−X(t1qn))]

−E[(X(t2pm)−X(t1pm))(X(t1qn)−X(t0qn))]

+E[(X(t2pm)−X(t1pm))(X(t2qn)−X(t1qn))]

= 2
p+q
2 +1[E[(X(t1qn)−X(t0qn))

2]

−E[(X(t2qn)−X(t1qn))
2]] (independence of increments)

= 0 (equal length of intervals).

This proves the claim.
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Given sequence of i.i.d. standard normal variables (Z00, (Zpm)p≥1,1≤m≤2p) on
(Ω,F ,P), define

Bt = Z00G00(t) +

∞∑
p=1

∑
1≤m≤2p

ZpmGpm(t), t ∈ [0, 1]. (7)

Aim: show that B = (Bt)0≤t≤1 is Brownian motion.

0.0 0.2 0.4 0.6 0.8 1.0

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Brownian Path
Brownian approximation N = 10

Figure 5: Brownian paths: Euler (blue), (7), N = 10 (orange)
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Lemma 3. There exists a real valued random variable C such that for
p ≥ 1, 1 ≤ m ≤ 2p we have

|Zpm| ≤ C
√
p ln 2. (8)

Proof. 1. Show:

P(|Zpm| ≥
√
2β ln 2p) ≤

√
2

π
2−βp.

For x ≥ 1, p ≥ 1, 1 ≤ m ≤ 2p we have

P(|Zpm| ≥ x) =

√
2

π

∫ ∞

x

e−
u2

2 du ≤
√

2

π

∫ ∞

x

ue−
u2

2 du =

√
2

π
e−

x2

2 .

Hence for β > 1

P(|Zpm| ≥
√
2β ln 2p) ≤

√
2

π
e−β ln 2p =

√
2

π
2−βp.
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2. Show: |Zpm| ≤
√
4βp ln 2 for a.a. p ≥ 1, 1 ≤ m ≤ 2p with probability 1.

For p ≥ 0, 1 ≤ m ≤ 2p let Apm = {|Zpm| ≤
√
4βp ln 2}. Then by part 1.

∞∑
p=1

∑
1≤m≤2p

P(Ac
pm) ≲

∞∑
p=0

2p2−βp <∞,

since β > 1. So, the lemma of Borel-Cantelli yields

P(∩q∈N ∪p≥q,1≤m≤2p A
c
pm) = 0,

and so
P(∪q∈N ∩p≥q,1≤m≤2p Apm) = 1.

This translates to: With probability 1 there exists q ∈ N such that for all p ≥ q,
all 1 ≤ m ≤ 2p we have |Zpm| ≤

√
4β ln 2p.

Hence
C = sup

p≥1,1≤m≤2p

|Zpm|√
p ln 2

is almost surely finite, and yields the desired inequality.
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According to the preceding Lemma, the convergence in (7) is absolute and
therefore the process continuous. We now show that its law has the
characteristics of the law of a Brownian motion.

Theorem 4. The series in (7) converges absolutely in the uniform norm to a
continuous process B which is a Brownian motion on [0, 1].

Proof. 1. Show: If Bp(t) = Z00G00(t) +
∑p

k=1

∑
1≤m≤2k ZqmGkm(t), p ∈ N,

then we have

||Bp −Bq||∞ → 0 as p, q → ∞.

Consequently, B is a.s. continuous.
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Let p, q ≥ 1 be such that q ≥ p. Then with C of the preceding Lemma

||Bp −Bq||∞ ≤
q∑

n=p

||
∑

1≤m≤2n

|Znm|Gnm||∞

≤ C

q∑
n=p

√
n ln 2 ||

∑
1≤m≤2n

Gnm||∞

≤ C

∞∑
n=p

√
n 2−

n
2−1,

which converges to 0 as p tends to ∞.

2. Show: For t ∈ [0, 1] E((Bq(t)−Bp(t))
2) → 0 as p, q → ∞. In particular,

B(t) is square integrable for t ∈ [0, 1].

In fact, for t ∈ [0, 1], p, q ≥ 1 such that q ≥ p by the law properties of
Zpm, p ≥ 1, 1 ≤ m ≤ 2p,
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E((Bq(t)−Bp(t))
2) = E([

q∑
n=p

∑
1≤m≤2n

ZnmGnm(t)]2)

=

q∑
n=p

∑
1≤m≤2n

Gnm(t)2 ≤
∞∑

n=p

2−n−2,

which converges to 0 as p→ ∞.

