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Abstract

We consider stochastic differential equations in d-dimensional Euclidean space
driven by an m-dimensional Wiener process, determined by the drift vector field
fo and the diffusion vector fields f1,---, fin, and investigate the existence of
global random attractors for the associated flows ¢. For this purpose ¢ is de-
composed into a stationary diffeomorphism & given by the stochastic differential
equation on the space of smooth flows on R driven by m independent stationary
Ornstein Uhlenbeck processes z',- -, 2™ and the vector fields fi,--, fm, and a
flow x generated by the non-autonomous ordinary differential equation given by
the vector field (%)*l[fo(fbt) + 3™ fi(®y) 2], In this setting, attractors of
x are canonically related with attractors of ¢. For x, the problem of existence
of attractors is then considered as a perturbation problem. Conditions on the
vector fields are derived under which a Lyapunov function for the deterministic
differential equation determined by the vector field fy is still a Lyapunov function
for x, yielding an attractor this way. The criterion is finally tested in various

prominent examples.
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Introduction

The motivation for the study of the present paper was the desire to understand better
the bifurcation behaviour of noisy non-linear systems as for example the Duffing- van
der Pol oscillator with white noise. The oscillator without noise is well known to
exhibit a Hopf bifurcation when the bifurcation (damping) parameter crosses 0. If
noise is turned on, the picture changes drastically. Instead of one there are now two
bifurcation points, i.e. points at which the set of random invariant measures of the
system undergoes a qualitative change. Simulations show (see Ochs [10]), that in
the intervals determined by these points the picture turns into a very complex, but
interesting one. To understand this picture mathematically, one has to get a hand on
the invariant measures which are supported by the random attractors.

For this reason we decided to look for general mathematical concepts appropriate
for deciding whether a given system has a random attractor. Keller, Schmalfuss [11],
Crauel, Flandoli [7] and Crauel, Debussche, Flandoli [6] contain the origins of the
basic idea of this paper, which we try to mold into a general concept verifying the
existence of attractors for random dynamical systems which originate from stochastic
differential equations. The idea is this: a random stationary coordinate change induces
an isomorphism of attractors (Theorem 2.1).

Why would one want to perform a random coordinate change on the flow generated
by a stochastic differential equation? The reason is this. In the framework of the
stochastic integration theory basic to Itd’s calculus, attractors are by far harder to
describe than in the framework of classical calculus for deterministic systems. So the
question is: can one, at the expense of some random coordinate change, pass from
one to the other, even if this means taking into account non-autonomous ordinary
differential equations?

Random coordinate changes can be realized for example by decompositions of the

flow. To be more precise, consider a stochastic differential equation on R? given by

dzy = fo(zy) dt + Z fi(xy) o dWY, (1)
i=1
with vector fields fy, - -, f,,, smooth enough so that the subsequently considered flows



exist globally, and an m-dimensional Wiener process W. A decomposition of the flow
¢ generated by (1) can be found in papers by Bismut and Michel [3], [4], Ocone and
Pardoux [16] in different frameworks, and for different aims. It rests upon the It6-
Ventzell formula (see Ventzell [23], or Sznitman [22]). The decomposition is given as
follows. If v is the flow of the pure diffusion part

dy, = f;fi(yt) o dWy, (2)

X.(z) the solution of the non-autonomous ordinary differential equation

Oy _
dze = (57 20) oltlea)) e o
starting at z € R%, then we have
de(z) = Ye(xe(z)), t>0. (4)

As mentioned above, stationary coordinate changes induce isomorphisms of attractors.
But the change described by 1 need not be stationary. In fact, being deterministic
(equal to the identity) at time 0, it does not have many chances. So a second question
arises: can one modify (2) such that the flow on the space of smooth diffeomorphisms
of R? canonically associated with it has a stationary state, say ®? If it exists, we

obtain the desired conjugation relation

¢r(x) = D (x: (P (2))),
where @, is just @, applied to the Wiener paths shifted canonically by time ¢.

This leads to the general concept of the paper. First decompose the flow as indicated,
then look for a stationary solution of (2) lifted into the space of diffeomorphisms, and
finally investigate random attractors of (3) to obtain attractors of (1) this way.

For the second step in this program, we take a more pragmatic point of view, based
upon the fact that most of the prominent systems investigated in stochastic dynamics
consist of rather complicated drift part, but of mostly simple diffusion terms. In fact, in
the examples most frequently investigated, the random Duffing-van der Pol oscillator

with different sources of noise, noisy harmonic oscillators in potential wells, or the
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random Lorenz equation, we either have m = 1 or fi, -, f,, commute in the sense
of Lie algebras. In this case, the well known Doss-Sussmann approach of stochastic
differential equations allows to represent the solutions as smooth functions of the path
of the driving noise. So in order to get a stationary diffeomorphism as solution of (2)
lifted to the space of diffeomorphisms, we drive (2) with m independent stationary OU
processes instead of the m-dimensional Wiener process W. This settles our problem, at
the expense of introducing an auxiliary drift in (3) to pass from W to an OU process.

For the third part of the program, we consider (3) as a perturbated deterministic
equation

dxy = fo(xy) dL. (5)

We assume that (5) has a Lyapunov function V', which canonically yields a deterministic
attractor, and ask the question, under which additional conditions on the perturbation,

i.e. the vector fields fi,---, f,,, and the parameter p in the OU process
dzi = dW} —pzidt, 1<i<m, (6)

V still remains a Lyapunov function of the system described by (3), this way yielding
again canonically a random attractor. We derive sufficient conditions under which this

is seen to be the case.

The paper is organized as follows.

In section 1, we discuss conditions under which a flow associated with a stochastic
differential equation (1) is conjugate to a flow associated with a non-autonomous ran-
dom ordinary differential equation of the form (3). In Theorem 1.3 and its corollaries
this is done for commuting non-linear, linear and affine vector fields. Let us remark
at this point that conjugation seems to be a more general phenomenon: at least for
vector fields the Lie algebra of which is nilpotent it promises to remain generally true.

In section 2 we discuss general conditions on the vector fields under which a Lya-
punov function for (5) remains a Lyapunov function for (3). This way we obtain in
Theorems 2.2, 2.3 and their corollaries different sufficient conditions for the existence

of a global attractor for x and thus ¢.



In section 3, we finally discuss examples to which the theory of section 2 may be
applied: the Duffing-van der Pol oscillator with different sources of noise, the noisy
harmonic oscillator in a potential well, in particular a double well, and the stochastic

Lorenz system with different sources of noise.

