Simultaneous Pseudo-Timestepping Methods for Aerodynamic Shape Optimization

Volker Schulz

TEAM: S.B. Hazra (U Trier) I. Gherman (U Trier) N. Gauger (DLR) J. Brezillon (DLR)

University of

Overview

- Pseudo-timestepping gradient methods
- One-shot strategies
- Choosing a proper design Hessian
- Unconstrained numerical results in 2D
- How to deal with constraints?
- Numerical results in 2D and 3D

University of

Research goal

START: Euler flow (Flower)

based on pseudo timestepping (multigrid) adjoint pseudo timestepping solver

Goal: one-shot algorithm for shape optimization

Pseudo-timestepping as iterative
method

$$Ax = b$$

 $\frac{d}{dt}x(t)=b-Ax(t)$
 $x^{m+1}=x^m+\lambda(b-Ax^m)$

$$\frac{d}{dt}x(t) = W(b - Ax(t))$$

$$x^{m+1} = x^m + \lambda W (b - Ax^m)$$

W is called a preconditioner

steepest descent ps-t.

One-shot approach

- How to break up the nested iteration loop?
- Idea: one pseudo-time loop for all variables

$$\min_{\substack{(u,q)\\(u,q)}} f(u,q) = 0$$

$$\nabla_u \left[f(u,q) - \lambda^\top c(u,q) \right] = 0$$

$$\nabla_q \left[f(u,q) - \lambda^\top c(u,q) \right] = 0$$

$$c(u,q) = 0$$

$$C(u,q) = 0$$

$$\nabla_u \left[f(u,q) - \lambda^\top c(u,q) \right] = 0$$

One-shot pseudo-time loop

$$\begin{pmatrix} \dot{\lambda} \\ \dot{q} \\ \dot{u} \end{pmatrix} = -\mathbf{W} \begin{pmatrix} \nabla_{u} \left[f(u, q) - \lambda^{\top} c(u, q) \right] \\ \nabla_{q} \left[f(u, q) - \lambda^{\top} c(u, q) \right] \\ c(u, q) \end{pmatrix}$$

- W = I leads to slow convergence, if at all
- W should improve convergence
- W should be "implementation-friendly"
- Borrow W from approximate reduced SQP methods

University of

The essence of reduced SQP techniques:

Instead of incrementing by a full SQP method

$$\begin{bmatrix} H_{uu} & H_{uq} & C_u^* \\ H_{qu} & H_{qq} & C_q^* \\ C_u & C_q & 0 \end{bmatrix} \begin{pmatrix} \Delta u \\ \Delta q \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} -\nabla_u \mathcal{L} \\ -\nabla_q \mathcal{L} \\ -c(u, q) \end{pmatrix}$$

compute increments from

$$\begin{bmatrix} 0 & 0 & C_u^* \\ 0 & B & C_q^* \\ C_u & C_q & 0 \end{bmatrix} \begin{pmatrix} \Delta u \\ \Delta q \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} -\nabla_u \mathcal{L} \\ -\nabla_q \mathcal{L} \\ -c(u, q) \end{pmatrix}$$

University of

... in pseudo-time-stepping formulation:

$$\begin{pmatrix} \dot{u} \\ \dot{q} \\ \dot{\lambda} \end{pmatrix} = \begin{bmatrix} 0 & 0 & C_u^* \\ 0 & B & C_q^* \\ C_u & C_q & 0 \end{bmatrix}^{-1} \begin{pmatrix} -\nabla_u \mathcal{L} \\ -\nabla_q \mathcal{L} \\ -c(u, q) \end{pmatrix}$$

Use known preconditioners <u>A</u> for states and adjoints

$$\begin{pmatrix} \dot{u} \\ \dot{q} \\ \dot{\lambda} \end{pmatrix} = \begin{bmatrix} 0 & 0 & A_u^* \\ 0 & B & C_q^* \\ A_u & C_q & 0 \end{bmatrix}^{-1} \begin{pmatrix} -\nabla_u \mathcal{L} \\ -\nabla_q \mathcal{L} \\ -c(u,q) \end{pmatrix}$$

University of

Appropriate B?

