## Humboldt-Universität zu Berlin Institut für Mathematik





## Exercises no. 2

to be submitted by Nov 9th

Let X, Y be topological spaces with canonical projections  $\pi_{X(Y)}: X \times Y \to X(Y)$ . Show that

$$\pi_{x,\star} \times \pi_{y,\star} : \pi(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

is a group isomorphism.

- **2** Show that  $\mathbb{R}^m \setminus \{0\}$  is homotopy equivalent to  $S^{m-1}$ .
- 3 (Connectedness)
  - 1. Show that X is connected iff there is no continuous surjection

$$f:X\to\mathbb{N}_2,$$

where  $\mathbb{N}_2$  carries the discrete topology.

- 2. Define the components of X in such a way that
  - (1) X is decomposed as the union of its connected components,
  - (2) each component C is connected (as a subspace) and closed in X.
- 3. Denote by  $\pi_0(X) \subset \mathcal{P}X$  the set of connected components of X. Show that  $\sharp \pi_0(X)$  is a topological invariant.
- 4. Give an example of a space X with  $\pi_0(X) = (\{x\})_{x \in X}$ ; such spaces are called totally disconnected.
- 5. Are the components in general open in X?
- 4 Prove the Lebesgue Theorem on open covers of compact metric spaces.

## **5** (Properly discontinuous group actions)

Let X be a locally path-connected topological space and  $G \subset Aut X$  a group with the property that each  $x \in X$  has a neighbourhood  $U_x$  such that

$$U_x \cap gU_x = \emptyset$$
 for  $g \in G \setminus \{e\}$ .

Show the following statements:

- 1. G acts freely on X.
- 2.  $\pi: X \ni x \mapsto G_x \in X/G$  is a covering map.
- 3.  $G(X, X/G) \simeq G$ .