Notations and preliminaries

Our basic probability space is the m—dimensional canonical Wiener space (2, F, P),
enlarged such as to carry an m—dimensional Wiener process indexed by R. More
precisely, 2 = C'(R, R™) is the set of continuous functions on R with values in R™,
F the o—algebra of Borel sets with respect to uniform convergence on compacts of
R, P the probability measure on F for which the canonical Wiener process W; =
(Wi, ...,W™),t € R, satisfies that both (W})i>o and (W)~ are usual m—dimensional
Brownian motions. The natural filtration {F. =co(W, — W, :s <wu,v <t): R3s <
t € R} of W is assumed to be completed by the P—completion of F. For ¢t € R, let
O : Q2 — Quw— w(t+-) —w(t), the shift on by t. It is well known that 6, preserves
Wiener measure P for any ¢ € R and is even ergodic for ¢ # 0. Hence (Q, F, P, (0;)cr)
is an ergodic metric dynamical system (see Arnold [1]). As usual, we use a “o” to
denote Stratonovich integrals with respect to Wiener process.

For a random vector X, we denote by Px the law of X with respect to P. V is used

as a symbol for the gradient of vector fields on R

Let us briefly recall the notion of a random attractor. For more details consult
Crauel, Debussche, Flandoli [6] or Keller, Schmalfuss [11]. Note first that under the
smoothness conditions assumed from section 1 on for the vector fields, the completion
result of Arnold, Scheutzow [2] implies that the flows of diffeomorphisms generated
by our stochastic differential equations in fact generate random dynamical systems
(see Arnold [1]). More precisely, the flow (¢;);>o of diffeomorphisms on R? generated
by a stochastic differential equation is called random dynamical system on the metric

dynamical system (Q, F, P, (6;)er) if the following cocycle property is satisfied:

Pstt(w) = P(Osw) 0 ps(w),  do(w) = idga,
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for w € Q,s,t > 0. An obvious modification gives the notion of a random dynamical
system for flows with parameter space R instead of R,. Whenever we speak of a flow,
we shall, as our hypotheses on the vector fields allow, tacitly assume that it is a random
dynamical system.

A family (A(w),w € Q) of closed subsets of RY is called measurable if for any z € R¢
the function w — d(A(w),z) = inf{lz —y| : y € A(w)} is measurable. Motivated by
the needs of section 3.2, we shall define random attractors for more general systems
of attracted sets. Let D be a system of measurable closed and nonempty sets w —
D(w). In addition we suppose that D fulfills the following filtering property: if D’ is
a measurable set with closed and nonempty images and D’(w) C D(w) for w €  and
D € D then D' € D. Such a system is briefly named universe. We hasten to emphasize
that the system of compact random sets uniformly bounded in w is a universe, the one
the reader may imagine if we speak of universes. We call it universe of compact sets.
As we shall see in section 3.2, it is however not the only one which matters for us.

For a given universe D a measurable set A € D with compact images is called a
random attractor for the random dynamical system (¢;)i>o if A is ¢-invariant, i.e. for

w € 2 we have

O (w)A(w) = A(Ow),

and absorbs sets from D, i.e.
tlim dist(p(0_;w)D(0_yw), A(w)) =0

for any D € D, see Flandoli, Schmalfuss [8], where dist denotes the semi-Hausdorff
distance

dist(A, B) = sup ing |z — yl.

zeAYE

Note that a random attractor is unique. We remark that the more intuitive relationship
Jim dist(¢y(w) B, A(0y(w)) =0

holds only for convergence in probability.
The following theorem is a version of Crauel, Flandoli [7], Flandoli, Schmalfuss [§]

or Schmalfuss [19]:



Theorem 0.1 Let D be a universe of measurable sets. Suppose that v — ¢p(w)x is
continuous. In addition we suppose that there exists a compact measurable set B € D
such that

&1 (0 4w)D(0_yw) C B(w)

fort > t(w, D) and any D € D. Then there ezists a random attractor with respect to
D.

The other important example of universes is given by the tempered random sets. A

random variable R > 0 is tempered if

log™ R(O,w) =0 (7)

. 1
lim —
t—=o0 |t|

for w € €2, see Arnold [1], p.164. Note that (7) is equivalent to
Jim e U R(G,w) =0 for any ¢ > 0.

A measurable set D is called tempered if D(w) is contained in a ball with center zero and
tempered radius R(w),w € . Then the system of measurable sets with compact and
nonempty tempered images forms the universe of tempered sets. The universe which
matters in section 3.2 consists of tempered sets with a simple additional condition and
will be described precisely later on.

Of course, the universe of compact sets is contained in the tempered one. Let us
briefly point out that the difference is not very big from the point of view of random
dynamical systems, however. Temperedness of R may be paraphrased by stating that
the Lyapunov exponent of the stationary process t — R(6;w) is zero. But if it is not

zero, then we automatically have

1
limsup — log* R(Ow) = +o0.
t—+oo |t|

A function k£ : R™ — R is said to be subexponentially growing if there exists ¢ > 0

such that z — ex’;g')z') is bounded on R™.



1 The conjugacy of flows

Let fo.- -+, f,n be O®°—vector fields on R Suppose that fi,---, f, are globally Lip-
schitz. We consider the flow ¢ = (¢;)>0 generated by the stochastic differential equa-
tion

dry = folw) dt+ 3 filz) o VY. (®)

=1

We shall assume that ¢ is forward complete, i.e. that ¢; is a C'*°—diffeomorphism for
all t > 0. Bismut and Michel [3], [4], in a control theoretic study decomposed ¢ into
two components, one stemming from the pure diffusion part of (8), and one given by
the modified drift part of (8). This decomposition was later on taken up by Ocone
and Pardoux [16] in a framework of stochastic differential equations with non-adapted
coefficients. It rests upon a formula of the type of Ito-Ventzell (see Ventzell [23],
or Sznitman [22]). We shall be interested in a diffusion part possessing a stationary
state. Properly interpreted in the framework of random diffeomorphisms, this state
will then yield a conjugacy relation between the flow ¢ and a flow associated with
the modified drift part. In particular, it will yield that the flow associated with our
stochastic differential equation is related to the flow of a random differential equation
by a stationary change of coordinates.

To produce this stationary state, we shall provide the pure diffusion part of (8)
with an auxiliary drift determined by the stationary solution of a Langevin equation
in dimension m.This auxiliary drift has to be taken into account in the drift term of
(8) in return, of course. For the applications to the existence of global attractors we
have in mind, however, it will do no harm, as will be discussed later on.