Options:

- Exact reduced Hessian
- "wrong" reduced Hessian constructed by use of the state preconditioner

(cf. Bank/Welfert/Yserentant: A class of iterative methods for solving saddle point problems, Numer. Math. 56, 645-666, 1990)

• Griewank's *H(-1)*

Model problem

$$\min_{\substack{u,q\\y=1}} \int \left(\frac{\partial u}{\partial \eta} - g(x)\right)^2 dx + \sigma \|q\|_{H^1}^2$$
$$-\Delta u = 0 \text{ in } \Omega$$
$$\text{s.t.} \quad \begin{array}{c} u = q(x) \text{ on } y = 1\\ u = u_0 \text{ on } y = 0 \end{array}$$

Elliptic PDE to be solved by a pseudo-timestepping method with RK4

University of

Necessary condition
$$\Rightarrow$$

 $-\Delta \lambda = 0 \text{ in } \Omega$
(Costate) $\lambda + 2 \left(\frac{\partial u}{\partial \eta} - g(x) \right) = 0 \text{ on } y = 1$
 $\lambda = 0 \text{ on } y = 0$
and
(Design) $2\sigma (I - \Delta) q - \frac{\partial \lambda}{\partial \eta} = 0 \text{ on } y = 1.$
 $Y = 0$
 $Y =$

Pseudo-time embedding (unpreconditioned)

$$\frac{d\Phi}{dt} - \Delta \phi = 0 \text{ in } \Omega$$

$$\frac{d\Phi}{dt} + \phi - q(x) = 0 \text{ on } y = 1$$

$$\frac{d\Phi}{dt} + \phi - \phi_0 = 0 \text{ on } y = 0$$

$$\frac{d\lambda}{dt} - \Delta \lambda = 0 \text{ in } \Omega$$

$$\frac{d\lambda}{dt} - \Delta \lambda = 0 \text{ in } \Omega$$

$$\frac{d\lambda}{dt} + \lambda + 2 \left(\frac{\partial \Phi}{\partial \eta} - g(x)\right) = 0 \text{ on } y = 1$$

$$\frac{d\lambda}{dt} + \lambda \qquad = 0 \text{ on } y = 0$$

$$\frac{dq}{dt} + 2\sigma q - \frac{\partial \lambda}{\partial \eta} = 0 \text{ on } y = 1.$$

University of

What about the reduced Hessian approximation *B*?

- Interpretation as pseudo-differential operator whose symbol can be investigated analytically
- Application of calculus of variations

Both lead to the result:

$$B = 2(\sigma I - (1 + \sigma)\frac{\partial^2}{\partial x^2})$$

A closer look at the RSQP-matrix

Instead of

$$egin{pmatrix} \dot{u}_i \ \dot{u}_b \ \dot{q} \ \dot{\lambda}_b \ \dot{\lambda}_i \end{pmatrix} = egin{pmatrix} 0 & 0 & 0 & 0 & -\Delta \ 0 & 0 & 0 & I & L_b^* \ 0 & 0 & B & -I & 0 \ 0 & I & -I & 0 & 0 \ -\Delta & L_b & 0 & 0 & 0 \end{bmatrix}^{-1} egin{pmatrix} -
abla_{u_i}\mathcal{L} \ -
abla_{u_b}\mathcal{L} \ -
abla_{v_d}\mathcal{L} \ -
abla_{v_d}\mathcal{L$$

we use

$$\begin{pmatrix} \dot{u}_i \\ \dot{u}_b \\ \dot{q} \\ \dot{\lambda}_b \\ \dot{\lambda}_i \end{pmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & -D \\ 0 & 0 & 0 & I & L_b^* \\ 0 & 0 & D_B & -I & 0 \\ 0 & I & -I & 0 & 0 \\ -D & L_b & 0 & 0 & 0 \end{bmatrix}^{-1} \begin{pmatrix} -\nabla_{\!\!\!\!u}_i \mathcal{L} \\ -\nabla_{\!\!\!\!u}_b \mathcal{L} \\ -\nabla_{\!\!\!q} \mathcal{L} \\ -c_b \\ -c_i \end{pmatrix}$$

University of

First Test

- *D* is diagonal of Laplacian (Jacobi prec)
- *B* is exact reduced Hessian
- One-shot pseudo-time integration by classical RKF45

