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Abstract

We consider a dynamical system describing the diffusive motion of a particle
in a double well potential with a periodic perturbation of very small frequency,
and an additive stochastic perturbation of amplitude ε. It is in stochastic res-
onance if the solution trajectories amplify the small periodic perturbation in a
‘best possible way’. Systems of this type first appeared in simple energy balance
models designed for a qualitative explanation of global glacial cycles. Large de-
viations theory provides a lower bound for the proportion of the amplitude and
the logarithm of the period above which quasi-deterministic periodic behavior
can be observed. To obtain optimality, one has to measure periodicity with a
measure of quality of tuning. Notions of quality of tuning widely used in physics
such as the spectral power amplification or the signal-to-noise ratio depend on
the spectral properties of the averaged trajectories of the diffusion. We show
that these notions pose serious mathematical problems if the underlying system
is reduced to simpler Markov chain models on the finite state space composed
of the meta-stable states of the potential landscape in the limit of small noise.
As a way out of this dilemma we propose to measure the quality of periodic
tuning by the probability that transitions between the domains of attraction of
the potential wells happen during a parametrized time window maximized in the
window parameter. This notion can be investigated by means of uniform large
deviations estimates and turns out to be robust for the passage to dimension
reduced Markov chains.
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1 Background and paradigm

Usually speaking about noise we mean something that deteriorates the operation of a
system. In common language noise is understood as a disturbance, especially a random
and persistent disturbance, that obscures or reduces the clarity of a signal.

However, in nonlinear systems, in particular climate systems, the presence of noise
may play a very constructive role. This paper is devoted to a survey of mathematical
approaches to study systems displaying stochastic resonance (SR), in which an essen-
tially non-zero level of noise enhances the systems’ sensitivity and ability to recover
and amplify small periodic deterministic signals. In fact, in the example of the simple
model of the dynamics of glacial cycles in paleoclimate of the earth we shall discuss in
more detail below, only the appearance of noise forcing is able to reproduce qualita-
tively important features of transitions between different basic climate states such as
ice and warm ages.

It was no surprise that the phenomenon of stochastic resonance appearing in numer-
ous examples from electronics to biology (see [13]) was recently rediscovered in higher
dimensional climate systems by Ganopolski and Rahmstorf [14]. In the analysis of
the Greenland ice core record, the statistical properties of spontaneous intermediate
warmings which are commonly known as Dansgaard-Oeschger events, were found to
be consistent with stochastic resonance. It is observed that besides the meta-stable ice
and warm age temperature states with transition times around multiples of 104 − 105

years there is another meta-stable state at an intermediate temperature accessible from
the glacial state. Transition intervals cluster around integer multiples of 1500 years.
Ganopolski and Rahmstorf reproduce these observations by a simulation based on the
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Fig. 1: Record of the oxygen isotope concentration from the GRIP ice core. Dans-
gaard-Oeschger warm events are numbered [14].

CLIMBER coupled ocean-atmosphere model of moderate complexity established by the
Potsdam group. A stability analysis shows the existence of the intermediate metastable
state, and suitable small periodic and random excitations of the salinity balance of the
North Atlantic produce temperature curves with abrupt transitions of the observed
type. The empirical distribution of the interspike intervals (i.e. multiples of the basic
transition period) is seen to be a function of noise amplitude. Recent work by Paillard
[23] indicates that global temperature fluctuations beyond 106 years back in earth’s
history may be interpreted as noise induced transitions in tri-stable situations.
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Fig. 2: Interspike interval distribution (or waiting time between warm events) for ‘noise
only’ and ‘noise plus signal’ numerical experiments. The bottom chart represents a real
Greenland ice core record [14].

The paradigm of stochastic resonance emerged from papers by C. Nicolis [21] and
Benzi et al. [2, 3, 4]. The model they designed is based on the following observations.
Modern measurement techniques allow to determine ratios of oxygen isotope concen-
trations O18/O16 in deep sea core sediments which in turn provide rough estimates
of the global mean temperature of the earth at the time they were deposited. This
way at least seven changes between ‘cold’ and ‘warm’ periods were detected during
approximately the last 700,000 years. They occur spontaneously and abruptly with
surprisingly short relaxation times and with roughly the same period of about 105

years. The quoted papers aimed at suggesting a simple mathematical model to ac-
count for this deterministic-looking periodicity on the one hand, and for the intriguing
spontaneous transition mechanism on the other hand.