So from now on we fix x> 0, and consider the stochastic differential equation

dzy = dW; — pzdt, (9)
dr, = [fole) +u 2 filw) 2] dE+ 3 filz) o e
=1 =1

with values in R™ x R?. Although the Ornstein-Uhlenbeck process z depends on the
parameter p, this will not be made explicit by a sub- or superscript. In this setting

the result of Bismut and Michel [3] can be seen to decompose the flow ¢ of the second



component of (9), which of course is just (8), in the following way. Let p = (z,7) be
the flow of the sde

dZt = th — U2 dt, (10)

dyy = Z fi(yt) ° de-
i=1

Now still denote the stationary solution of the Langevin part of (9) by z = (2;)ier, and

let x:(z),t > 0,2 € R% be the solution of the random differential equation

dy = (G0 W) + 1 3 filwnlw) =t (1)

=1

Yo = . (12)
Then the Ito-Ventzell formula yields

ou(a) = Yi(x(e), t>0, zeR™ (13)

In general, 1 may of course not be a stationary process with respect to the canonical
shift on Wiener space. We aim at a modification of (13) with a stationary diffeomor-
phism instead of 1. For this reason we shall give a more general version of (13) in
which we should also admit the possibility that the set of stationary states does not
just consist of one point, but is given by a spread-out invariant measure. This leads
us to invariant measures associated with the original stochastic differential equation
considered as transporting diffeomorphisms of R,

Let D(R?) denote the set of diffeomorphisms of RY, endowed with the topology
induced by the space C1°(R?) (see Kunita [9], p. 114, or Arnold [1], pp. 552-555). Let
(Q¢)ter be the group of linear operators defined by

Quf(p) = E(f(®))), [ € Cy(DRY)),

where (®):cr is given by the solution of (the second line of) (10) starting in p € D(RY),
and still with the stationary Ornstein-Uhlenbeck process z. Remarking that D(RY) is
a Polish space, we assume that (Q;);>o possesses an invariant measure v on D(R?).

We shall later on study special cases and conditions under which this is guaranteed.



The pull back of v according to Ledrappier [12], Le Jan [13] and Crauel [5] yields a

random invariant mesure v which is Markovian and is given by the formula
V= tllglo D 0 0_4(7).

Its invariance is expressed in the fact that
v=vob, =, (v).

We then have the following extension of the formula of Bismut and Michel [3].

Theorem 1.1 For p € D(R?) let x{(x),t € Ry, € R, be the solution of the random

differential equation

de = OO W@ ) + 1> @) =] (14

=1
v = plx).

Then we have fort € Ry

o) = [, PO @) wldp)

Proof:
The Tto-Ventzell formula yields for z € R% ¢t € R, p € D(RY)

di(x) = ®7 (7 (p™" (2))),

P—a. s.. Using the measurability of the parametrized process in all variables and the

invariance property of v we obtain the equation

[p0o™ @) mldp) = [ @0 (™ @) vo(dp)
= [ 6u@) noldp)
= ¢u(T).

One might ask at this point why an exzterior process such as the Ornstein-Uhlenbeck

process enters our considerations. Couldn’t we just subtract from the diffusion part of
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(8) an auxiliary drift of the form > I* | g;(x;) dt with g; appropriately chosen such that
the existence of an invariant measure is guaranteed? In general, this should indeed be
a reasonable way to go. The reason why in this paper we still stick with the Ornstein-
Uhlenbeck process is this. In the examples we consider in section 3, the diffusion terms
are exclusively linear. In this case, the introduction of an auxiliary Langevin equation
makes it possible to remain inside the framework of linear vector fields for the modified
diffusion flows. This will be a consequence of the following considerations, in which
we shall make a considerable restriction of generality. We shall assume that the vector
fields commute, as is the case in all the examples studied later on and in fact in all the
prominent examples known from the literature of systems perturbed by white noise.
This makes the Doss-Sussmann representation of solutions of stochastic differential
equations enter the scene. We remark at this point that for vector fields generating
a Lie algebra which is nilpotent of order 2, our arguments can be made rigorous as
well, via the introduction of a stationary Lévy area, besides the stationary Ornstein-
Uhlenbeck process with which we work in the simpler setting. An argument of this
type works most likely also in the case of nilpotent Lie algebras. Lyons [15] indicates
that at least for non-commuting linear vector fields the solution is a smooth function
of the stationary pair consisting of Ornstein-Uhlenbeck process and Lévy area. We
conjecture that also in this case we can find a stationary diffeomorphism for a large
class of systems, so that the subsequent results extend to this setting as well.

So assume from now on that [f;, f;] = 0 for 1 <4,5 < m. Let u: R™ x R — R?

be the smooth field which satisfies

ou
%('Z?x) = fz(u(z,x)) (15)
u(0,z) = =z,

1 <i<m,(z2) € R x RY Existence and uniqueness of u are consequences of
our hypotheses on fi,---, fim, see Spivak [21] Chapters 6, 7. We continue to denote
the stationary solution of the m-dimensional Langevin equation with parameter p by
2z = (z)ter- Then the following key result follows easily from the Doss-Sussmann rep-

resentation.
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Let 2 be the stationary Ornstein-Uhlenbeck process introduced in (6). Then there
exists an F__ measurable random variable denoted by zy such that z; = 250 6;. In

particular 2o = 2¢|i=o.

Theorem 1.2 Let ® = u(zy,-). Then ® € D(R?) and ®; = ® o 0;,t > 0, solves the
D(RY)—walued stochastic differential equation

i=1
Finally, ® is tempered.

Proof:
The first part is a direct consequence of (15) and the stationarity of z. Temperedness
of ® follows easily from our assumption on the vector fields f, ..., f,,: it implies that

® is integrable. O

Theorem 1.2 allows us to exemplify Theorem 1.1 in the case of commuting vector

fields.

Theorem 1.3 Let ® = u(2,), (x¢(7))i>0 be the flow on R generated by the random

differential equation
dyr = g(0-, i) dt,
where for w € Q,y € R?

o) = () B 1)+ 1 2 K@) ) ()

Then we have
by(w, 1) = P(Ow) X (w, ™ Hw)7) (16)
x € R4t >0, for the flow ¢ of solutions of (8).
Proof:
In our setting, the Doss-Sussmann representation just states
gbt((b(l')) - U(Zt, Xt(w))a
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t > 0. This is another way of writing (16). O

Remark:Note that the random isomorphisms appearing in the preceding theorem
are tempered.

We specialize our main result to the case of linear vector fields.

