Optimization using Adjoint Technique Applied to Problems in Aerodynamics, Electromagnetics and Bio Fluid Mechanics

by

Per Weinerfelt

SAAB Aerosystems, Sweden

Outline

- Aerodynamic Shape Optimisation
- Electromagnetic shape optimization for reduction of radar cross section
- Data assimilation in Bio Fluid Mechanics

Aerodynamic Shape Optimisation

Background

- The aerodynamic shape optimization system cadsos has been developed at SAAB during the last 5-10 years. Part of the work was done within the European project Aeroshape.
- The optimization technique is based on gradient calculations using the continuous adjoint technique.
- Cadsos can handle nonlinear objective functions and multiple nonlinear physical and geometrical constraints.
- 2D and 3D geometry parametrization och modifications are done in MATLAB. Grid sensitivities are computed by finite difference approximations.

Pressure Force and Moment:

$$\bar{F} = \int_{B_W(a)} p d\bar{S} \qquad \qquad \bar{M} = \int_{B_W(a)} p(\bar{x} - \bar{x}_0) \times d\bar{S}$$

Gradient of the Force:

$$\frac{\partial F_n}{\partial a} = \int_{B_W(a)} \frac{\partial}{\partial x_i} (p \, n_i + \psi^t w_H u_i) \frac{\partial x_k}{\partial a} \, dS_k$$
$$(\psi^t I_i - n_i) dS_i = 0 \qquad \text{Adjoint solid wall bc:}$$

Gradient of the Moment:

$$\begin{split} &\frac{\partial M_n}{\partial a} \int_{B_W(a)} \frac{\partial}{\partial x_i} (p \,\varepsilon_{kji} x_k n_j + \psi^t w_H u_i) \frac{\partial x_k}{\partial a} \, dS_k \\ &(\psi^t I_i - \varepsilon_{kji} x_k n_j) \, dS_i = 0 \qquad \text{Adjoint solid wall bc:} \end{split}$$

Linearized optimization problem: $\begin{cases} \min_{c} (c, g^{0}) \\ (c, g^{m}) = \Delta^{m} \\ (c, h^{n}) = \Delta^{n} \end{cases} m = 1, ..., N \qquad \longleftarrow \qquad \text{Physical constraints} \\ \text{Geometrical constraints} \end{cases}$ Modified optimization problem: $\begin{cases} \min \frac{1}{2} \|c\|^2 \\ (c, g^0) = \Delta^0 \\ (c, g^m) = \Delta^m \quad m = 1, ..., M \\ (c, h^n) = \Delta^n \quad n = 1, ..., N \end{cases}$ $L = \frac{1}{2} \|c\|^2 + \lambda_0((c, g^0) - \Delta^0) + \lambda_m((c, g^m) - \Delta^m) + \lambda_n((c, h^n) - \Delta^n)$ Lagrangian formulation: $\frac{\partial L}{\partial c_k} = c_k + \lambda_0 g_k^0 + \lambda_m g_k^m + \lambda_n h_k^n = 0, \quad \frac{\partial L}{\partial \lambda_0} = (c, g^0) - \Delta^0 = 0,$ $\frac{\partial L}{\partial \lambda_m} = (c, g^m) - \Delta^m = 0, \quad \frac{\partial L}{\partial \lambda_m} = (c, h^n) - \Delta^n = 0$ Optimization workshop, 9 May 2004, HU Berlin, presented by Per Weinerfelt, SAAB Aerosystems, per.weinerfelt@saab.se

Optimization system cadsos at SAAB

Example: Aerodynamic shape optimization of a Supersonic Commercial Transport Aircraft SCT

Surface and volume grid generation

- The CFD grid around the SCT geometry consisted of 5 structured blocks and 196 000 cells.
- The mesh generation system MEGACADS, developed at DLR in Braunschweig, Germany, was used.
- The mesh generation procedure was executed in batch mode by means of script files.
- The multi block topology was kept fixed during the optimisation.

Formulation of the optimization problem

- Objective function: minimize drag
- Physical Constraint: constant lift
- Flow model: Euler equations (inviscid flow)
- \bullet Flow condition: M=2.0 and C_L=0.12
- Thickness constraints
- Design variables:
 - 9 spline functions discribing the wing twist distribution in the spanwise direction
 - 36 spline functions discribing the camber line distribution in the spanwise direction
 - 12 spline functions discribing the radial shape of the body in the streamwise direction
 - 5 spline functions discribing the camber line of the body

Gradient validation

For gradient validation, a comparison between gradient computations using adjoint technique and finite difference technique was performed.