3. Show: For d ∈ N, 0 ≤ t1 < · · · < td ≤ 1, and θ = (θ1, · · · , θd) ∈ Rd the
vector (B(t1), · · · , B(td)) is Gaussian with

E(B(ti)) = 0, cov (B(ti), B(tj)) = ti ∧ tj, 1 ≤ i, j ≤ d.

We compute the Fourier transform φ(θ) of the vector (B(t1), · · · , B(td)) at θ.
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By dominated convergence and the law properties of Zpm, p ≥ 1, 1 ≤ m ≤ 2p,
we have

φ(θ) = E(exp(i
d∑

j=1

θjB(tj)))

= E(exp(i
d∑

j=1

θj

∞∑
p=0

∑
0≤m≤2p

ZpmGpm(tj)))

=

∞∏
p=0

∏
0≤m≤2p

E(exp(iZpm

d∑
j=1

θjGpm(tj)))

=

∞∏
p=0

∏
0≤m≤2p

exp(−1

2
(

d∑
j=1

θjGpm(tj))
2)

= exp(−1

2

∞∑
p=0

∑
0≤m≤2p

(

d∑
j=1

θjGpm(tj))
2)

= exp(−1

2

d∑
j,k=1

θjθk

∞∑
p=0

∑
0≤m≤2p

Gpm(tj)Gpm(tk)).
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Now observe that Parseval’s equation implies for 1 ≤ j, k ≤ d

tj ∧ tk = ⟨1[0,tj], 1[0,tk]⟩

=

∞∑
p=0

∑
0≤m≤2p

⟨1[0,tj], Hpm⟩ ⟨1[0,tk], Hpm⟩

=

∞∑
p=0

∑
0≤m≤2p

Gpm(tj)Gpm(tk).

Therefore we finally obtain

φ(θ) = exp(−1

2

d∑
j,k=1

θjθk tj ∧ tk).

This implies the claimed properties.

Goal: Hölder continuity properties of B.
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Theorem 5. The Brownian motion B = (B(t))0≤t≤1 is Hölder continuous of
order α < 1/2. Its trajectories are a.s. nowhere Hölder continuous of order
α > 1/2.

Moreover we have (Lévy’s modulus of continuity)

P
(

sup
0≤s<t≤1

|B(t)−B(s)|
h(|t− s|)

<∞
)
= 1, (9)

where h(u) =
√
u log(1/u), u > 0.

In particular, for α < 1
2, the trajectories of B are P-a.s. contained in Cα.

Proof. 1. Let first α ∈]0, 1[, (cpm)p≥1,1≤m≤2p be a sequence in R for which
there exists c ∈ R such that for p ≥ 0, 1 ≤ m ≤ 2p we have

|cpm| ≤ c
√
p.

Let

f(t) =

∞∑
p=1

∑
1≤m≤2p

cpmGpm(t), t ∈ [0, 1].

– Typeset by FoilTEX – 33



GEOMETRY OF ROUGH PATHS

The trajectories of B fulfill this inequality by Lemma 3.

Show: sup0≤s<t≤1
|f(t)−f(s)|
h(|t−s|) <∞.

In fact, by continuity properties of G00, we may assume c00 = 0. Then for
0 ≤ s < t ≤ 1

|f(t)− f(s)| ≤
∞∑
p=1

2p∑
m=1

|cpm| |Gpm(t)−Gpm(s)|. (10)

Now choose p0 ≥ 1 such that

2−p0−1 < |t− s| ≤ 2−p0.

W.l.o.g. we can assume that p0 ≥ 1. Then for 1 ≤ p < p0, s and t can belong to
at most two adjacent dyadic intervals of generation p.
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By inspection of the different cases we get

2p∑
m=1

|cpm| |Gpm(t)−Gpm(s)| (11)

≤ c
√
p 2

p
2 |t− s|

≤ c
√
p 2

p−p0
2 |t− s|12

≤ c√
ln 2

√
p

p0
2
p−p0

2

√
|t− s| ln 1

|t− s|
,

while for p ≥ p0

2p∑
m=1

|cpm| |Gpm(t)−Gpm(s)| (12)

≤ c
√
p 2−

p
2

≤ c√
ln 2

√
p

p0
2
p0+1−p

2

√
|t− s| ln 1

|t− s|
.
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Now ∑
0≤p≤p0

√
p

p0
2−

p−p0
2 ≤

∑
0≤p≤p0

2−
p−p0

2 ≲ 1.

