Übungen zur Vorlesung Elementargeometrie 6. Übungsblatt Abgabe am 26.05.2010

Für $M \in \mathbb{R}^2$ und r > 0 sei durch

$$S_{M,r}: \mathbb{R}^2 \setminus \{M\} \to \mathbb{R}^2 \setminus \{M\}, \qquad P \mapsto M + \frac{r^2}{|P-M|^2}(P-M)$$
 (1)

die Inversion am Kreis K(M,r) definiert. Des Weiteren seien durch $T_M(P) = P - M$ und $D_r(P) = r \cdot P$ die Translation und Streckung (Dilatation) als Abbildungen auf \mathbb{R}^2 definiert.

16 (a) Beweisen Sie unter ausschließlicher Verwendung der oben genannten Definitionen die folgenden Identitäten für Abbildungen.¹

(i)
$$(D_r)^{-1} = D_{1/r},$$
 $T_{M_1} \circ T_{M_2} = T_{M_1 + M_2},$ $D_r \circ S_{0,\frac{1}{r}} = S_{0,1} \circ D_r,$ $T_M \circ S_{M,r} = S_{0,r} \circ T_M,$ $T_{rM} \circ D_r = D_r \circ T_M,$ $S_{0,r} = D_{r^2} \circ S_{0,1}.$

(ii)
$$T_{M_1} \circ S_{M_1,r_1} \circ S_{M_2,r_2} \circ T_{-M_2} = T_{\lambda M_2} \circ S_{\lambda M_2,1/r_2} \circ S_{\lambda M_1,1/r_1} \circ T_{-\lambda M_1} \text{ mit } \lambda := -(r_1 r_2)^{-2}.$$

$$(3+2 \text{ Punkte})$$

Die Abbildung $S_{M,r}$ kann nun auf $\overline{\mathbb{R}^2} := \mathbb{R}^2 \cup \{ \forall \}$ ausgedehnt werden durch

$$S_{M,r}^*(x) := \begin{cases} \forall & x = M \\ M & x = \forall \\ S_{M,r}(x) & \text{sonst.} \end{cases}$$

Entsprechend werden die Translation und Dilatation durch die Definition

$$T_M(\forall) := \forall, \quad D_r(\forall) := \forall \quad \text{für alle} \quad r > 0, \quad M \in \mathbb{R}^2$$

auf $\overline{\mathbb{R}^2}$ ausgedehnt.

- (b) Zeigen Sie:
 - (i) $S_{M,r}^*$ ist injektiv, d.h. $S_{M,r}^*(P) = S_{M,r}^*(Q)$ impliziert P = Q.
 - (ii) $S_{M,r}^* \circ S_{M,t}^* = T_{-M} \circ D_{(r/t)^2} \circ T_M$.
 - (iii) $S_{M,r}^*$ ist surjektiv, d.h. das Bild von $S_{M,r}^*$ ist $\overline{\mathbb{R}^2}$. Bestimmen Sie die inverse Abbildung $(S_{M,r}^*)^{-1}$.

(2+1+1 Punkte)

- 17 Sei M der Schnittpunkt zweier Geraden $L_1, L_2 \subset \mathbb{R}^2$.
 - (a) Seien G eine Gerade, die L_1 und L_2 in den Punkten Q_1 und Q_2 schneidet, und $a, b \in \mathbb{R}$ mit b > a > 0. Zeigen Sie, dass $(S_{M,b}^{-1} \circ S_{M,a})(G)$ eine zu G parallele Gerade ist.
 - (b) Sei \mathcal{K} ein Kreis, der K(M, a) orthogonal schneidet, so dass $M \notin \mathcal{K}$ gilt. Außerdem soll \mathcal{K} auch L_1 und L_2 in je zwei Punkten schneiden. Zeigen Sie durch Rechnung mit (1)

$$S_{M,a}(\mathcal{K}) = \mathcal{K}$$
 sowie $S_{M,a}(L_i \setminus \{M\}) = L_i \setminus \{M\}, i = 1, 2.$

(c) Folgern Sie aus (b) den Sekantensatz.

(3+4+2 Punkte)

¹Beachten Sie dabei, dass zwei Abbildungen nur dann gleich sein können, wenn auch ihre Definitionsbereiche übereinstimmen.