Corollary 1.1 Let fo € C*(RY), Ay,---, A, € R™? be such that [A;, Aj] = 0 for
1<4,7<m and
dxy = fo(xy) dt + Z A;xp o dW

i=1
is forward complete. Denote its flow by ¢. Let z be the stationary solution of the

Langevin equation

dzy = dWy — pze dt

for some > 0, and let ® = exp(Ay 23 + -+ An 25"), and (x¢(z))i>0 the flow of the
random, differential equation

dye = g(0p, ye) dt,
where

9w, y) = 87 (W) fol@(@)y) + 1 > Ay zh(w).

i=1

w e N,y € RY. Then we have
¢i(z) = P ol Xt(cITl z),
t>0,2 € R%

Proof:

This is a combination of Theorems 1.3 and 1.1. O

Finally, we specialize Theorem 1.3 to the case of affine vector fields.

Corollary 1.2 Let fy € C*(R%), Ay, -+, A, € R™4 by, --. b, € R? be such that
[A;, Aj] =0 for 1 <i,j <m and

dxy = fo(xy) dt + > (Aizy + b;) o AW

1=1
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s forward complete. Let z be the stationary solution of the Langevin equation
dzy = dWy — pzp dt
for some >0, let ® = exp(Ay 2§ + -+ + Ap 28Y), and ¥ the affine mapping given by
U(z) =P(z) + iAi_l(eXp(Ai 20) — 1) b;.
i=1

(Here and in the following, we denote by A~ the pseudo-inverse of A.) Finally, let
(x¢(7))e=0 be the flow of the random differential equation

dy, = g(et'a yt) dt,

where
m

9(w,y) = V7 w) [fo(P(W)y) + 1 D A ¥(w)y z(w)],

i=1

w e N,y € R Then we have
pi(z) = Vo b Xt(‘l’fl ),
t>0,2 € R

Proof:
Note that W o §; = &, + 7, A: ' (exp(A; z1) — I) b;. The remaining proof is identical

to the one of the preceding corollary. O

2 Random attractors via flow decomposition

Attractors of conjugate flows are related in very simple way, as will now be made
precise. Consequently, section 1 gives us the opportunity to obtain random attractors
of flows ¢ generated by stochastic differential equations from attractors of flows x
related with random non-autonomous ordinary differential equations. We work in the
framework of the preceding section. We fix fy,-- -, fm € C°°(R?), such that fi,---, fm
are globally Lipschitz, [f;, f;] = 0 for 1 <4, j < m, and such that

dr, = fo(ft) dt + Z fz(xt) © dVVti (17)

i=1
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is forward complete. We denote the flow generated by this equation by ¢. Furthermore,

we suppose that z is the stationary solution of the Langevin equation
dzy = dWy — pz dt (18)

with values in R™, and write ® = wu(zo, ) for the stationary solution of the sde with
values in D(R?) given by

dd, = ilfz(q)t) o dz, (19)
where u is the solution of the system ofipartial differential equations

ou
0zt (Z, JZ‘) - fZ(U(Z, .I))

u(0,z) = =z,

1 <i<m,(z,2) € R x R% Finally, x denotes the flow generated by the non-

autonomous random differential equation

dyt = g(et'a yt) dta (20)

where

o(61) = (57 6) (@) + 1 3 F@) 1) 5(0)] 1)

w € N,y € RY Attractors of ¢ and y are related by the following theorem.

Theorem 2.1 There is a one-to-one correspondence between random attractors of
¢ and random attractors of x. If (A(w),w € Q) is a random attractor of x, then
(P(w) A(w),w € Q) is a random attractor of ¢. If (B(w),w € Q) is a random attractor

of ¢, then (P~ (w) B(w),w € Q) is a random attractor of x attracting tempered sets.

Proof:
We show the first one of two obviously parallel statements. Let (A(w),w € ) be an
attractor of y. Then by definition for w € Q,¢t > 0

X0 0-¢(w) A(0-+(w)) = Aw).
Therefore by Theorem 1.3
Pt © 01 (W)(P(04w) A(6-w)) = B(w) Xt © O4(w) (A(0-w)) = P(w) A(w)

15



for w € Q. Hence (®(w) A(w),w € Q) is a ¢-invariant random compact set. It is
equally simple to show that if a tempered family (D(w),w € ) is attracted by Yy,
then (®(w) D(w),w € Q) is attracted by ¢. Recall hereby from Theorem 1.2 that ® is

tempered. This completes the proof. O

Once arrived at the random differential equation on which the flow y is based, we
may consider our problem of finding a random attractor as a perturbation problem for
a deterministic differential equation given by the drift vector field alone. We first give a
general condition for the existence of a random attractor of y, which may not yet look
very practical, in terms of Lyapunov type functions. We shall see that the following
class of such functions behaves particularly well. A function U : R? — R, will be
said to preserve temperedness if U~(D) is tempered for tempered D. It is easy to see
that any function U of polynomial growth preserves temperedness. In the examples of
section 3 all Lyapunov functions will be of this type.

For further use, we denote
ou . _ = i
Mz y) = (50) 7 (z9) (folulz,9) + 3 filulz,9)) =),
i=1
for (z,y) € R™ x R4

Theorem 2.2 Let U : R* — Ry be a C'-function such that limy, . U(z) = oo.
Suppose that for any M > 0 supy, <y |h(z,y)|is subexponentially growing in z € R™

and there exists a subexponentially growing function k : R™ — R, such that we have

(VInU(y), h(z,y))

limsup sup <1, (22)
|y|—>oo zeR™M k(Z)
/ k(z) P,y (dz) < 0. (23)

Then x has a random attractor which attracts compact sets. If U preserves tempered-

ness, then x has a random attractor for tempered sets.

Proof:
(22) just says that for € > 0 there exists M > 0 such that for |y| > M we have

(VInU(y), h(z,y)) < k(z) +€
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for all 2 € R™. Choose € > 0 such that

/ k(2) Py(d2) < —c.

and let [(2) = supy,;<ps |12, y)| - supy, <a [VU(y)], 2 € R™. Then [ is subexponentially
growing, and, by an eventual passage to the function & = k + ¢ which by choice of ¢

still fulfills (23), we may assume without loss of generality that for y € R? we have
(VU(y). h(z,y)) < k(2) U(y) + U(2).
Hence for z € R%,t > 0 we may write

Ua(e)) = Ula)+ [(TU(@) bz 0 0, xs(2))) ds

t
< U@+ [ k(2000 Ulxs(@) + U(z0 0 0,)] ds.
Hence a standard comparison argument easily gives

0
Ulot () < Ul)exp( [ k(z00,)ds) (24)
—t
0 0
+ / eXp(/ k(20 0 0,) du) (20 0 0,) dv.
—t v
Since k is subexponential, and by stationarity, the ergodic theorem of Birkhoff may be
applied to give
1 st
Jim_ / k(20 00,) du = / k(z) P,y (dz) < 0. (25)
— 00 0 m

Since also [ is subexponential, (25) implies that the limit of the right hand side of (24)

as t — oo exists and is given by

Y = /_Ooo exp(/vo k(zp00,)du)l(z 0 0,)dv. (26)
Now let for w € 2
B(w) =U([0,2Y (w))).

