Constraint Integer Programming

SCIP

Solving Constraint Integer Programs

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

Tobias Achterberg achterberg@zib.de

Example: Traveling Salesman Problem (TSP)

given a graph G=(V,E) with distances d_e

2

Example: Traveling Salesman Problem (TSP)

- given a graph G=(V,E) with distances d_e
- task: find shortest tour

Mixed Integer Program

min $c^T x$ s.t. $Ax \le b$ $x \in R^p \times Z^q$

- linear objective function c
- highly structured feasible set F
 - described by linear constraints
- real or integer valued variables x

TSP as Integer Program

- |E| binary variables: $x_e = 1 \Leftrightarrow edge \ e$ is in tour
- |V| degree constraints
- O(2^{|E|}) subtour elimination constraints

Subtour elimination constraints

solution is valid w.r.t. the degree constraints

Subtour elimination constraints

- solution is valid w.r.t. the degree constraints
- subtour constraints: $\sum_{e \in \delta(U)} x_e \ge 2$ for all $\emptyset \subset U \subset V$

Subtour elimination constraints

- solution is valid w.r.t. the degree constraints
- subtour constraints: $\sum_{e \in \delta(U)} x_e \ge 2$ for all $\emptyset \subset U \subset V$

Constraint Program

 $\begin{array}{ll} \mbox{min} & c(x) \\ \mbox{s.t.} & x \in F \\ & x \in Z^n \end{array}$

- arbitrary objective function c
- arbitrary feasible set F
 - described by arbitrary constraints
- integer valued variables x

TSP as Constraint Program

 $\label{eq:stable} \begin{array}{ll} \mbox{min} & \mbox{length}(x) \\ \mbox{s.t.} & \mbox{alldiff}(x_1,\ldots,x_n) \\ & \ x \in \ \{1,\ldots,n\}^n \end{array}$

- |V| integer vars: x_v is position of node in tour
- objective function
 - length(x): length of tour $x_1 \rightarrow ... \rightarrow x_n \rightarrow x_1$
- all-different constraint
 - alldiff($x_1, ..., x_n$) : $\Leftrightarrow x_u \neq x_v$ for all $u \neq v$

Solving Mixed Integer Programs

branching

- split problem into smaller subproblems
- solve subproblems recursively \rightarrow branching tree
- bounding
 - solve LP relaxations \rightarrow lower bound on objective value
- cutting planes
 - strengthen LP relaxations to get better bounds
- pricing
 - dynamic addition of variables

Solving Constraint Programs

branching

- split problem into smaller subproblems
- solve subproblems recursively \rightarrow branching tree
- bounding
 - only "pseudo solution" available
- domain propagation
 - tighten domains by inference

Domain Propagation (CP)

- all-different constraint:
 - each variable must take a different value

Domain Propagation (CP)

some values are impossible (due to branching)

Domain Propagation (CP)

- some values are impossible (due to branching)
- infer other impossibilities in domains

Cutting Planes (MIP)

current solution is fractional

Cutting Planes (MIP)

fractional solution is separated by a cutting plane

Cutting Planes (MIP)

- fractional solution is separated by a cutting plane
- resolving LP relaxation yields new solution

Branching (MIP + CP)

current solution is fractional

Branching (MIP + CP)

 split problems into sub problems to cut off current solution

 \bigcirc c^{*} \ge 2

- relaxation yields lower bound
 - branching decomposes problem into subproblems

- relaxation yields lower bound
 - branching decomposes problem into subproblems
- relaxation is solved for subproblems

- relaxation yields lower bounds
 - primal solution yields upper bound

- relaxation yields lower bounds
- primal solution yields upper bound
- subproblems cannot contain better solution

SCIP as standalone MIP Solver

- reads MPS file format (e.g., generated by ZIMPL)
- built-in MIP specific components:
 - branching rules (reliability, strong, most infeasible, ...)
 - primal heuristics (rounding, diving, feas. pump, ...)
 - node selectors (depth-first, best-first with plunging)
 - presolving (dual fixing, probing, ...)
 - cut separators (clique, impl. bounds, c-MIR, Gomory, strong CG, lifted knapsack cover)
- Approx. 25% slower than CPLEX 9.03

SCIP as CIP framework

- C-Interface with C++ wrapper classes
- infrastructure to support user plugins
 - subproblem and branching tree management
 - global cut pool
 - event mechanism (bound changes, new solutions, ...)
 - Iots of statistical data of the solving process
 - efficient memory management
- all existing MIP components are implemented as user plugins ⇒ interface is powerful enough for most applications

TSP with SCIP

- main program to invoke SCIP
- TSP file reader
- Graph storage class
- Subtour constraint handler
 - Gomory-Hu Tree code
- farthest insert heuristic
- 2-opt heuristic

196 lines 407 lines 80 lines 793 lines 658 lines 354 lines 304 lines 2792 lines

SCIP Website

http://scip.zib.de

(download of SCIP is not yet possible)

