LaGO - A solver for mixed integer nonlinear programming

Ivo Nowak

June 1 2005

Problem formulation

MINLP:

$$\begin{array}{ll} \min & f(x,y) \\ \text{s.t.} & g(x,y) \leq 0 \\ & h(x,y) = 0 \\ & x \in [\underline{x},\overline{x}] \\ & y \in [\underline{y},\overline{y}] \quad \text{integer} \end{array}$$

Menanes Men

MINLP:

- *n* << 5.000
- large problems are structured
- many possible applications
- in contrast to MIP, not used very much in practice

production planning, man power planing, scheduling, blending, refinery optimization, process design, engineering design, investment/de-investment, network design, financial optimization

1

Algorithmic overview of LaGO

- First branch-cut-and-price system for MINLP
- Deformation, rounding and Lagrange heuristics
- Block-separable reformulation: $\min\{c^T x \mid Ax + b \le 0, x_{J_k} \in G_k, k = 1, \dots, p\}$
- Convex and polyhedral relaxations:

replace G_k by a convex set or polyhedron $\hat{G}_k \supseteq G_k$ Optimal relaxations by solving dual problems $|J_k|$ influences the quality and computational cost of a relaxation/lower bound

Convex relaxations using underestimators

(sampling-

Bézier-underestimators [No96]:

- Bézier representation: $p(x) = \sum_{i=0}^{l} a_i x^i = \sum_{i=0}^{l} b_i \cdot B_i(x)$
- Convex hull property: $p(x) \in \operatorname{conv}\{b_i\}$

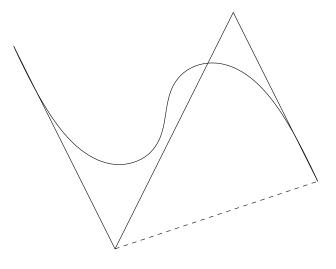
 α -underestimators technique) [NoAlVi03]

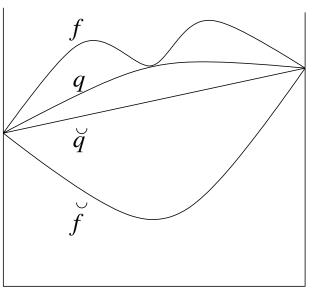
• Underestimation by a nonconvex quadratic form q

•
$$\breve{q}(x) = q(x) + \alpha (x - \underline{x})^T (\overline{x} - x)$$

• \breve{q} often better than \breve{f}

Both methods produce consistent bounds.



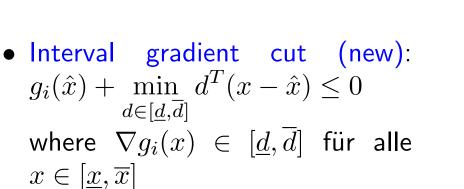


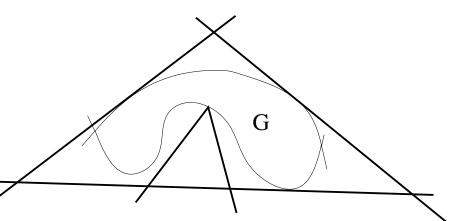
Optimal convex relaxation of block-separable quadratic problems [No03]

- Reformulation (Q) of the original problem (P) by elimination of linear terms
- Formulation of dual problem to (Q) as an eigenvalue optimization problem: $\max_{\mu} \min_{x} L(x; \mu) = \max_{\mu} \sum_{k} \lambda_1(A_k(\mu)) + c(\mu)$
- Solution of the eigenvalue optimization problem using a subgradient or bundle method
- Proof of the dual equivalence of (P) and (Q)

Polyhedral relaxation I

- Linearization (if g_i is convex): $g_i(\hat{x}) + \nabla g_i(\hat{x})^T (x - \hat{x}) \leq 0$
- Knapsack-cut (by solving a separation problem): $b^T x \ge \underline{b} = \min_{x \in Z} b^T x,$ Z = G or $Z = \{x \in X \mid g_i(x) \le 0\}$

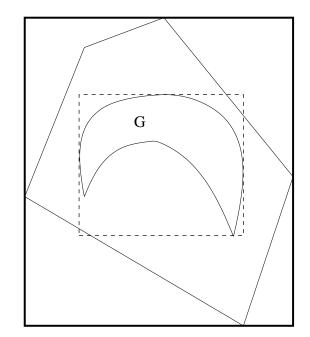




Nonconvex polyhedral outer approximation $\hat{G} \supset G$

Polyhedral relaxation II

- Level-cut: $c^T x \leq \overline{v}$, where $\overline{v} \geq \text{val}(\text{MINLP})$
- Box-reduction (constraint propagation) improves the quality of cuts

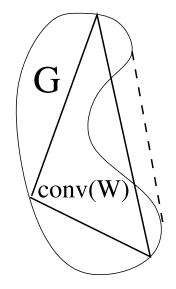


A polyhedral relaxation can also be used for sensitivity analysis and multicriterial optimization

Optimal polyhedral relaxations using column-generation

Find inner approximation points $W = \{w_1, w_2, \dots\} \subset \operatorname{conv}(G)$ such that

 $\min\{c^T x \mid Ax + b \le 0, \ x \in \operatorname{conv}(W)\} = \\\min\{c^T x \mid Ax + b \le 0, \ x \in \operatorname{conv}(G)\}$



Algorithm:

- 1. Solve the restricted master problem (RMP): $\hat{\mu} = \operatorname{argmax}_{\mu} \min_{x} \{ c^{T}x + \mu^{T}(Ax + b) \mid x \in \operatorname{conv}(W) \}$
- 2. Solve the Lagrange problem: $w = \operatorname{argmin}\{(c^T + \hat{\mu}^T A)x \mid x \in G\}$, set $W = W \cup \{w\}$ and add new columns to RMP.