Then a well known argument (see Crauel, Flandoli [7], or Keller, Schmalfuss [11], or
Schenk-Hoppé [17]) shows that (B(w),w € Q) is a random absorbing set, from which
a random attractor may be obtained using Theorem 0.1. Since the inverse images of

compact sets by U are compact, this yields the assertion for the compact universe.
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Now note that Y is tempered, in addition. Indeed, for ¢ > 0,1t € R,w € (), we can
estimate e~1Y (6,w) by

0
c|t|/ t+v k(z(0uw)—Ek(z0)du— f k(z(0uw)—Ek(z0)du— ka(zo)+log+l(9t+vw)dv.

For any € > 0, w € Q there exists a t(e,w) > 0 so that for [t| > t(¢,w), t < 0 we have
N € €
log* U(6rw) < 51l / — Bk(z)du| < £l

If we choose € < min(5, —FEk(z)) then we have the asserted convergence for ¢ — —oo.
For t — oo we have the same convergence, see Arnold [1], p. 164f. If U preserves
temperedness, the measurable set B is obviously tempered, and Theorem 0.1 applies

again. O

Let us now suppose we know a Lyapunov function of the deterministic system

dyy = fO(yt) (27)

say V : RY — R, i.e. there exists a > 0 such that

limsup(VInV (y), fo(y)) < —a. (28)

ly|—o0

The question we shall discuss is: under which additional conditions on V' does the per-
turbed system (20) still have a Lyapunov function? Indeed, we shall discuss additional
conditions under which V' itself remains a Lyapunov function. One of these conditions
will contain a statement saying that the additional drift caused by our decomposition
and given by g (Z2)=1 Yo" fi(Puy) 2 dt is negligible in a sense to be made precise
below. As a consequence, the drift intensity p of the auxiliary OU process may be
chosen arbitrarily large. This fact turns out to be favourable for the treatment of the
remaining drift given by (aq)t) fo(Pry,) dt.

Let us remark that by choosing p large we may ensure that the stationary diffeo-
morphisms ® are close to the identity. This justifies the notion perturbation of f, for
the vector field of (20). This feature is easily checked. Indeed, we have & = u(zo,.)
and u(0,.) = I, the identity. It follows from the definition of z that

0
2 :/ exp(pu) dWii,, tE€R,
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is a stationary solution of the Langevin equation. Hence as u — o0, 2y converges to
0 in L?. Hence ® approaches the identity as 4 — oo, even P—a.s., along a suitable
sequence.

We shall now state our prototypical theorem for the existence of random attractors of
differential equations perturbed by diffusive noise. The criterion we formulate essentially
says that the perturbation of the vector field f; described by A is not strong enough to
affect a given Lyapunov function. It will later on be seen to be fulfilled in particular
situations, for example for the noisy Duffing-van der Pol equation, for which it was

proved in Keller, Schmalfuss [11].

Theorem 2.3 Let V' be a Lyapunov function of

dy, = fO(yt) dt.

Suppose that there exists u > 0 and a subexponentially growing function k : R"™ — R,

such that
: (VInV(y), foly) — h(z,y))]
s S V), o) AE)

[ k() Paldz) <. (30)

(29)

where « is the constant of (28). Then x has a global random attractor for the compact

sets. If V preserves temperedness, then x has a random attractor for the tempered sets.

Proof:
By choice of k and definition of V, (29) and (30) imply (22) and (23) of Theorem
2.2.The theorem applies and finishes the proof. O

A particular situation in which the hypotheses of Theorem (2.3) are simple to check,
and the freedom in the choice of the drift parameter u comes into play quite practically,
arises if the auxiliary drift stemming from the introduction of the OU process pushes
into directions in which the gradient of V' is essentially smaller. This situation will be

seen to be given in the case of the noisy Duffing-van der Pol equation in section 3.
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Corollary 2.1 Let V' be a Lyapunov function of

dy: = foly) dt,

and denote
ou. _ m

i(zy)=(3.) Hz,) D filu(zy) 2,

=1

z € R™,y € R Suppose that there are subezponentially growing functions ki and ks

such that
imsup su n U(2,y) _
fimsup sup [(VInViw). 3 )1 =0 (31)
L (VIV@). foly) = (572 w) folu(z. )
sap VIV (), fol) () <1 (32
lig(l) ko(z) = 0. (33)

Then x has a global random attractor for the compact sets. If V preserves temperedness,

then x has a random attractor for the tempered sets..

Proof:
Let a be the constant of (28) again. By the remark made before Theorem 2.3 and

dominated convergence, (33) allows us to choose u large enough to ensure

/m k(z) P,y (d2) < a.

Next, using (31), we may choose 6 > 0 small enough so that

l
limsup sup [(VInV(y), (z,y)>| <4,
ly| =00 z€ER™ kl(z)

as well as
/Rm(éukl(z) + ko(2)) Pey(dz) < a.

Then obviously the function k = 6 pky + ko fulfills (30) of Theorem (2.3). And (31)
and (32) imply (29). Hence Theorem 2.3 applies. O

In case of purely additive noise, the hypotheses of Corollary 2.1 are easily seen to

be satisfied.
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Corollary 2.2 Let V be a Lyapunov function of

dy: = foly) dt,

such that limp,_ [V InV(y)| = 0. Assume that for some by,--- b, € R* we have
fi =b;,1 < i <m, and that there exists a subexponentially growing function

k:R™ — Ry such that

(VInV(y), foly) — foly + 71 b 2))|

P (Y (I A TO
lim k(z) = 0. (35)

Then x has a global random attractor for the compact sets. If V preserves temperedness,

then x has a random attractor for the tempered sets..

Proof:
We have u(z,z) =z + >, 2°b;, (2,2) € R™ x R So (32) evidently is a consequence
of (34). It therefore remains to verify condition (31) of the preceding corollary. Indeed,

we have
m

l(z,y) = (VInV(y), D biz"),
i1
(z,y) € R™ x R%. Hence (31) is an easy consequence of the hypothesis

limpy—o [VIn V(y)| = 0 and the exponential boundedness of z — Y b; 2.0

1=

3 Examples

In this section we shall discuss a number of examples in which the criteria for the
existence of global attractors of the preceding section apply. All the examples describe
well known dynamical systems perturbed by some noise, and have been extensively
studied in the literature.

