Humboldt-Universität zu Berlin Institut für Mathematik

Prof. Dr. Jochen Brüning

ÜBUNGSBLATT 1

Vorlesung Analysis I*, WS 2007/08

Abgabe am 31.10.2007 vor der Vorlesung (um 13 Uhr)

Für weitere Hinweise zur Bearbeitung der Übungsblätter siehe http://www.math.hu-berlin.de/~geomanal/analysis1.html

Aufgabe 1. Sei X eine Menge und seien $A, B, C \subset X$. Zeige die Gleichheiten

- (a) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$,
- (b) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$,
- (c) $\mathcal{C}_X(A) \cap \mathcal{C}_X(B) = \mathcal{C}_X(A \cup B)$,
- (d) $(A \setminus B) \setminus C = A \setminus (B \cup C)$.

(4 Punkte)

Aufgabe 2.

(a) Seien $X := \{0, 1, 2, 3, 4\}, Y := \{0, 5, 10, 15\}$, sowie $A := X \times Y$ und $B := \{x + y : x \in X, y \in Y\}$. Sei die Menge $R \subset A \times B$ wie folgt definiert:

$$R := \{ ((x, y), x + y) : x \in X, y \in Y \}.$$

Zeige, dass R der Graph einer bijektiven Abbildung von A nach B ist.

(b) Welche Eigenschaften muss eine nichtleere Menge X erfüllen, damit $X \times X$ der Graph einer Abbildung von X nach X ist? Begründe, warum diese Eigenschaften notwendig und hinreichend sind.

(4 Punkte)

Aufgabe 3. Seien X und Y Mengen, f eine Abbildung von X nach Y. Zu jeder Teilmenge $A \subset X$ ist das Bild von A definiert als $f(A) := \{y \in Y : \exists a \in A \text{ mit } f(a) = y\}$. Für $B \subset Y$ ist das Urbild von B definiert durch $f^{-1}(B) := \{x \in X : f(x) \in B\}$.

- (a) Zeige: Seien $A, B \subset Y$, so gilt $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ und $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
- (b) Zeige: Sind A, B Teilmengen von X, so gilt $f(A \cap B) \subset f(A) \cap f(B)$. Finde ein Beispiel, wo $f(A \cap B) \neq f(A) \cap f(B)$.

- (c) Welche dieser Aussagen sind immer richtig (d.h. für alle möglichen Mengen X, Y, Abbildungen f von X nach Y und Teilmengen $A \subset X, B \subset Y$):
 - 1. $A \subset f^{-1}(f(A)),$
 - 2. $A \supset f^{-1}(f(A)),$
 - 3. $B \subset f(f^{-1}(B)),$
 - 4. $B \supset f(f^{-1}(B))$?

Inwieweit ändert sich die Antwort, wenn f surjektiv, injektiv oder bijektiv ist?

(8 Punkte)

Aufgabe 4. Sei X eine nichtleere Menge, G die Menge aller bijektiven Abbildungen von X nach X. Zeige:

- 1. Für beliebige $g_1, g_2 \in G$ gilt $g_1 \circ g_2 \in G$.
- 2. Für beliebige $g_1, g_2, g_3 \in G$ gilt $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$.
- 3. Es gibt genau ein $e \in G$ mit $g \circ e = e \circ g = g$ für alle $g \in G$.
- 4. Zu jedem $g \in G$ gibt es genau ein $g' \in G$ mit $g \circ g' = g' \circ g = e$.

(4 Punkte)