And ∑
p>p0

√
p

p0
2
p0−p

2 ≤ 2
p0
2

√
p0

∫ ∞

p0

√
x2−

x
2dx.

Integration by parts for y ≥ 1 gives

∫ ∞

y

√
x2−

x
2dx = − 2

ln 2

√
x2−

x
2 |∞y +

1

ln 2

∫ ∞

y

1√
x
2−

x
2dx

≤ 2

ln 2

√
y2−

y
2 +

1

ln 2

∫ ∞

y

2−
x
2dx

≤ 2

ln 2

√
y2−

y
2 +

2

(ln 2)2
2−

y
2 .
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Now set y = p0, to see

∑
p>p0

√
p

p0
2
p0−p

2 ≲
2
p0
2

√
p0
(
√
p0 + 1) 2−

p0
2 ≃ 1.

Hence (10), (11) and (12) imply

sup
0≤s<t≤1

|f(t)− f(s)|√
|t− s| ln 1

|t−s|

≲ 1.

2. Part 1. implies all claims about Hölder continuity for α < 1
2.
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Lecture 3: Takagi functions via dynamical systems

Now study Takagi function

C(x) :=

∞∑
k=0

γkf(2kx), x ∈ [0, 1], γ ∈]1
2
, 1[, f = dist(Z, ·).

Here is the Takagi base function f(2k·) for k = 0, 1, 2, 3:
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Figure 6: Takagi base function x 7→ f(2kx), k = 0, 1, 2, 3.
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Hölder continuity

For γ = 2−
1
2, k ≥ 0 we just obtain

γkf(2k·) =
∑

1≤m≤2k

Gkm.

For x, y ∈ [0, 1], k ∈ N s. th. 2−k ≤ |x− y| ≤ 2−k+1, α ∈]0, 1[ s. th. γ = 2−α:

|C(x)− C(y)| ≤ c [

k∑
l=0

γl2l|x− y|+
∞∑

l=k+1

γl]

≤ c[2k(1−α)|x− y|+ 2−kα] ≤ c|x− y|α.

Hence C α-Hölder continuous.
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Takagi function: geometry

Graph of T for γ = 2−
1
2 (α = 1

2):

Figure 7: Graph of C: {(x,C(x)) : x ∈ [0, 1]} ⊂ R2.

Goal: Investigate geometry of C, in particular local time.
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A metric dynamical system

Lit: Baranski et al. [2], Keller [18], Shen [20].

Goal: Describe C as attractor of a dynamical system on [0, 1]2, alternatively
Ω = {0, 1}N × {0, 1}N.

For ω ∈ Ω, write ω = ((ω−n)n≥0, (ωn)n≥1), F product σ-field.

Canonical shift on Ω:

θ : Ω → ω, ω 7→ (ωn+1)n∈Z, ν = ⊗n∈Z(
1

2
δ{0} +

1

2
δ{1})

the infinite product of Bernoulli measures.

(Ω,F, ν, θ) metric dynamical system.
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A metric dynamical system, baker’s transformation
Now let

D = (D1, D2) : Ω → [0, 1]2, ω 7→ (

∞∑
n=0

ω−n2
−(n+1),

∞∑
n=1

ωn2
−n).

Then ν ◦D−1 = λ2 Lebesgue measure on [0, 1]2. D−1: dyadic representation
of components in [0, 1]2. Let

B = D ◦ θ ◦D−1 baker’s transformation.

The ν-invariance of θ implies B-invariance of λ2. For (ξ, x) ∈ [0, 1]2 denote

D−1(ξ, x) =
(
(ξ−n)n≥0, (xn)n≥1

)
.

For (ξ, x) ∈ [0, 1]2 and k ≥ 0 resp. k ≥ 1

B(ξ, x) =
(
2ξ(mod1),

ξ0 + x

2

)
, B−1(ξ, x) =

(ξ + x1
2

, 2x(mod1)
)
.

expansion contraction contraction expansion
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Self affinity: C as attractor of a random dynamical system

Extend C from [0, 1] to [0, 1]2 by C(ξ, x) = C(x), ξ, x ∈ [0, 1].

