Humboldt-Universität zu Berlin Institut für Mathematik

Exercises no. 1

to be submitted by Nov 2nd

- Let X be a principal G-space (i.e. G acts freely on X), and Y be another G-space. Show that there is a one-to-one correspondence between equivariant maps $f: X \to Y$ and sections of $\pi: X \times Y/G \to X/G$.
- 2 a) Show that a connected space needs not to be path-connected.
 - b) Show that X is path-connected iff X is connected and each $x \in X$ has a path-connected neighbourhood.
- 3 Show that a surjective continuous map $f: X \to Y$ is an identification, if it admits a section $s: Y \to X$.
- Consider the S^1 -action on S^2 given by rotation around the x^3 -axis, with orbit space [-1, 1]. Show that the orbit map is an identification w.r.t. the natural topologies.
- **5** Define a 'reasonable' topology on the Cartesian product of an arbitrary family $(X_{\alpha})_{\alpha \in \mathcal{A}}$.
- 6 Is it true that $\partial A = \emptyset$ for any subset A of a topological space X?