Eigenvalues of resulting dynamical system – no convergence

Second Test

- *D* is diagonal of Laplacian (Jacobi prec)
- *B* is "wrong" reduced Hessian

(built by the use of *D* instead of Laplacian)

Eigenvalues of resulting dynamical system – <u>convergence</u>

3rd Test

- *D* is diagonal of Laplacian (Jacobi prec)
- *B* is diagonal of exact Hessian

Eigenvalues of resulting dynamical system – <u>convergence</u>

consequences

- 4th test with *D*=Laplacian and exact reduced Hessian yields also convergence but by a tremendous computational effort
- *We conclude* that reduced Hessian approximation should be constructed consistent with forward preconditioner
- Too much effort in producing the exact a reduced Hessian is wasted.

University of

Numerical result for 20x20 finite difference discretization: overall Runge-Kutta integration

Minimize Drag of an RAE 2822 airfoil by use of *Flower*/DLR within rSQP one shot optimization

University of

2D-results

University of

- Euler flow (Code: *Flower*/DLR) with adjoint solver by Gauger
- Minimize drag subject to constant profile thickness: 66% reduction achieved
- Technique employed per iteration:
 - State/adjoint: single RK-steps provided by Flower
 - Design: explicit Euler with scalar reduced Hessian approximation of the form: $B \approx \frac{(\gamma^k - \gamma^{k-1})^\top \Delta q^k}{\|\Delta q^k\|^2} \cdot I$

where
$$\gamma^k = \nabla_q f^k - C_q^\top \lambda^k \approx$$
 "reduced gradient"

Profile change

University of

Pressure over profile length

Volker Schulz

University of

Pressure

before opt

after opt

Mach number (velocity)

University of

Convergence history

University of

One forward run requires 1500 iterations

$$\Rightarrow \frac{\text{optimization effort}}{\text{state effort}} < 4$$

Multigrid results (3 grid levels)

University of

Iterating to "infinity"

State constraints

Real goal:

minimize drag s.t. lift >= l where lift: (u,q) R¹

depends on the states and can be computed by the solution of yet another adjoint problem!

(no adjustment of angle of incidence)

University of

Algorithmic $\min_{u,q} f(u,q)$ extensions.t. $h(u,q) \ge h_0 \in \mathbb{R}^1$ $c(u,q) = 0, \exists c_u^{-1}$

Newton-KKT $\begin{bmatrix} H_u \\ H_c \\ h \\ C \end{bmatrix}$

$$\begin{bmatrix} u_{uu} & H_{uq} & h_u^* & C_u^* \\ H_{qu} & H_{qq} & h_q^* & C_q^* \\ h_u & h_q & 0 & 0 \\ C_u & C_q & 0 & 0 \end{bmatrix} \begin{pmatrix} \Delta u \\ \Delta q \\ \Delta \mu \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} -\nabla_{\!\! u} \mathcal{L} \\ -\nabla_{\!\! q} \mathcal{L} \\ -h(u,q) \\ -c(u,q) \end{pmatrix}$$

is substituted by time-evolution

$$\begin{bmatrix} 0 & 0 & 0 & D_u^* \\ 0 & B & \tilde{\gamma}^* & C_q^* \\ 0 & \tilde{\gamma} & 0 & 0 \\ D_u & C_q & 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{u} \\ \dot{q} \\ \dot{\mu} \\ \dot{\lambda} \end{pmatrix} = \begin{pmatrix} -\nabla_{\! u} \mathcal{L} \\ -\nabla_{\! q} \mathcal{L} \\ -h(u,q) \\ -c(u,q) \end{pmatrix}$$

Where $\tilde{\gamma}$ denotes the current gradient approximation from adjoint lift time-evolution

University of

One approximate Newton step for the constraint problem:

 $\begin{pmatrix} 0 & 0 & \left(\frac{\partial h}{\partial w}\right)^{\top} & A^{\top} \\ 0 & B & \left(\frac{\partial h}{\partial q}\right)^{\top} & \left(\frac{\partial c}{\partial q}\right)^{\top} \\ \frac{\partial h}{\partial w} & \frac{\partial h}{\partial q} & 0 & 0 \\ A & \frac{\partial c}{\partial q} & 0 & 0 \end{pmatrix} \begin{pmatrix} \Delta w \\ \Delta q \\ \Delta \mu \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} -\nabla_w L \\ -\nabla_q L \\ -h \\ -c \end{pmatrix}.$