By definition of B we have B−n
2 (ξ, x) = 2nx (mod 1), and hence

C(x) =

∞∑
n=0

γnf(2nx)=

∞∑
n=0

γnf(B−n
2 (ξ, x)).

Therefore, taking k = n− 1,

C(B2(ξ, x)) =

∞∑
n=0

γnf(B−n+1
2 (ξ, x))

= f(B2(ξ, x)) + γ

∞∑
k=0

γkf(B−k
2 (ξ, x))

= f(B2(ξ, x)) + γC(ξ, x).
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C as attractor of a random dynamical system

Define the map

F : [0, 1]2 × R → [0, 1]2 × R,

(ξ, x, y) 7→
(
B(ξ, x), f(B2(ξ, x)) + γy

)
,

where B = (B1, B2).

Then (
B(ξ, x), C(B(ξ, x))

)
=

(
B(ξ, x), C(B2(ξ, x))

)
= F

(
ξ, x, C(ξ, x)

)
.

Hence C is an attractor for F (on the skew product).

Here, with ω = (ξ, x): A = (A(ω) : ω ∈ [0, 1]2) ⊂ R compact attractor for F :

(i) F (ω,A(ω)) = (B(ω), A(B(ω)),
(ii) d(Fn

3 D(B−n(ω)), A(ω)) → 0,
D = (D(ω) : ω ∈ [0, 1]2) ⊂ R compact,
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Lyapunov exponents and invariant structures

Calculate Jacobian: for ξ, x ∈ [0, 1], y ∈ R

JF (ξ, x, y) =

 2 0 0
0 1

2 0
0 1

2f
′(B2(ξ, x)) γ

 .
Hence Lyapunov exponents of F : 2, 12, γ. Invariant vector fields: for κ = 1

2γ

S(ξ, x) = −
∑∞

n=1 κ
nf ′(Bn

2 (ξ, x)): 1
0
0

 , X(ξ, x) =

 0
1

S(ξ, x)

 ,

 0
0
1

 .

Hence X spans invariant stable manifold: for ξ, x ∈ [0, 1], y ∈ R

JF (ξ, x, y)X(ξ, x) =
1

2
X
(
B(ξ, x)

)
.
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The Sinai-Bowen-Ruelle measure

Calculate action of S on B: for ξ, x ∈ [0, 1]

S(B(ξ, x)) = −
∞∑

n=1

κnf ′(Bn+1
2 (ξ, x))

= −2γ

∞∑
k=1

κkf ′(Bk
2 (ξ, x)) + f ′(B2(ξ, x))

= 2γS(ξ, x) + f ′(B2(ξ, x)).

So

JF (ξ, x, y)X(ξ, x) =

 0
1
2

1
2f

′(B2(ξ, x)) + γS(ξ, x)

=
1

2
X(B(ξ, x)).

Sinai-Bowen-Ruelle measure µ: marginals µx, x ∈ [0, 1], given for B ∈ B([0, 1])
by

µx(B) =

∫ 1

0

1B(S(ξ, x))dξ.
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Smoothness of the SBR measure

Idea: use Fourier analysis to show absolute continuity of µ

Fourier transform of µx:

ϕx(u) =

∫ 1

0

exp
(
iuS(ξ, x)

)
dξ, u ∈ R, x ∈ [0, 1].

SBR measure absolutely continuous (with L2 density) if

∫ 1

0

∫
R
|ϕx(u)|2dudx =

∫
R

∫
[0,1]3

exp
(
iu
(
S(ξ, x)− S(η, x)

))
dxdξdηdu <∞.

Hence we are interested in properties of S(ξ, x)− S(η, x), (ξ, η, x) ∈ [0, 1]3.
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Self affinity and self similarity

For ξ, x ∈ [0, 1] (recall κ = 1
2γ )

G+(ξ, x) = −
∑
n∈Z

κn
[
f ′(Bn

2 (ξ, x))− f ′(Bn
2 (0, x))

]
,

G−(ξ, x) =
∑
n∈Z

γn
[
f(B−n

2 (ξ, x))− f(B−n
2 (ξ, 0))

]
.