The proposed model just appeals to conservation of radiative energy and supposes
that the earth’s global temperature T satisfies a simple energy-balance equation (for
details see [16, 17]), i.e. the instant change of the global temperature is proportional
to the difference between incoming and outgoing radiative energy:

c
dT (t)

dt
= Q(t)(1− a(T (t)))− σT (t)4, c > 0. (1.1)

In the simplest case considered here it is assumed that the total energy flux emitted
by the earth is given by the Stefan–Boltzmann law valid for a black body radiator.

The absorbed energy depends on two factors. The global solar function Q(t) de-
scribes the flux of the solar energy which reaches the earth at time t. Assuming that
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the solar activity is a constant Q0, the function Q depends on the distance between
the earth and the sun as well as on the inclination of the earth’s axis, and due to the
gravitational influence of Jupiter exhibits a slow periodic variation of a period of about
105 years. The variation is estimated to be 0.1% of Q0. Thus we put

Q(t) = Q0 − b sinωt, b ≈ 0.001Q0, ω ≈ (2π105)−1[yr−1].

On the other hand, not all the solar radiation reaching the atmosphere is absorbed:
the proportion of absorbed radiation is determined by the earth’s albedo a which
depends locally on the earth’s average surface temperature T . The simple albedo
model employed here appears in the papers by Budyko [7] and Sellers [25], see Fig. 3
(l.). a(T ) is chosen to be a constant close to 1 for low temperatures T ≤ T . In this
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Fig. 3: Earth’s albedo (l.) and incoming and outgoing radiative energies (r.).

temperature regime all surface water is supposed to be frozen and to cover a big portion
of the planet by a bright ice layer making the reflection ratio relatively high. For high
temperatures T ≥ T the green-brown vegetation results in a low reflection ratio. In
the regime between T and T the function a(T ) is interpolated linearly.

Thus, the right hand side of (1.1) is a difference of two functions, see Fig. 3 (r.).
For appropriate values of parameters the dynamical system (1.1) has two meta-stable
equilibrium states T1 and T3 separated by the unstable state T2. The lower metastable
state T1 is interpreted as describing ice age temperatures whereas T3 determines warm
ages.

This model of climate has major shortcomings and therefore cannot picture reality.
Indeed, solutions of (1.1) converge to either T1 or T3 and oscillate with periods of 105

years with relatively small amplitudes, due to the smallness of b. Most importantly,
however, the typically observed spontaneous and rapid transitions between ‘cold’ and
‘warm’ states are impossible.

To overcome this difficulty C. Nicolis and Benzi et al. added a noise term to the
energy-balance equation (1.1) and obtained the following simple SDE for the global
temperature:

c
dT (t)

dt
= Q(t)(1− a(T (t)))− σT (t)4 +

√
εẆt, c > 0, (1.2)

where W is a standard one-dimensional Brownian motion and ε > 0. In this set-
ting, transitions between the meta-stable climate states become possible, and — most
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importantly — relaxation times are small (of the order 102 years) and much more
realistic.

In the one-dimensional setting of the system (1.2) one can always represent the drift
term as a gradient in the variable T of some potential function U , i.e. we can find U
such that

−∂U(T, t)
∂T

= Q(t)(1− a(T (t)))− σT (t)4.

Of course, the potential depends on time. Fig. 4 shows the incoming and outgoing
radiation, their difference, and the corresponding potential function at times when
the solar constant takes its minimum (left column) and maximum (right column). In
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Fig. 4: The drifts of (1.2) and the corresponding potentials at times when the solar
constant takes its minimum (l.) and maximum (r.).

terms of the potential U , equation (1.2) describes the dynamics of an overdamped
Brownian particle in a double well potential, where the minima of the potential wells
correspond to the ‘cold’ and ‘warm’ global temperatures. The depths of the potential
wells vary periodically in time, and the left well is deeper for approximately 5 × 104

years. Clearly, this periodic and deterministic variation of the wells’ depths is the most
important feature of the potential U .

2 Periodically hopping potentials and the defect of

spectral resonance notions

To catch the essentials of the effect and at the same time to simplify the problem
we will work in the first part of this paper with a time-space asymmetric double well
potential switching discontinuously between two states. In the second part we will
essentially extend this framework to include continuously varying potentials. In the
strip (x, t) ∈ R× [0, 1) it is defined by the formula

U(x, t) =

{
U1(x), t ∈ [0, 1

2
),

U2(x) = U1(−x), t ∈ [ 1
2
, 1).