We start by considering the Duffing-van der Pol oscillator with multiplicative noise

on the position variable. It has been studied in Keller, Schmalfuss [11].
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3.1 The Duffing-van der Pol oscillator with multiplicative noise

on the position
The system we investigate comes from the second order noisy differential equation
e — B+ +yi v+ — oy o W, =0,
with parameters § € R, o # 0. In the usual two-dimensional setting it becomes

dyu(t) = ya(t) dt,

dys(t) = [=3n(t) + Bra(t) — y1(t) — 1 (t)* 12 (b)]dt + o 1 (t) 0 dWV,

and, after a transformation into new coordinates, the Lienard coordinates (see Schenk-

Hoppé [17]), given by

1
T =Y, To=1yY2— By + éyi’,
y = (y1,y2) € R?, it takes the form
dl’t — fo(.Tt) dt + Al’t 9] th7 (36)

where

A:

o 0 —x) — a3

x € R2. Let us first look at the deterministic, unperturbed system

dy: = fo(y) dt. (37)

Then, the function
1

7 1 1
Yi+ sy + -y + =y — )’

V) =gt v+t

y € R?, is seen to be a Lyapunov function of (37). Indeed, we have

Tyd 4+ Sy — o

v = | , (38)
Y2 — Y1
and therefore
7 & L 7.0, 9 1 9
(VV@), fo)) = =g+ G+ P+ 26+ Dy + (5 - P -, (39)
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y € R2 From (39) it is easy to see that, setting for y € R?

K(y) =5 +vs,

we have

lim sup (VV(y), foy))
lyl—oc K(y)

for some positive constant «. (40) is indeed sharper than the inequality

< —q, (40)

limsup(VInV(y), fo(y)) < —a (41)

ly|—o0

for some o > 0, which is needed to show that V' is a Lyapunov function of (37).

Now let > 0 be given and decompose the flow corresponding to (36) in the manner
described in section 1. We shall now verify the hypotheses of Corollary 2.1, starting
with (31). Note that (38) implies for y € R? 2z € R

3 3
(VV ), Ay2)| < 2l oy (G2 = w0l < erle [l + o))

with some positive constant ¢;, and hence clearly

i sup (VInV(y), Ayz)| _
wl—oo zer (VI V (y), fo(y)) k(2)

with the subexponential function k(z) = |z|, 2 € R. This entails (31).

To verify the crucial condition (32) of Corollary 2.1, let us split the drift vector field

into its linear and non-linear part. We have, setting for y € R?

g1 391
B = ) gO(y) - ’
~1 0 —y3
the equation
foy) = By + go(y).

For the linear part, a rather crude estimate already works. Indeed, for 2 € R,y € R?

we have

[(VV (). (B — e Be™)y)| < [VV(y)|lyl k(2), (42)

with k(z) = |B—e~4* Be??|, z € R. Now clearly k is subexponential and lim,_ k(z) =

0. Moreover,

IVV ()l ly] < c2r(y),
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for y € R?, with some constant c,, as is seen by elementary estimates. Hence we obtain
altogether for the contribution of the linear part of fy, observing the inequality (40)
lim sup sup LYY @), (B — e~ * Be’*) y)
ly| =00 z€R |<v1nv(y)7f0(y)>| k(Z)

e YV W), (B~ e~ Be™*) y)
= s V) k) S

with k& subexponential, lim,_,q k(z) = 0.

(43)

It remains to consider the non-linear part of fy. Note that in the case considered,

our stationary diffeomorphisms are just given by

O = A0 Lo ,
oz 1
hence
o1 | 10
—0zp 1
Hence for z € R,y € R? we have
1,3
A » —3 U
e g(e™y) = 133 e
0Z3 Y1 — U1
and therefore
0
e go(e™y) — goly) = L
oz 3 Y
In view of (38), this implies for z € R,y € R?
—Az Az 1 3 3
(VInV(y),e™ go(e™y) — go(y))| < |oz] Ig vi(5ye =yl (44)

< e lz|(s(y) +1)

< alz[(KVV(Y), fo(w))] + 1),

where we have used elementary estimates along with (40), and ¢z, ¢4 are some positive
constants only depending on 0. Now let [(2) = ¢;3|z|,2 € R. Then we see that (44)

implies
: (VInV(y), (e** go(e**) y) — go(y))
msup sup =TV, @ 1) =

(45)
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where [ is subexponential and lim,_y{(z) = 0. Now combine (45) and (43) to obtain
(32) of Corollary 2.1. Hence the Duffing-van der Pol oscillator possesses a global

attractor according to Theorem 2.1 which attracts the tempered sets.

Let us next consider similar models with different sources of noise (see also Schenk-

Hoppé [17]).

3.2 The Duffing-van der Pol oscillator with multiplicative noise

on the velocity
In this subsection we shall investigate the system related to the second order equation
o — BYe+ Y + Y G+ ye — 0 0 dW, = 0,

with parameters § € R,o0 # 0. We now make a clearer distinction between the y-
coordinates and the z-coordinates (the Lienard coordinates) than in the preceding

subsection. In the y-coordinates we obtain the following two-dimensional sde

dyy = go(ye) dt + Ay o dW,, (46)
where
Yo
9o(y) = . o, | Ve R?,

—y1+ By — Y — Yi Y2

0 0
A —

0 o

Note that this time we may not pass to Lienard coordinates without changing the
linearity in the diffusion term. So we stick to y-coordinates in (46), but may transform
into z-coordinates if the calculations with Lyapunov functions require to do so. Denote

therefore

Hy) = . L t(2) = ,
QQ_ﬁyl‘f‘%y% Ty + By — 327

x,y € R% The Jacobian of t is given by

10 ,
Dt(y) = , yeR”.

yi—p6 1



Let us first look at the deterministic system

dy: = go(y:) dt, (47)
which, in z-coordinates, may be described by
dxt - fO(xt) dt/

as in the preceding section, with

Dt(y) go(y) = fo(t(y)), or fo(z) = (Dt)({t (x)) go(t™" (), (48)

x,y € R% We know a Lyapunov function of the system in z-coordinates from the

preceding section, where it was defined as V. Let

Uly) =V(t(y), vyeR~

Then U is a Lyapunov function for (47), since we have

(VyU(), 90(y)) = (Vo V(E(y)), Dty)go(y)) = (VaV(E(y)), fo(t(y))),  (49)

y € R%. We aim at deriving conditions on the coefficients of our system under which U
is a Lyapunov function of the stochastic perturbation of (47). More precisely, we shall

apply the criteria of Theorem 2.3. This time, our stationary random isomorphism is

given by
1 0
b = ,
0 e
and
1 0
u(z,y) = Y= Yy ., 2z€R,ye R
O eO’Z eO’Z y2
Hence

Qe = [ - } .