Then for x, y, ξ, η ∈ [0, 1]

G+(ξ, x)−G+(η, x) = −
∞∑

n=1

κn[f ′(Bn
2 (ξ, x)− f ′(Bn

2 (η, x)]

= S(ξ, x)− S(η, x),
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Self affinity and self similarity

G−(ξ, y)−G−(ξ, x) =

∞∑
k=0

γk[f(2ky)− f(2kx)]

+

∞∑
n=1

γ−n[f(Bn
2 (ξ, y))− f(Bn

2 (ξ, x))]

= C(y)− C(x)−
∫ y

x

S(ξ, z)dz.

and self similarity holds:

G+(B
−1(ξ, x)) = κG+(ξ, x),

G−(B(ξ, y))−G−(B(ξ, x)) = γ[G−(ξ, y)−G−(ξ, x)].
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Smoothness of the occupation measure

Idea: use Fourier analysis to show absolute continuity of occupation measure

Ĉ(ξ, x) = C(x)−
∫ x

0

S(ξ, z)dz, νξ(A) =

∫ 1

0

1A(Ĉ(ξ, x))dx,

ξ, x ∈ [0, 1], A ⊂ R Borel.

Fourier transform of νξ:

ψξ(u) =

∫ 1

0

exp
(
iuĈ(ξ, x)

)
dx, u ∈ R, ξ ∈ [0, 1].

Occupation measure absolutely continuous (with L2 density) if

∫ 1

0

∫
R
|ψξ(u)|2dudξ =

∫
R

∫
[0,1]3

exp
(
iu
(
Ĉ(ξ, y)− Ĉ(ξ, x)

))
dξdxdydu <∞.

– Typeset by FoilTEX – 50



GEOMETRY OF ROUGH PATHS

Microscopic and macroscopic measures for S and C

Let

ρ(A) = λ3({(ξ, η, x) ∈ [0, 1]3 : G+(ξ, x)−G+(η, x) ∈ A}),

ρ̂ = ρ(·|1
2
< |ξ − η|),

χ(A) = λ3({(ξ, x, y) ∈ [0, 1]3 : G−(ξ, y)−G−(ξ, x) ∈ A}),

χ̂ = χ(·|1
2
< |x− y|).

Proposition 1 (microscopic-macroscopic transformation):
For A Borel set we have

ρ(A) =

∞∑
n=0

2−n−1ρ̂(κ−nA), χ(A) =

∞∑
n=1

2−n−1χ̂(γ−nA).
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Smoothness of the SBR measure

Have to show: ∫
R

∫
R
exp(iux)ρ(dx)du <∞.

By microscopic-macroscopic transformation∫
R

∫
R
exp(iux)ρ(dx)du =

∞∑
n=0

2−n−1

∫
R

∫
R
exp(iuy)ρ̂(κ−ndy)du

=

∫
R

∫
R

∞∑
n=0

2−n−1 exp(iuκny)ρ̂(dy)du

=

∫
R

∫
R

1

2

∞∑
n=0

γn exp(iuy)ρ̂(dy)du

=
1

2(1− γ)

∫
R

∫
R
exp(iuy)ρ̂(dy)du.

To show finiteness, use (macroscopic) properties of S(ξ, ·)− S(η, ·), i.e.
properties on the set {12 < |ξ − η|}.
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Macroscopic properties of S(ξ, ·)− S(η, ·)
Fix ξ, η ∈ [0, 1], with dyadic sequences ξ−n, η−n, n ≥ 0. For n ∈ N let

τ1 = inf{ℓ ≥ 0 : ξ̄−ℓ ̸= η̄−ℓ}, and τn+1 = inf{ℓ > τn : ξ̄−ℓ ̸= η̄−ℓ}, (13)

Note:

ξ =

∞∑
k=0

(
1

2
)kξ−k, ξ − η =

∞∑
ℓ=1

(
1

2
)τℓ+1 (−1)(1−ξ̄−τℓ

).

We can show

Proposition 2:
Let ξ, η, x ∈ [0, 1]. Then

S(ξ, x)− S(η, x) = 2

∞∑
ℓ=1

κτℓ+1 (−1)(1−ξ̄−τℓ
). (14)
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Smoothness of the SBR measure

Now suppose 1
2 < ξ − η. Then ξ0 = 1, η0 = 0, and ξ−τ1

= ξ−τ2
= 1. Hence for

κ < 1√
2

on {1/2 < |ξ − η|}

inf
x∈[0,1]

|S(ξ, x)− S(η, x)| > 0,

and so there is a > 0 s. th. supp(ρ̂) ⊂ [−a, a]c.