<u>Test case</u>: Inviscid flow over the SCT geometry, at free stream conditions M=2.0 and C_L=0.12. Disturbance parameter ε =0.005. The geometry was modified by means of 62 design parameters.

Gradient validation

Lift

Drag

9.6 % drag reduction

Pitch history during the optimization

Wing profiles in the wing span direction

Wing profiles in the wing span direction

Centreline. Radius and thickness distribution

Drag reduction from decreased thickness: 6.4% Total drag reduction: 16%

 C_p distribution in the wing span direction

 C_p distribution in the wing span direction

Electromagnetic shape optimization for reduction of radar cross section

joint work with

A. Bondesson and Y. Yang Chalmers University of Technology

Scattering problem

- Incident wave on Huygens surface
- Near-to-Far Field Transformation
- Absorbing boundary condition
- Differential equation formulation used for derivation only
- In reality: solve scattering problem with integral equation to compute surface currents.

Scattering problem

- Incident plane wave $\vec{E}_i = \vec{E}_0 \exp(-j\vec{k}_0 \cdot \vec{r})$
- Monostatic RCS $\sigma = \frac{4\pi |A_{\perp}|^2}{E_0^2 k_0^2}$
- Scattering amplitude

$$\vec{A} = \vec{a}(\vec{E}) = \frac{k_0}{4\pi} \oint_{NTF} \left[\hat{n} \times (\nabla \times \vec{E}) - j\vec{k}_0 \times (\vec{E} \times \hat{n}) \right] \exp(-j\vec{k}_0 \cdot \vec{r}) dS$$

• Scattering problem in total field/scattered field form $\vec{E} = \vec{E}_s + \sigma(u)\vec{E}_i$

$$\nabla \times \mu_r^{-1} \nabla \times \vec{E} - k_0^2 \varepsilon_r \vec{E} = -\nabla \times [\hat{n} \times \vec{E}_i \, \delta(u)] - \delta(u) \hat{n} \times \nabla \times \vec{E}_i$$

u surface label, positive inside Huygens surface, dv = dudS

• ε_r and μ_r can be complex

$$\mathcal{L}(\vec{w},\vec{E}) = \mathcal{L}_0(\vec{w},\vec{E}) - (4\pi/k_0)\vec{E}_0 \cdot \vec{a}(\vec{w}) = 0, \quad \forall \vec{w} \in H(\operatorname{curl},\Omega).$$

$$\mathcal{L}_{0}(\vec{w},\vec{E}) = \int_{\Omega} \left(\mu_{r}^{-1} \nabla \times \vec{w} \cdot \nabla \times \vec{E} - k_{0}^{2} \varepsilon_{r} \vec{w} \cdot \vec{E} \right) dv + \oint_{\partial \Omega} (\hat{n} \times \vec{w}) \cdot (jk_{0}\hat{r} \times \vec{E}) dS$$

$$\mathcal{L}_{0} \text{ symmetric if } \partial \Omega \text{ is a large sphere } \hat{n} = \hat{r}.$$

Variation of \vec{E} gives variation of RCS: $\delta \sigma = \frac{8\pi \operatorname{Re}[\vec{A}_{\perp}^{*} \cdot \vec{a}(\delta \vec{E})]}{E_{0}^{2}k_{0}^{2}}$
The adjoint field \vec{E}_{a} satisfies

$$\mathcal{L}(\vec{w}, \vec{E}_a) = \mathcal{L}_0(\vec{w}, \vec{E}_a) - \frac{4\pi}{k_0} \vec{A}_{\perp}^* \cdot \vec{a}(\vec{w}) = 0$$

Same scattering problem, but the incident wave is $\vec{E}_{a,i} = \vec{A}_{\perp}^* \exp(-j\vec{k}_0 \cdot \vec{r})$. Choose $\vec{w} = \delta \vec{E}$ in the weak form of the adjoint equation

$$\delta \sigma = \frac{8\pi \operatorname{Re}[\vec{A}_{\perp}^* \cdot \vec{a}(\delta \vec{E})]}{E_0^2 k_0^2} = \frac{2\operatorname{Re}[\mathcal{L}_0(\vec{E}_a, \delta \vec{E})]}{E_0^2 k_0}$$

