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Problem formulation

MINLP:

min f(x, y)
s.t. g(x, y) ≤ 0

h(x, y) = 0
x ∈ [x, x]
y ∈ [y, y] integer

MINLP:
- n << 5.000
- large problems are structured
- many possible applications
- in contrast to MIP, not
used very much in practice

production planning, man power
planing, scheduling, blending,
refinery optimization, process
design, engineering design,
investment/de-investment, network
design, financial optimization
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Algorithmic overview of LaGO

• First branch-cut-and-price system for MINLP

• Deformation, rounding and Lagrange heuristics

• Block-separable reformulation:
min{cTx | Ax + b ≤ 0, xJk

∈ Gk, k = 1, . . . , p}

• Convex and polyhedral relaxations:
replace Gk by a convex set or polyhedron Ĝk ⊇ Gk

Optimal relaxations by solving dual problems
|Jk| influences the quality and computational cost of a relaxation/lower bound
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Convex relaxations using underestimators

Bézier-underestimators [No96]:

• Bézier representation:
p(x) =

∑l
i=0 aix

i =
∑l

i=0 bi ·Bi(x)

• Convex hull property:
p(x) ∈ conv{bi}

α-underestimators (sampling-
technique) [NoAlVi03]

• Underestimation by a nonconvex
quadratic form q

• q̆(x) = q(x) + α(x− x)T (x− x)

• q̆ often better than f̆

f

q

q

f

Both methods produce consistent bounds.
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Optimal convex relaxation of block-separable quadratic
problems

[No03]

• Reformulation (Q) of the original problem (P) by elimination of linear terms

• Formulation of dual problem to (Q) as an eigenvalue optimization problem:
maxµ minx L(x;µ) = maxµ

∑
k λ1(Ak(µ)) + c(µ)

• Solution of the eigenvalue optimization problem using a subgradient or bundle
method

• Proof of the dual equivalence of (P) and (Q)
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Polyhedral relaxation I

• Linearization (if gi is convex):
gi(x̂) +∇gi(x̂)T (x− x̂) ≤ 0

• Knapsack-cut (by solving a
separation problem):
bTx ≥ b = minx∈Z bTx,
Z = G or
Z = {x ∈ X | gi(x) ≤ 0}

• Interval gradient cut (new):
gi(x̂) + min

d∈[d,d]
dT (x− x̂) ≤ 0

where ∇gi(x) ∈ [d, d] für alle
x ∈ [x, x]

G

Nonconvex polyhedral outer
approximation Ĝ ⊃ G
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Polyhedral relaxation II

• Level-cut: cTx ≤ v, where
v ≥ val(MINLP)

• Box-reduction (constraint propagation)
improves the quality of cuts

G

A polyhedral relaxation can also be used for sensitivity analysis and multicriterial
optimization
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Optimal polyhedral relaxations using
column-generation

Find inner approximation points
W = {w1, w2, . . . } ⊂ conv(G) such that

min{cTx | Ax + b ≤ 0, x ∈ conv(W )} =

min{cTx | Ax + b ≤ 0, x ∈ conv(G)}

G

conv(W)

Algorithm:

1. Solve the restricted master problem (RMP):
µ̂ = argmaxµ minx{cTx + µT (Ax + b) | x ∈ conv(W )}

2. Solve the Lagrange problem: w = argmin{(cT + µ̂TA)x | x ∈ G},
set W = W ∪ {w} and add new columns to RMP.

Equivalent to dual cutting plane method and therefore convergent
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Remarks

• Lagrange problem decomposes into sub-problems, which can be solved by an
arbitrary global solver (branch+cut, populations heuristic).

• Each solution of a sub-problem generates a Lagrangian cut, which is added to
the outer approximation

• By comparing the outer and inner approximation it can be determined how
good the approximation of a sub-problem is.

• In contrast to bundle methods, relaxations of stochastic programs and optimal
control problems can be updated efficiently after refining szenarios or grids
respectively.
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Heuristics

1. Deformation heuristic by successively solvin:

min{(1− tk)f̆(x) + tkf(x) | (1− tk)ğ(x) + tkg(x) ≤ 0}

2. Rounding heuristic by rounding some components of the solution of an inner
or outer approximation and backtracking

3. Lagrange heuristic by combining several inner approximation points xJk
∈

Wk, where cTx + δ‖Ax + b‖+ is small, and projection onto {x | Ax + b ≤
0, xB binary}
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Branch-Cut-and-Price

Lower bounds:

(B1) dual bounds: column generation (BCP) or eigenvalue optimization

(B2) LP-bounds (with Knapsack and linearization cuts)

(B3) by a convex relaxation

All bounds are consistent and
we have (B1) ≥ (B2) ≥ (B3)

Upper bounds by heuristics

Several branching strategies

G

Ax+b=0
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C++ Library

Together with Stefan Vigerske, more than 40000 lines of code
Object oriented design similar to COIN/BCP and ABACUS
Interfaces: GAMS, AMPL, COIN, SNOPT, CPLEX, ARPACK, NOA, FILIB, TNT, METIS

Lagrangian
Subproblems

GAMS

Model

Decomposition

Reformulation

Quad./Convex

Convex

Linear

Outer Approximation

B&B−Tree:

Box

RelaxUpdate

Node:

Inner Approximation

ExtremePoints
Pool

Master Problem
Restricted

Upper BoundsLower Bounds

Project&

Round

Lagrangian

Heuristic

(User API)
Local
Optimization

MINLP SolverNLP Solver
(User API)

CutPool:

IntervalGradientCuts

LagrangianCuts

LinearizationCuts

Subdivision

Box Reduction

Node selection
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Numerical experiments

• MaxCut experiments, n ≤ 1000: performance similar to specialed solvers

• GAMS-MinlpLIB experiments, n ≤ 500, Comparison with BARON, November
2004, BC-Algorithmus of LaGO using LP-bounds and BARON with default
parameters:

total obj obj obj

number LaGO better equal BARON better

LaGO much faster : 3 3 - -

LaGO faster : 1 - 1 -

Both solvers same performance : 5 1 3 1

BARON faster : 9 - 8 1

BARON much faster : 28 5 17 6

Only BARON solution : 5 - - 5

Both solvers no solution : 1 - 1 -

Number of problems : 52 9 30 13
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DFG-Project

Design of Complex Energy Conversion Systems,
Technical University of Berlin (Institute for Energy Engineering) and
Humboldt-University Berlin (Department of Mathematics)

[Ahadi-Oskui, Alperin, Cziesla, Nowak, Tsatsaronis, 2001-2004]

MINLP, n = 1300: BCP and specialized heuristic

Found acceptable solution in reasonable time

BARON and SBB were not able to find a solution
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Final Remarks

• http://www.mathematik.hu-berlin.de/∼eopt/LaGO/documentation/ .

• Book: Relaxation and Decomposition Methods for Mixed-Integer Nonlinear
Optimization
Birkhäuser Verlag, to appear

• Possible improvements:

– Reduction of duality gap by nonconconvex polyhedral inner approximation
(MIP master problem)
Li, D., Sun, X. L., Wang, J., and McKinnon, K. (2002). A convergent
lagrangian and domain cut method for nonlinear knapsack problems.
Technical report, SEEM2002-10, Department of Systems Engineering &
Engineering Management, The Chinese University of Hong Kong.

– consisten bounds and branching

• New DFG project planned

• Integration into GAMS planned
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