Equivalent to dual cutting plane method and therefore convergent

Remarks

- Lagrange problem decomposes into sub-problems, which can be solved by an arbitrary global solver (branch+cut, populations heuristic).
- Each solution of a sub-problem generates a Lagrangian cut, which is added to the outer approximation
- By comparing the outer and inner approximation it can be determined how good the approximation of a sub-problem is.
- In contrast to bundle methods, relaxations of stochastic programs and optimal control problems can be updated efficiently after refining szenarios or grids respectively.

Heuristics

1. Deformation heuristic by successively solvin:

$$\min\{(1-t_k)\breve{f}(x) + t_k f(x) \mid (1-t_k)\breve{g}(x) + t_k g(x) \le 0\}$$

- 2. Rounding heuristic by rounding some components of the solution of an inner or outer approximation and backtracking
- 3. Lagrange heuristic by combining several inner approximation points $x_{J_k} \in W_k$, where $c^T x + \delta ||Ax + b||_+$ is small, and projection onto $\{x \mid Ax + b \leq 0, x_B \text{ binary}\}$

Branch-Cut-and-Price

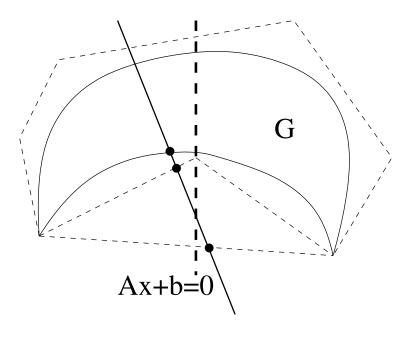
Lower bounds:

(B1) dual bounds: column generation (BCP) or eigenvalue optimization

(B2) LP-bounds (with Knapsack and linearization cuts)

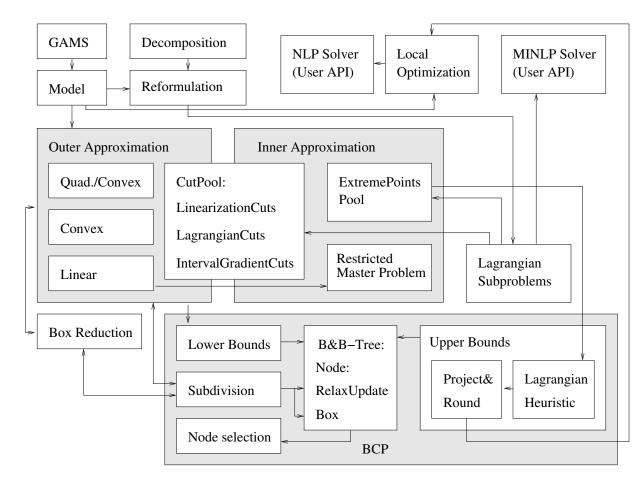
(B3) by a convex relaxation

All bounds are consistent and we have $(B1) \ge (B2) \ge (B3)$ Upper bounds by heuristics Several branching strategies



C++ Library

Together with Stefan Vigerske, more than 40000 lines of code Object oriented design similar to COIN/BCP and ABACUS Interfaces: GAMS, AMPL, COIN, SNOPT, CPLEX, ARPACK, NOA, FILIB, TNT, METIS



Numerical experiments

- MaxCut experiments, $n \le 1000$: performance similar to specialed solvers
- GAMS-MinIpLIB experiments, $n \le 500$, Comparison with BARON, November 2004, BC-Algorithmus of LaGO using LP-bounds and BARON with default parameters:

	total	obj	obj	obj
	number	LaGO better	equal	BARON better
LaGO much faster :	3	3	-	-
LaGO faster :	1	-	1	-
Both solvers same performance :	5	1	3	1
BARON faster :	9	-	8	1
BARON much faster :	28	5	17	6
Only BARON solution :	5	-	-	5
Both solvers no solution :	1	-	1	-
Number of problems :	52	9	30	13

DFG-Project

Design of Complex Energy Conversion Systems, Technical University of Berlin (Institute for Energy Engineering) and Humboldt-University Berlin (Department of Mathematics)

[Ahadi-Oskui, Alperin, Cziesla, Nowak, Tsatsaronis, 2001-2004]

MINLP, n = 1300: BCP and specialized heuristic

Found acceptable solution in reasonable time

BARON and SBB were not able to find a solution

Final Remarks

- http://www.mathematik.hu-berlin.de/~eopt/LaGO/documentation/ .
- Book: Relaxation and Decomposition Methods for Mixed-Integer Nonlinear Optimization Birkhäuser Verlag, to appear
- Possible improvements:
 - Reduction of duality gap by nonconconvex polyhedral inner approximation (MIP master problem)
 Li, D., Sun, X. L., Wang, J., and McKinnon, K. (2002). A convergent lagrangian and domain cut method for nonlinear knapsack problems. Technical report, SEEM2002-10, Department of Systems Engineering & Engineering Management, The Chinese University of Hong Kong.
 - consisten bounds and branching
- New DFG project planned
- Integration into GAMS planned