Humboldt-Universität zu Berlin Institut für Mathematik

Exercises no. 7

to be submitted by Dec 14th

Let M be a manifold of dimension m.

1 Let $p_1, p_2 \in M$ be different points. Show that

$$T_{p_1}M \cap T_{p_2}M = 0.$$

- Construct $f \in C^{\infty}(\mathbb{R})$ such that the set of critical values is dense (hint: write \mathbb{Q} as a sequence $(r_i)_{i=-\infty}^{\infty}$ and construct f with a critical value in $[i, i+1], i \in \mathbb{Z}$).
- **?** Prove the transformation law for tangent vectors in T_pM under a change of basis.
- 4 a) Show that $\tau^1(M)$ is a vector space and a left $C^{\infty}(M)$ -module.
 - b) Show that the projection $\pi: TM \to M$ is smooth.
- Consider smooth paths in M through $p \in M$. Call two such paths equivalent iff they define the same derivation at p. Show that the set of equivalence classes can be mapped bijectively to T_pM .
- Prove the lemma on the local structure of $dj[TM] \subset T\mathbb{R}^n$ given in the lecture of Dec. 8th, where $j: M \to \mathbb{R}^n$ is a smooth embedding.