According to (49), we may write

(VLU @),00(5) ~ (5 (2 g0(u(z. )
(VY (1), Diw)laofy) — () =) oz, 1))
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So we have to estimate for large z € R?

(VoV(2), (D)t (2))[go(t ™ (2)) — (gg)_l(z, ) go(ulz, t7H(@)))])

= (VaV(z), [folz) - (%)_1(% ) fo(u(z, 2))]).

The linear part may be treated exactly as in (42) and (43). Let us give the arguments

for the nonlinear part. It is given by

ner) = | 3| | 7)€ Dget )
it | et | [ e -a
Hence we have

1 1 s
:11:(13 -+ —x‘f — —:ngi’](e” -1+ [—.TQ.I? — x‘ﬂ (e77%=1),

(VaV (@) n(z2) = el + 591 — 5

and, by elementary algebra using in particular the inequality

|z27| < S la + 2Y]

N | —

we arrive at

[(VaV (@), n(z, 2))| < k(2) K(2),

where k is defined as in the preceding section, and
k(z) = erf[e” = 1]+ [e77 — 1]],

z € R, with a constant ¢; > 0. We may summarize the computations just executed in
the following result. There exists a subexponential function k such that lim, o k(z) =0

and such that

(Ve V(2), fo(z) — (52) () folu(z, )|

lim sup sup <1,
and consequently
V,InU — (24)71(z,.
i supsap [V U@ 00) = G ) goluz o)

lylsoo z€R (VyInU(y), 90(y))| k(2) B

Let us now investigate the auxiliary drift term. Again we work in Lienard coordinates.

For t(y) = x € R? with big enough absolute value we have by arguments already
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discussed

(V,U(y), Ay)| = [(V.V(t(y)), Dt(y)Ay)|
= (V.V(2),(Dt)(t }(z)) At ()|

= [(VaV(x),

0
oy + By — 327 }

3 1 1
= a|§x§ + (55 — 1) a2y — B23 — 5:62:1:? + ga:ﬂ

< oy k(x)
with a constant ¢, independent of 0. Hence there are subexponential functions k; and
ko(2) = pego |z, 2 € R, such that lim, o ki(2) = 0, and such that

g sup (Vs 18U 0).90(9) = h(z. )
o R {9, U)o ()] (a(2) + Fa(2)

<1, (51)

where we recall

h(zry) = (5

2 € R,y € R?. Tt remains to choose o small enough to ensure

) (=) go(ulz,y)) + pz Ay,

/R (ky + ko) (2) Py (d2) < a, (52)

to see that for small enough ¢ our system has a global random attractor for tempered
sets, due to Theorem 2.3.

Remark:1. A similar analysis is possible in case
0 0
p o

2. The statement for small enough o above could be made more precise in terms of a

A:

with p,o € R.

function of the parameters g and o of the system.

3.3 The Duffing-van der Pol oscillator with additional additive

noise

Let

28



where 01,09 # 0. Let W = (W', TW?) be a two-dimensional Wiener process and f, as
in the preceding subsection. We consider the stochastic differential equation
2
dxy = fo(xy) dt + z:(Az xy + b;) o dW}. (53)
i=1
Let V' be the Lyapunov function of the unperturbed system given above. Choose > 0
as the drift of an auxiliary 2-dimensional OU process. To verify that the additional
drift is small, note first that the stationary diffeomorphism in the case considered is
given by

Azt 2
bx = ez + by 2,
x € R2. Hence

(VI V), (5) () SlAsu(z.p) +b] =)

i=1

— VIV (), e [y (MY + by 2%) 2 + by %)

< [(VInV(y),2' Aiy)| +VInV(y)| e (2'2% + %) b,

The first term in the above estimate has been treated in the preceding subsection. For
the second one, just note that limy, . [VInV(y)| = 0, and that the second factor is
an exponentially bounded function of z € R2. So we can conclude

i sup LYV ()7 (0) Tl [As (ulzy) + b1 )
ly| =00 LeR2 (Y InV(y), foy))| k(2)

=0, (54)

with the subexponential function k(z) = |e=41%" (2122 4 22) by|, z = (2%, 22) € R2. This
proves (31).

To verify (32) of Corollary 2.1, we again split the linear and non-linear part of fj.
The estimate for the linear part just follows similar arguments as the ones above. For

the non-linear part, we note that in the notation of the preceding subsection
e gy y 4 by 2%) = e M go(eM7y),

since by only depends on the second coordinate. Hence also in this case the necessary
estimates have already been performed in the preceding example. Hence the existence

of a global attractor for tempered sets follows from Theorem 2.1.
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3.4 The noisy damped harmonic oscillator in a double well

potential
Let U(z) = ix‘l — %x% x € R. We consider the noisy damped harmonic oscillator

T+ yay — U'(xy) :JOWt7

with v > 0,0 € R. In the two-dimensional setting we thus obtain the stochastic

differential equation

de,'t = fo(l't) dt + bl 0] th, (55)
where
i) 0
fO(l') = 5 bl = >
—YZ2+ 21— xi’ o

x € R2. Let us first define a Lyapunov function for the deterministic system

dys = fo(y) dt. (56)

Let
V() =vi + Yy + 7y vz + 205,

vy = (y1,2) € R% Then

4y? + 29 y1 + Y e
VV(y) =
YY1 + 4y

and consequently

(VV(y), foy)) = =vyi +7y: —37ys + (4 +77) y1 4. (57)

It is therefore easy to see that

limsup(VInV(y), fo(y)) < —v,  lim [VInV(y)| = 0.

‘y|—>oo |y|_’:>o
This identifies V' as a Lyapunov function of (56) for all ¥ > 0. To be able to apply
Corollary 2.2 to show that (55) possesses a global attractor for v > 0,0 € R, we just

have to note that
-1
foly) = foly+bi2") =0
Y
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Then arguments as used before apply.
Remark:A similar analysis is possible for any potential fiunction U such that

lim|g| o U(x) = oo with a possible restriction for the attraction of tempered sets.