(2.1)
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Fig. 5: Time-periodic potential U .

It is periodically extended for all times t by the relation U(·, t) = U(·, t+1), see Fig. 5.
We assume that the potential has two local minima at ±1 and a local maximum at 0,
that U1(−1) = −V

2
, U1(1) = − v

2
, 2
3
< v

V
< 1, and U1(0) = 0. We also suppose that the

extrema of U are not degenerate, i.e. the curvatures at these points do not vanish.
A trajectory of a Brownian particle in this potential is described by the SDE

dXε,T
t = −U ′(Xε,T

t ,
t

T
) dt+

√
ε dWt, Xε,T

0 = x ∈ R, (2.2)

where ε > 0 is the noise intensity, and T > 0 the period.
The problem of finding an intensity characterizing stochastic resonance now consists

in determining an optimal tuning ε = ε(T ), i.e. the noise intensity for which the
trajectories Xε,T look ‘as periodic as possible’. Of course, in these terms stochastic
resonance is a rather unprecise concept. To make it precise at least requires measuring
periodicity in diffusion trajectories.

2.1 Freidlin’s quasi-deterministic periodic response

Using large deviations theory, M. Freidlin [11] explains periodicity as a quasi-determi-
nistic property of diffusion trajectories for very large period lengths.

Consider, for example, a Brownian particle in the time homogeneous double well
potential U1 described by the SDE

dXε
t = −U ′1(Xε

t ) dt+
√
ε dWt. (2.3)

For small ε, this stochastic system can be considered as a small white noise perturbation
of the deterministic dynamical system ẋ = −U ′1(x). The Freidlin-Wentzell theory of
large deviations [12] allows to study asymptotic properties of (2.3) as ε→ 0 in terms of
the geometric properties of the potential U1. It is intuitively clear that for small noise
intensities the sample paths of (2.3) spend most of the time in small neighborhoods
of the meta-stable states ±1. Jumps between the wells occur, but very rarely. The
probability of these transitions can be estimated in terms of the so-called quasipotential
which measures the work to be done by the diffusion in order to travel between different
points in the potential landscape. Let, for instance, X ε

0 = −1 and x belong to the left
well. Then the quasipotential V (−1, x) can be found explicitly and equals 2(U1(x) −
U1(−1)) and thus twice the height of the potential barrier between −1 and x. If x
belongs to the right well and 0 < x ≤ 1, then V (−1, x) = 2(U1(0)−U1(−1)). Only the
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way ‘up’ in the potential landscape contributes to the quasipotential; the way ‘down’
requires no work and is free. Quasipotentials are defined for rather general classes of
stochastic systems by means of action functionals, for details see [12].

Let us define the first entrance time

τy(X
ε) = inf{t ≥ 0 : Xε

t = y}.
Then the quasipotential at x and y determines the exponential order of τy(X

ε) if the
diffusion starts in x (under the law Px) in the limit of small noise, see [12, 11].

Theorem 2.1 (‘transition law’) For all δ > 0 the following holds:

lim
ε↓0

Px(e
1
ε
(V (x,y)−δ) < τy(X

ε) < e
1
ε
(V (x,y)+δ)) = 1.

The most important statement of the theorem is that the system (2.3) has two
exponentially different intrinsic time scales: the exit time from the left well is of the
order eV/ε whereas the exit time from the right well of the order ev/ε. This results in
the following observation: if we consider the trajectories of (2.3) on the exponentially
long time intervals Tε ∝ eω/ε, then for 0 < ω < v the trajectory typically does not
leave its initial well, and for ω > v it spends most of its time near −1 (in probability).
In other words, on the different time scales the system (2.3) has different meta-stable
states.

This description of meta-stable behaviour can be transferred to the time inhomoge-
neous system (2.2). Let the period T = Tε be such that limε↓0 ε lnTε = ω > 0. Then
for ω < v the diffusion does not have enough time to leave even the shallow well during
one half period, and therefore, as in the time homogeneous case, does not leave its
initial well. However, if ω > v, a new effect appears.