LETING LOGIE

Displace PEC scatterer

Evaluate $\mathcal{L}_0(\vec{w}, \delta \vec{E})$ by requiring $(\mathcal{L} + \delta \mathcal{L})(\vec{w}, \vec{E} + \delta \vec{E}) = 0$

 $\delta \vec{E}$ from a normal displacement ξ of PEC boundary Γ satisfies

$$\mathcal{L}_0(ec{w},\deltaec{E}) = -\delta\mathcal{L}_0(ec{w},ec{E}) = \oint_{\Gamma} \left(
abla imes ec{w} \cdot
abla imes ec{e} - k_0^2 ec{w} \cdot ec{E}
ight) \xi dS$$

Akel and Webb (IEEE Trans. Magn. 2000) derive discretized design sensitivity, which corresponds to a surface integral.

Analytic form

$$\delta \sigma = \frac{2}{E_0^2 k_0} \oint_{\Gamma} \operatorname{Re} \left(\nabla \times \vec{E}_a \cdot \nabla \times \vec{E} - k_0^2 \vec{E}_a \cdot \vec{E} \right) \xi dS$$

In terms of surface quantities:

$$\delta \sigma = -\frac{2k_0 Z_0^2}{E_0^2} \oint_{\Gamma} \operatorname{Re} \left(\vec{J}_{adj} \cdot \vec{J}_{orig} + c^2 \rho_{adj} \rho_{orig} \right) \xi dS$$

2D - TM polarization

TM RCS (a length) $L = \frac{4|A|^2}{k_0|E_0^2|}$ where $A = -\frac{1}{4} \oint_{NTF} \left(j\vec{k}_0 E + \nabla E \right) \cdot \hat{n} \exp(-j\vec{k}_0 \cdot \vec{r}) dl,$ Adjoint solution $E_a = \frac{A^*}{E_0} E.$ Variation of RCS

$$\delta L = \frac{8\operatorname{Re}(A^*\delta A)}{k_0|E_0^2|} = \frac{2}{k_0|E_0^2|} \oint_{\Gamma} \operatorname{Re}(\nabla E_a \cdot \nabla E - k_0^2 E_a E) \xi dl$$

In terms of surface quantities

$$\delta L = -\frac{2Z_0^2 k_0}{|E_0^2|} \oint_{\Gamma} \operatorname{Re}(J_{\mathrm{adj}} J_{\mathrm{orig}}) \xi dl$$

2D - TE polarization

RCS $L = \frac{4|G|^2}{k_0|H_0^2|}$ where $G = -\frac{1}{4} \oint_{NTF} \left(j\vec{k}_0 H + \nabla H \right) \cdot \hat{n} \exp(-j\vec{k}_0 \cdot \vec{r}) dl$

Adjoint solution $H_a = (G^*/H_0)H$.

Variation of the RCS

$$\delta L = \frac{8\operatorname{Re}(G^*\delta G)}{k_0|H_0^2|} = -\frac{2k_0}{|H_0^2|} \oint_{\Gamma} \operatorname{Re}\left(J_{\mathrm{adj}}J_{\mathrm{orig}} + c^2\rho_{\mathrm{adj}}\rho_{\mathrm{orig}}\right) \xi dl$$

Optimization

- Compute shape derivative on all surface nodes.
- Introduce reduced parametrization $\xi = \xi(\vec{r}, p_1, p_2, ..., p_n)$
- Find derivatives wrt parameters by the chain rule $\frac{\partial \sigma}{\partial p_k} = \sum_i \frac{\partial \sigma}{\partial \xi_i} \frac{\partial \xi_i}{\partial p_k}$
- Allows a clear separation of the geometry description (shape parameters), from the RCS calculation (nodes on grid), which fits with CFD optimization developed at Saab.
- Use "black-box" optimizer, e.g., Levenberg-Marquardt least square.
- Solve scattering problem by Complex Field Integral Equation. Need many angles: $\Delta \theta < \lambda/(8d)$ for sufficient sampling

2D test problem - shape optimization

Reduce average σ in $[-\theta_m, \theta_m]$ and $[180^\circ - \theta_m, 180^\circ + \theta_m]$.

PEC boundary parametrized as a Fourier expansion for $r(\Theta)$:

$$r(\Theta) = 1 + \sum_{n=1}^{n_{\max}/2} \frac{c_{2n}}{(2n)^{\alpha}} \cos 2n\Theta.$$

EM solver uses integral formulation (Method of Moments).

