Humboldt-Universität zu Berlin Institut für Mathematik

Prof. Dr. Jochen Brüning

ÜBUNGSBLATT 8

Vorlesung Analysis I*, WS 2007/08

Abgabe am 19.12.2007 vor der Vorlesung (um 13 Uhr)

Für weitere Hinweise zur Bearbeitung der Übungsblätter siehe http://www.math.hu-berlin.de/~geomanal/analysis1.html

Aufgabe 1. Finden Sie zwei Folgen (x_n) und (y_n) mit:

- (a) (x_n) ist eine Nullfolge, und (x_ny_n) ist nicht konvergent aber beschränkt.
- (b) $(x_n y_n)$ ist konvergent, aber (x_n) und (y_n) sind nicht konvergent.
- (c) (x_n) und (x_ny_n) konvergent, (y_n) ist nicht konvergent.
- (d) $(x_n y_n)$ ist eine Nullfolge, (x_n) und (y_n) sind keine Nullfolgen.

(4 Punkte)

Aufgabe 2. Zeigen Sie, dass (x_n) eine Nullfolge ist für:

(a)
$$x_n = n^3 2^{-n}$$
,

(b)
$$x_n = \frac{11^n}{n!}$$
.

(4 Punkte)

Aufgabe 3.

- (a) Sei (x_n) eine monotone Folge, die eine konvergente Teilfolge enthält. Zeigen Sie, dass (x_n) selbst konvergent ist.
- (b) Seien (x_n) und (y_n) konvergente Folgen mit $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = a$. Zeigen Sie, dass die Folge (z_n) ,

$$z_n = \begin{cases} x_n, & n \text{ ungerade,} \\ y_n, & n \text{ gerade,} \end{cases}$$

auch gegen a konvergiert.

(c) Sei (x_n) eine Folge, für die es ein $c \in (0,1)$ gibt mit $|x_{n+1}-x_n| \le c|x_n-x_{n-1}|$. Zeigen Sie, dass (x_n) konvergent ist.

(6 Punkte)

Aufgabe 4.

(a) Zeigen Sie, dass $\lim_{n\to\infty} x_n = \sqrt{a}$ für $x_1 = b$ und $x_n = \frac{1}{2} \left(x_{n-1} + \frac{a}{x_{n-1}} \right)$, $n \ge 2$, wobei a, b > 0.

Hinweis: Nutzen Sie monotone Konvergenz.

(b) Zeigen Sie, dass die Folge (x_n) mit $x_1 = a$, $x_2 = b$, $x_n = \frac{x_{n-1} + x_{n-2}}{2}$, $n \ge 3$, konvergent ist, und finden Sie den Grenzwert.

Hinweis: Zeigen Sie, dass $x_n = s_n a + t_n b$, wobei (s_n) und (t_n) geometrische Reihen sind.

(4 Punkte)

Aufgabe 5. Zeigen Sie für alle $n \in \mathbb{N}$ gilt:

$$\sum_{j=1}^{2n} (-1)^{j+1} \cdot \frac{1}{j} = \sum_{k=n+1}^{2n} \frac{1}{k}$$

(2 Punkte)