

- 27
- (a) Sei c>0. In der (x,z)-Ebene betrachten wir die Parabel $\{(x,0,z)\mid c\cdot x^2=z\}$. Sei P der zugehörige Rotationskörper (bei Rotation um die z-Achse), und sei b>0. Zeigen Sie mit Hilfe des Cavalierei-Prinzips, dass das Volumen von $P_b:=\{(x,y,z)\in P\mid z\leq b\}$ halb so groß ist wie das Volumen des Zylinders der Höhe b um die z-Achse, der denselben "Deckel" $\{(x,y,b)\mid c(x^2+y^2)\leq b\}$ wie P_b hat.
- (b) In der (x, z)-Ebene betrachten wir die Kettenlinie $\{\cosh z, 0, z) \mid z \in \mathbb{R}\}$. Dabei ist cosh der Cosinus hypberbolicus, definiert durch $\cosh z = \frac{1}{2}(e^z + e^{-z})$. Sei K der zugehörige Rotationskörper (bei Rotation um die z-Achse), und sei b > 0. Berechnen Sie das Volumen von $K_b := \{(x, y, z) \in K \mid 0 \le z \le b\}$. (3+3 Punkte)
- Im \mathbb{R}^3 sei ein Polytop mit e Ecken, k Kanten und f Seitenflächen gegeben. Ein zu P gehöriges abgestumpftes Polytop \check{P} entsteht, indem alle Ecken von P abgeschnitten werden, und zwar so, dass anstelle der Ecke jeweils eine neue Seitenfläche entsteht und darüber hinaus ein Stück jeder Kante von P erhalten bleibt.
 - (a) Drücken Sie die Ecken-, Kanten und Seitenflächenzahlen \tilde{e} , \tilde{k} und \tilde{f} des abgestumpften Polytops \check{P} durch e, k, und f aus. Prüfen Sie zur Probe nach, ob die Eulersche Polyederformel für \tilde{e} , \tilde{k} und \tilde{f} weiterhin erfüllt ist.
 - (b) Wieviele Ecken, Kanten und Seitenflächen enthält der $Fu\beta-ball$, d.h. ein abgestumpftes Ikosaeder? Welche n-Ecke treten als Seitenflächen auf, und jeweils wieviele davon? Wie gruppieren sich diese jeweils um eine gegebene Seitenfläche, bzw. um eine gegebene Fläche?

Ikosaeder

(3+3 Punkte)

29 Im \mathbb{R}^3 seien die Punkte

$$A = (1, -1, 0), \quad B = (1, 1, 0), \quad C = (-1, 1, 0), \quad D = (-1, -1, 0),$$

$$A' = \frac{1}{3}(1, -1, 2), \quad B' = \frac{1}{3}(1, 1, 2), \quad C' = \frac{1}{3}(-1, 1, 2), \quad D' = \frac{1}{3}(-1, -1, 2)$$

gegeben. Diese definieren ein konvexes Polytop Q wie skizziert.

(a) Vier Kopien von Q können zu einem nicht-konvexen Körper W_1 wie skizziert zusammengesetzt werden. Bestimmen Sie die Anzahl der Seitenflächen, Kanten und Ecken von W_1 . Gilt die Eulersche Polyederformel?

- (b) Durch Verkleben von 2 Kopien von W_1 an einer quadratischen Seitenfläche entsteht ein neuer Körper W_2 mit e Ecken, k Kanten und f Seitenflächen. Bestimmen Sie e k + f.
- (c) Durch Verkleben von W_{n-1} mit W_1 an einer quadratischen Seitenfläche entsteht der Körper W_n , $n \geq 2$. Wie lautet e k + f für W_n ?

