Constraint Integer
Programming

SCIP

.
- Solving Constraint Integer Programs

Tobias Achterberg
achterberg@zib.de

Konrad-Zuse-Zentrum flir Informationstechnik Berlin (ZIB)

Example:
Traveling Salesman Problem (TSP)

Example:
Traveling Salesman Problem (TSP)

= given a graph G=(V,E) with distances d,

. ¥ = task: find shortest tour

e T red

Mixed Integer Program

min c'x
s.t. Ax<b
X € RPxZ¢

= |inear objective function c

= hig

" C

nly structured feasible set F

escribed by linear constraints

or integer valued variables x

TSP as Integer Program

7,
—
1Nd
Ra
|l

E
V

2 forallie V

2 forallcUcV

[]
R
\VJ

X e {0,1} forallee E

binary variables: x, = 1 < edge e is in tour

degree constraints

2 * O(2IEl) subtour elimination constraints

Subtour elimination constraints

= solution is valid w.r.t. the degree constraints

. 1= subtour constraints: Y x, =2forall@cUcV
: eco(U)

Subtour elimination constraints

= solution is valid w.r.t. the degree constraints

S A

= subtour constraints:) x, 22forall@cU cV
| eco(U)

Constraint Program

min c(x)
s.t. xeF
Xe Z"

= arbitrary objective function
= arbitrary feasible set F

= described by arbitrary constraints

B = integer valued variables x

10

TSP as Constraint Program

min length(x)
s.t. alldiff(xy,...,x,)
X e {1,...,n}"
= |V| integer vars: X, is position of node in tour

= objective function

= length(x): length of tour x;, — ... —» X, — X4

B = g||-different constraint

= alldiff(xy,...,x,) i x, #X, forallu=v

11

Solving Mixed Integer Programs

= branching
= split problem into smaller subproblems

= solve subproblems recursively — branching tree

= bounding

= solve LP relaxations — lower bound on objective value

= cutting planes
= strengthen LP relaxations to get better bounds
BN = Dricing

= dynamic addition of variables

12

Solving Constraint Programs

= branching
= split problem into smaller subproblems

= solve subproblems recursively — branching tree

= bounding
= only "pseudo solution" available
= domain propagation

= tighten domains by inference

13

Domain Propagation (CP)

X,
X, I
X3 I
X,

» all-different constraint:

X1]
Xy L
X3 [11l
Xg i LT 1]

feas. solution

» each variable must take a different value

14

Domain Propagation (CP)

X1l 1]
X 1]

= some values are impossible (due to branching)

15

Domain Propagation (CP)

X BT X, BT T
Xo BT X, BT
X; X3 (XX .
X4 I - X4 (XX -

= some values are impossible (due to branching)

F== = infer other impossibilities in domains

16

Cutting Planes (MIP)

= current solution is fractional

17

Cutting Planes (MIP)

A = fractional solution is separated by a cutting plane

18

Cutting Planes (MIP)

e o

= 2 " fractional solution is separated by a cutting plane
3 = resolving LP relaxation yields new solution

19

Branching (MIP + CP)

= current solution is fractional

20

Branching (MIP + CP)

21

Branch and Bound (MIP + CP)

= root node defines global problem

Branch and Bound (MIP + CP)

(O c =2

L |
I = relaxation yields lower bound

23

Branch and Bound (MIP + CP)

= relaxation yields lower bound

= branching decomposes problem into subproblems

24

Branch and Bound (MIP + CP)

= relaxation yields lower bound
= branching decomposes problem into subproblems
¥ = relaxation is solved for subproblems

Branch and Bound (MIP + CP)

c'>2

c">8

N
I = relaxation yields lower bounds

26

Branch and Bound (MIP + CP)

c'>2

= relaxation yields lower bounds

27

Branch and Bound (MIP + CP)

c'>2

= relaxation yields lower bounds

28

Branch and Bound (MIP + CP)

= relaxation yields lower bounds

29

Branch and Bound (MIP + CP)

= relaxation yields lower bounds

30

Branch and Bound (MIP + CP)

= relaxation yields lower bounds

31

Branch and Bound (MIP + CP)

= relaxation yields lower bounds

32

Branch and Bound (MIP + CP)

= relaxation yields lower bounds

33

Branch and Bound (MIP + CP)

= relaxation yields lower bounds

34

Branch and Bound (MIP + CP)

= relaxation yields lower bounds

2 " primal solution yields upper bound

35

Branch and Bound (MIP + CP)

= relaxation yields lower bounds
= primal solution yields upper bound

= subproblems cannot contain better solution

36

SCIP as standalone MIP Solver

= reads MPS file format (e.g., generated by ZIMPL)
= built-in MIP specific components:

= branching rules (reliability, strong, most infeasible, ...)
= primal heuristics (rounding, diving, feas. pump, ...)
= node selectors (depth-first, best-first with plunging)

presolving (dual fixing, probing, ...)

cut separators (clique, impl. bounds, c-MIR, Gomory,
strong CG, lifted knapsack cover)

1= Approx. 25% slower than CPLEX 9.03

37

SCIP as CIP framework

= C-Interface with C++ wrapper classes

= infrastructure to support user plugins
= subproblem and branching tree management
= global cut pool
= event mechanism (bound changes, new solutions, ...)
= |ots of statistical data of the solving process
= efficient memory management

= all existing MIP components are implemented as
user plugins = interface is powerful enough for
most applications

38

TSP with SCIP

= main program to invoke SCIP
= TSP file reader

= Graph storage class

= Subtour constraint handler

= Gomory-Hu Tree code
= farthest insert heuristic
= 2-opt heuristic

196
407
80

793
658

354
304

Ines
Ines
Ines

Ines
Ines

Ines

Ines

2792

Ines

SCIP Website

http://scip.zib.de

(download of SCIP is not yet possible)