 α influences gradients in parameter space.

There are several local optima, i.e., optimization problem is ill posed. Tikhonov regularization: add penalty term vR to goal function

$$R = \frac{1}{\pi} \int_0^{2\pi} \left(\frac{\partial^2 r}{\partial \Theta^2} \right)^2 w_P(l) d\Theta$$

Regularized problem converges well to "nice" shapes for $\alpha \sim 0.5$ but the optimization problem is ill posed.

TE only, no penalty, $\theta_m = 45^\circ$

Optimized shape for TE without penalty has corrugations. The RCS in $[-45^{\circ}, 45^{\circ}]$ is reduced 400 times from a circle to $I_2^{\text{TE}}(\pi/4) = 0.00823$ and $I_2^{\text{TM}} = 0.213$.

TE + TM, no penalty, $\theta_m = 45^\circ$

Final shape of the combined TE and TM optimization without penalty. $I_2^{\text{TE}} = 0.118$ and $I_2^{\text{TM}} = 0.179$. Optimized shape has corrugations and sharp tips.

TE + TM, penalty except at the tips, $\theta_m = 45^\circ$

Evolution of the average RCS for TE (-o-) and TM (-) polarization in $|\theta| < 45^{\circ}$ when the optimized quantity is I_1^{TE} + $I_1^{\text{TM}} + 0.02R_2$, $\alpha = 0.5$, and the penalty is removed in regions of length 0.15λ from the tips. Convergence in ~ 6 iterations.

TE + TM, penalty except at the tips, $\theta_m = 45^\circ$

Six first shapes for combined TE and TM optimization with penalty. Radius of circle is two wavelengths

TE + TM, penalty except at the tips, $\theta_m = 45^\circ$

Shape optimized for TE and TM polarization with a penalty $0.02R_2$ with zero weighting within 0.15λ of the tips. $I_2^{\text{TE}} = 0.135$, $I_2^{\text{TM}} = 0.245$. Penalty has practically removed the corrugations.

Combined RCS + CFD optimization

Steepest descent. Lift fixed as a constraint. y(x) modified with "bump functions".

Goal function 0.1×RCS + 0.9×drag.

Combined RCS + CFD optimization

Steepest descent. Lift fixed as a constraint. y(x) modified with "bump functions".

Goal function $0.8 \times RCS + 0.2 \times drag$.

Data assimilation in Bio Fluid Mechanics

joint work with

J. Lundvall, V. Kozlov and M. Karlsson Linköping University

Data assimilation

Given: Sparse measured data in space and time including noise.

<u>Objective</u>: Compute data on a high resolution grid in space and time assuming that the physics is described by wellknown mathematical equations with an unknown initial condition.

Example of application fields

- Meteorology, weather forecast
- Medicine, MR measurements
- Wind tunnel experiments

Velocity Measurement using MR camera

3D + T = 4D

MR-data: Magnitude and Phase Images

MR Magnitude

Phase (velocity)

Reconstruction of velocity field from MR-data

Problem formulation

- measured data u* is given
- assume that the physical model is known and described by a PDE
- the boundary conditions are given
- the initial condition is unknown and used as the control variable

$$Q_T = \Omega \times (0, T), \quad \min_{u_0} ||u - u^*||_{L^2(Q_T)},$$

s.a. $P(u, \psi) = 0.$

Differential equation

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} F(u, u_x) = 0,$$

$$u(x, t)|_{x \in \partial \Omega} = 0,$$

$$u(x, 0) = u_0(x).$$

Weak formulation $\quad : u \in X$ Is a weak solution if

$$-\int_{Q_T} \left(u\psi_t + F(u, u_x)\psi_x \right) dx dt + \int_{\Omega} \left(u(x, T)\psi(x, T) - u_0(x)\psi(x, 0) \right) dx = 0,$$

for all $\psi \in X'$.
$$P(\mathbf{u}, \psi) = \mathbf{0}$$

Variational formulation

$$\begin{split} L(u) &= \frac{1}{2} \int_{Q_T} (u - u^*)^2 dx dt + P(u, \psi) \\ \delta L(u; \delta u_0) &= \int_{Q_T} (u - u^*) \delta u dx dt + \delta P(u, \psi) = \\ &= \int_{Q_T} \left(u - u^* - \frac{\partial \psi}{\partial t} - \frac{\partial F}{\partial u} \frac{\partial \psi}{\partial x} + \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x} \frac{\partial \psi}{\partial x} \right) \right) \delta u dx dt \\ &+ \int_{\Omega} \left(\psi(x, T) \delta u(x, T) - \psi(x, 0) \delta u_0(x) \right) dx \end{split}$$