3.5 The Lorenz system with multiplicative noise

We consider a stochastic perturbation of the well known Lorenz system (see Leonov

and Boichenko [14]) given by the following stochastic differential equation

dy: = Jfolye) dt + fi(y) o AW, (58)
—dy1 + dyz — ay2ys3
foly) = TYL — Y2 — Y193 ; fily) =0 Ay, A=id,
—bys +y1y2
with the parameters d, b, r > 0, a, o € R. (59)

The deterministic version of equation (58) covers a number of physical models exhibit-
ing chaotic behavior, see Leonov and Boichenko [14]. In particular, for a« = 0 this
system has been introduced by E. N. Lorenz as an approximation of the Boussinesq
equation describing heat convection.

The stationary diffeomorphisms ®, ®~! for A = oid are given by
d = e’™id, &' =e 7™id

and we have

u(z,y) =e’y, z€R,ye€R>.

Let § be a constant such that a + § > 0. Then the function

1 d+46r 2
V(yl,yg,ys):§ (yf+5y§+(a+5) <y3— a+5> ) (60)

is a Lyapunov function for the deterministic version of (58), see Leonov and Boichenko

[14]. Indeed, we have

(VV(), foly)) = —dyi —6y5 —bla+ 6)y3 + b(d + 6r)ys
1 d+or\* 1 (d+6r)?
< —dy? —6y2 — = — -
S i 2b(a—|—6)<y3 a+(5) 2" a+é
= —aV(y)+0 (61)
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where o« = 2min(d, 1, ;b) and # = lb(d:jg) )
We now aim at verifying the hypotheses of Theorem 2.3. This is done in three steps.

Firstly, a simple calculation shows that

[(VV (), foly) - (gg) H(z) fo(u(z,9)))| = (d+6r) [€7* — 1| [y130].

Note that the expectation of 7% is finite.
Secondly, for the term

(VV(y), nAyz)|

the following estimate works:

(VV(y), Ay)| =

d+or
a-+o6

d+6r\° d+ 6r
g d) (- ) e - )‘

yi + 6y + (a + 6)ys (yg —

a+6

d+6r\”
< P oyR(at+6+d+or) (yg— a+5> +d+ ér

S ’YlV(y) + Y2,

"= 2a+5+d+5r and Yo = d—|— Sr.

Finally, we obtain for sufficiently large |y|
(VV(y). foy))| > aV(y) — 3 > 0.

We now check the assumptions of Theorem 2.3. We have for sufficiently large |y|

(VV(y), foly) — h(z,))|
(V) )] (92
o (max(1, 6 Y)]e” — 1|(d + ér) + pnloz)V(y) + malollz|
- aV(y) —p
_ max(1,67Y)[e” —1[(d + ér) + pnloll2] | peloll2|
o — % OZV(?J) —f

where h is defined in Theorem 2.3. If we choose |o| sufficiently small then the integral

of

2(max(1,86 1) ]e?® — 1|(d + 6r) + puyi|ol|z
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with respect to the law of z; is less than a. On the other hand the right hand side of

(62) is less than k(z) if |y| is sufficiently large such that

0< ! <2 L <1
a—pls T aVy) -8

We may now apply Theorem 2.3 to get the existence of a random attractor for tempered

sets for small enough o.

3.6 The Lorenz system with partially multiplicative noise

We now study (58) where the noise is described by the matrix A defined as follows
0 o 0
00 0}, cecR. (63)
000

The stationary homeomorphisms for this system are obviously given by

1 o0z O 1 —ozg 0O
®=|0 1 0|, ®'=|0 1 0],
0 0 1 0 0 1
u by
Y1+ 02Y9
u(z,y) = 0 ., z€R,yeR?’
0

We first show that

V() = 503+ (s~ 1)?)

is a Lyapunov type function for our system which ensures the existence of a non-random

closed noncompact absorbing set. In fact, we have:

(V) o)) <~ — olys — )V + o =—aV() + 5, (64)
(V7). oly) — (o) (22 folu(z.0)) =,

(VV(y), fily)) = 0,

where & = min(1, 2) and G = 72, These estimates lead us to the following auxiliary

result.
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Lemma 3.1 The set B = V—1(|0, 2r2)) is an absorbing closed but noncompact set.

In particular, this set is independent of w. In addition B is positively invariant with

respect to the flow x generated by (58), (63).

Indeed, the assertion is a straightforward consequence of (64).

Lemma 3.1 essentially states that the second and third components of the system
become bounded by a non-random constant as time elapses. Let us next use this fact
to construct a random attractor of our system. For the Lyapunov function defined in

(60) we have

(VV(y), (%)_l(za ) fr(u(z, )| = plozyys| < lollzlln] + 12lo]|2] |yl
and
(VV(y), foly) — (gg)_l(z: D fou(z,y)| = loz|[lryi + (d—1—orz) yiys + dyj

—y3(y + Y5 + oz yiys)|]

Therefore we can find constants ¢y, cy only depending on b,r,d, 6 such that for y in
C = {y € R? : d(y, B) < 1}, where d denotes the Euclidean distance from a point to a

closed set,

(V). foly) — (517 (2:.) folwlz ) — weAv)

< afloz|/(I +loz|)(1 + [ys]))V(y) + plozl|y]

< eof|oz|(1 + |oz)V (y) + ploz| [yl]- (65)

Now choose k(z) = %|oz|(1 + |0z|),z € R. Then by (61) and definition of V, the
following inequality holds for any y € C

o VIV ). fo(w) = hz.9)| _ aV(w) + ey
ROIVWVG), ROIEE) eV —F

so that an analogue of (29), in which the limsup is taken over C, obviously follows.

Hence the proof of Theorem 2.2 yields an absorbing set B which absorbs tempered
subsets of the deterministic set B. By Lemma 3.1 we can assume that this set is

contained in B.
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Now we introduce a universe of random sets as announced above. The system of
tempered sets in R? such that the (ys, y3)-projection is uniformly bounded in w will be
suitable. Let D(w) be such a set. Then there exists a t(D) > 0 independent of w such
that

x¢(0_w, D(6_w)) C B

for any t > t(D). Since
W = Xt(D)(eft(D)Wa D(eft(D)w))

is tempered (in particular with respect to the y;-direction) and the (y9, y3)-projection

is contained in B it follows that B(w) absorbs y,;(6_,w, D(0_,w)):
Xt (01w, D(0_w)) C Xt () (0 t+4(p)w, Xe(p) (01w, D(0_w)) N B) C B(w)

for sufficiently large t. Hence Theorem 0.1 applies and yields the existence of a global

random attractor for tempered sets.
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