"Partially reduced SQP method"

University of

$$\begin{pmatrix} B & g_h \\ g_h^\top & 0 \end{pmatrix} \begin{pmatrix} \Delta q \\ \Delta \mu \end{pmatrix} = \begin{pmatrix} -\nabla_q L + \left(\frac{\partial c}{\partial q}\right)^\top A^{-\top} \nabla_w L \\ -h + \frac{\partial h}{\partial w} A^{-1} c \end{pmatrix},$$

with the reduced gradient

$$g_h := \left(\frac{\partial h}{\partial q} - \frac{\partial h}{\partial w} A^{-1} \frac{\partial c}{\partial q}\right)^\top = \left[\begin{array}{c} -A^{-1} \frac{\partial c}{\partial q} \\ I \end{array}\right]^\top \left[\begin{array}{c} \nabla_w h \\ \nabla_q h \end{array}\right]$$

University of

Pseudo-stationary system:

University of

The pseudo-timestepping cycle

Perform 1 RK step for state equations
 Perform 1 RK step for adjoint equations for drag
 Perform 1 RK step for adjoint equations for lift
 Solve the QP:

$$\min \frac{1}{2} \dot{q}^{\top} B \dot{q} + g_{lift}^{\top} \dot{q}$$

s.t. $g_h^{\top} \dot{q} = -h(w,q) + \frac{\partial h}{\partial w} \dot{w}_{fwd}$

5) Perform 1 explicit Euler step for design equation

University of

2D-results for the constrained case

University of

Complexity measurements

• The overall cost of solving the optimization problem is roughly 4 times the cost of the forward problem (without lift constr.)

 Cost with lift constraint. = 7 times the forward problem

Lift & pitching moment constraints

minimize drag s.t. lift >= c0 moment >= c1

The pseudo-timestepping cycle

1) Perform 1 RK step for state equations

- 2) Perform 1 RK step for adjoint equations for drag
- 3) Perform 1 RK step for adjoint equations for lift
- 4) Perform 2 RK step for adjoint equations for moment5) Solve the QP:

$$\min \frac{1}{2} \dot{\boldsymbol{q}}^{\top} B \dot{\boldsymbol{q}} + g_{\text{drag}}^{\top} \dot{\boldsymbol{q}}$$

s.t. $g_h^{\top} \dot{\boldsymbol{q}} = -h(\boldsymbol{u}, \boldsymbol{q}) + \frac{\partial h}{\partial u} \dot{u}_{fwd}$
 $g_m^{\top} \dot{\boldsymbol{q}} = -m(\boldsymbol{u}, \boldsymbol{q}) + \frac{\partial m}{\partial u} \dot{u}_{fwd}$

6) Perform 1 explicit Euler step for design equation

University of

Lift & Pitching moment results

University of

Convergence history

University of

3D results for SCT wing

- <u>Supersonic</u> <u>commercial</u> <u>transport</u> aircraft
- Minimize drag subject to constant lift
- Drag reduced by 12.65%
- Grid: 97 x 17 x 25 = 42 225 grid nodes
- 122 geometry parameters: thickness, camberline, twist, additional DOF: angle of attack

 $\frac{\text{optimization effort}}{6} < 6$ state effort

(2 initial iterations have to be spent to compute approximation of sensitivity lift versus drag)

Base velocities versus optimal solution

optimized

University of

Volker Schulz

University of

Convergence history

SCT body optimization

- Body only
- Minimize drag subject to constant lift
- Drag reduced by 4%
- Grid: ~ 2*10^5 grid nodes
- 10 geometry parameters: 10 radii additional DOF: angle of attack

University of

Convergence history

90 optimization cycles/ drag reduction by 4%

University of

Combining optimal wing with optimal body

-> implementational issues...

University of

ma

Conclusions

 one-shot optimization based on reduced SQP ideas

• Overall computational complexity is reduced considerably.

• Limiting factor so far: frequent design space necessitate freqent calls to CAD

University of