Adjoint equations

$$\begin{split} \psi(x,T) &= 0, \\ \frac{\partial \psi}{\partial t} + \frac{\partial F}{\partial u} \frac{\partial \psi}{\partial x} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x} \frac{\partial \psi}{\partial x} \right) &= u - u^*, \\ \psi(x,t)|_{x \in \partial \Omega} &= 0 \\ \delta L &= -\int_{\Omega} \psi(x,0) \delta u_0 dx, \\ \delta u_0 &= \alpha \psi(x,0), \ \alpha > 0 \implies \delta L < 0. \end{split}$$
 Iteration: $u_0^{k+1} = u_0^k + \alpha \delta u_0^k.$

Existence of an optimal solution

- Ill posed problem
- No optimal solution exist in general
- Regularization necessary

$$u_0(x) = \sum_{m=1}^M c_m \phi_m(x).$$

Existence of an optimal solution

•
$$T: L^2(\Omega) \to L^2(Q_T), \ y = Tx.$$

- Min. problem is equivalent to solving $y^{\delta} = Tx$, där $||y^{\delta} y|| \le \delta$.
- T is a compact operator and the inverse problem is ill posed
- The previous iteration is equivalent to the Landweber regularization method for non linear inverse problems

$$x_{k+1}^{\delta} = x_k^{\delta} + T'(x_k^{\delta})^*(y^{\delta} - Tx_k^{\delta}).$$

• The iteration converges to the true solution if $\delta \rightarrow 0$

Application: Viscous Burgers' equation

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{1}{2} u^2 - \mu u_x \right) = 0, \quad \mu > 0.$$

• Adjoint equation

$$\frac{\partial \psi}{\partial t} + u \frac{\partial \psi}{\partial x} + \mu \frac{\partial^2 \psi}{\partial x^2} = u - u^*.$$

 Data voids: V denotes a void region in the (x,t) plane and m is def. according to

$$m(x,t) = \begin{cases} 0 & \text{om } (x,t) \in V, \\ 1 & \text{om } (x,t) \notin V. \end{cases}$$

• The adjoint equation

$$\frac{\partial \psi}{\partial t} + u \frac{\partial \psi}{\partial x} + \mu \frac{\partial^2 \psi}{\partial x^2} = m(x, t)(u - u^*).$$

Example 1: Noise data

Example 2: Noise and void data

Summary and conclusions

- Optimization technique coupled to PDE:s have been presented.
- The optimization gradients are computed from the continuous governing equations and corresponding adjoint equations.
- The optimization technique has been sucessfully applied to three different problems:
 - Aerodynamic shape optimization
 - Electromagnetic RCS optimization
 - Data assimilation in Bio Fluid Dynamics

Summary and conclusions

- An efficient gradient based optimization technique which can handle large number of design variables.
- Gradients are computed from Euler and Adjoint Euler calc.
- Good agreement with finite difference gradient calculations.
- Applied to realistic 3D aircraft configurations such as the SCT.
- The drag was reduced by 9.5% without thickness modifications and by 16% with thickness modifications.
- Lift and pitching moment was not changed.

Conclusions

- Gradient method with adjoint solution developed for RCS reduction.
- Both shape and materials optimization in 2D work well.
- Far more efficient than evolutionary methods.
- Optimization problems generally ill-posed, but can be regularized.
- Conflicting demands of RCS reduction and aerodynamics on PEC shape can be resolved by using absorbing materials.
- Gradient method will be tested on moderate-sized 3D problems solved with Multipole code developed at Uppsala University (Nilsson & Lötstedt).
- Method potentially useful in many microwave applications.

Aerodynamic Shape Optimisation

- Background
- Optimization technique
- The optimization system cadsos at SAAB
- Example: Aerodynamic shape optimization of a SCT Aircraft
- Description of the SCT geometry and grid generation
- Aerodynamic shape optimization of the SCT geometry
- Formulation of the optimization problem
- Gradient validation
- Optimization results