Therefore

∫
R

∫
R
exp(iuy)ρ̂(dy)du <∞.

So we get

Theorem 6:
Let κ ∈ [12,

1√
2
]. For a. e. x ∈ [0, 1], µx = λ ◦ S(·, x)−1 is absolutely continuous

w. r. t. λ, with L2 density. The SBR measure µ is absolutely continuous w. r. t.
λ.
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Macroscopic properties of Ĉ(·, y)− Ĉ(·, x)
Duality: SBR measure: λ ◦G+(·, x)−1; occupation measure: λ ◦G−(ξ, ·)−1.

Recall: G−(ξ, y)−G−(ξ, x) = C(y)− C(x)−
∫ y

x
S(ξ, z)dz = Ĉ(ξ, y)− Ĉ(ξ, x).

Fix x, y ∈ [0, 1] with dyadic sequences xn, yn, n ≥ 1. For n ∈ N let

σ1 = inf{ℓ ≥ 1 : x̄ℓ ̸= ȳℓ}, and σn+1 = inf{ℓ > σn : x̄ℓ ̸= ȳℓ}. (15)

Then we have

Proposition 4:
Let ξ, x, y ∈ [0, 1]. Then

Ĉ(ξ, y)− Ĉ(ξ, x) =

∞∑
ℓ=1

γσℓ (−1)(1−ȳσℓ)S
(
B

−σℓ
1 (ξ, y), 0

)
+4κ

∞∑
ℓ=1

γσℓΦ(B1
2(B

−σℓ
1 (ξ, y), B

−σℓ
2 (ξ, x)).
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The existence of local time

For γ < 2
3 this gives on {1/2 < |x− y|}

inf
ξ∈[0,1]

|Ĉ(ξ, y)− Ĉ(ξ, x)| = |C(y)− C(x)− (y − x)S(ξ, 0)| > 0

So analogous Fourier analytic argument yields

Theorem 7:
Let γ ∈ [12,

2
3]. For a. e. ξ ∈ [0, 1]

G−(ξ, x) = C(x)− C(0)−
∫ x

0

S(ξ, z)dz

possesses a square integrable local time.

Conjecture: regularity of local time in ξ allows to remove drift
∫ ·
0
S(ξ, z)dz and

provides local time for C.
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Outlook: Brownian paths as randomized Takagi functions

recall Takagi function:

C(x) :=

∞∑
k=0

γkf(2kx), x ∈ [0, 1], γ ∈]1
2
, 1[, f = dist(Z, ·).

Haar-Schauder expansion of Brownian motion: let (Zkm)k≥0,1≤n≤2k be an
array of i.i.d. standard normal variables; then the Haar-Schauder expansion of
Brownian motion is given for γ = 2−

1
2 by

B(x) =

∞∑
k=0

γk
∑

1≤m≤2k

Zkm f(2
kx) 1[m−1

2k
,m
2k

](x), x ∈ [0, 1].

Goal: investigate the geometry of individual Brownian paths by employing the
analysis presented to randomized Takagi functions
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The Hausdorff dimension of C

By microscopic-macroscopic conversion (of the measure χ) , Theorem 7 and
recalling γ = 2−α we get

Theorem 8:
For any γ ∈ [12,

2
3] the Hausdorff dimension of the graph of C is 2− α.

Ongoing research:

• result on a.c. of the SBR measure for C holds for any κ ∈ [12, 1[

• by duality: a.c. of the occupation measure of Ĉ holds for any γ ∈ [12, 1[

• case C is replaced by a Weierstrass function: a.c. of SBR measure known
for any κ ∈ [12, 1[ (Shen ’17), by duality most likely transfers to occupation
measures
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Weierstrass functions and dynamical systems: the smoothness of the
SBR measure. (2020) https://arxiv.org/abs/2009.03628.

[15] P. Imkeller, O. Menoukeu-Pamen. Takagi type functions and dynamical
systems: the smoothness of the SBR measure and the existence of local
time. (2021). arXiv:2107.07185v2.

[16] P. Imkeller, O. Menoukeu-Pamen, G. dos Reis. On the Hausdorff
dimension of a 2-dimensional Weierstrass curve. (2018)
arXiv:1806.09585.
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