Theorem 2.2 (Freidlin, [11]) Let the process Xε,T satisfy (2.2), and

lim
ε↓0

ε lnTε > v. (2.4)

Then for all A > 0 and δ > 0 the following holds true:

Λ{t ∈ [0, A] : |Xε,T
Tεt
− φ(t)| > δ} → 0

in Px-probability as ε→ 0, where Λ{·} denotes Lebesgue measure on R, and

φ(t) =

{
−1, t (mod 1) ∈ [0, 1

2
),

1, t (mod 1) ∈ [ 1
2
, 1),

(2.5)

is the coordinate of the global minimum of U(·, t), see Fig. 6.
Theorem 2.2 suggests one possible measure of periodicity of diffusion trajectories:

take the Lebesgue measure of those times the trajectories spend outside of a δ-tube
around the deterministic discontinuous periodic function φ. Condition (2.4) on period
Tε and noise intensity ε provides a family of tunings, without, however, suggesting an
optimal one to determine the resonance point. This is illustrated by Fig. 6 (r.) which
clearly suggests that for large Tε excursions to the ‘wrong’ well are not very long but
frequent and destroy a periodic picture.
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Fig. 6: On time intervals satisfying condition (2.4) the diffusion X ε,T is close to the
deterministic periodic function φ.

2.2 Spectral power amplification

The coefficient of spectral power amplification (SPA) is one of the physicists’ favorite
measures to measure periodicity of random trajectories, see e.g. [4, 20, 8, 13, 1, 26]. It
is based on the power spectrum of the average trajectories of the diffusion (2.2) with
respect to equilibrium and, even in the simple setting chosen, has serious defects when
compared to an analogous notion for the dimension reduced Markov chain describing
the effective dynamics, i.e. its interwell dynamics, the hopping between the two meta-
stable states, while neglecting the intrawell small fluctuations. The SPA coefficient is
defined by

ηX(ε, T ) =

∣∣∣∣
∫ 1

0

Eµ(X
ε,T
Ts ) · e2πis ds

∣∣∣∣
2

. (2.6)

The function ηX having noise intensity and the period of time variation of the potential
as arguments has a clear physical meaning. It shows how much energy is carried by
the averaged path of the diffusion with noise amplitude ε on the frequency 2π

T
. The

expectation Eµ indicates that averages are taken with respect to the time-periodic
equilibrium measure of Xε,T . This will be explained in detail later.

Fig. 7 borrowed from [1] where Ω corresponds to our 2π
T

and D to the diffusion inten-
sity ε shows that physicists expect a local maximum of the function ε 7→ ηX(ε, ·). The
random paths have their strongest periodic component at the value of ε for which the
maximum is taken. In fact, Fig. 7 depicts not the SPA coefficient of the diffusion itself,
but of its so-called ‘effective dynamics’. It is a priori believed in the physical literature
that the effective dynamics adequately describes the properties of the diffusion in the
limit of small noise.

To determine the ‘optimal tuning’ or stochastic resonance point if periodic tuning
is measured by SPA means to find the argument ε = ε(T ) of a local maximum of
ε 7→ ηX(ε, ·).

The key to the solution of this problem lies in determining the time-dependent
invariant density µ of (Xε,T

T t )t≥0. From now on we follow [24] and [19]. Although
the diffusion is not time homogeneous, by enlarging its state space we can consider a
two-dimensional time homogeneous Markov process (Xε,T

T t , t (mod 1)) which possesses
an invariant law in the usual sense. By definition we identify the time-dependent
equilibrium density µ of (Xε,T

T t )t≥0 with the invariant density of the two-dimensional
process. Indeed, with respect to µ and for fixed t, the law of the real random variable
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Fig. 7: SPA coefficient as a function of noise amplitude has a well pronounced maximum
depending on the frequency of periodic perturbation [1].

Xε,T
T t has the density µ(·, t (mod 1)). The invariant density µ is a positive solution of

the forward Kolmogorov (Fokker–Planck) equation A∗ε,Tµ = 0, where

A∗ε,T · = −
1

T

∂

∂t
·+ε

2

∂2

∂x2
·+ ∂

∂x

(
· ∂
∂x
U

)

is the formal adjoint of the infinitesimal generator of the two-dimensional diffusion.
Moreover, from the time periodicity and time-space antisymmetry of the potential U
(2.1) one concludes that µ(x, t) = µ(−x, t+ 1

2
) and µ(x, t) = µ(x, t+1), (x, t) ∈ R×R+.

This results in the following boundary-value problem used to determine µ. It is
enough to solve the Fokker–Planck equation A∗ε,Tµ = 0 in the strip (x, t) ∈ R × [0, 1

2
]

with boundary condition µ(x, 0) = µ(−x, 1
2
), x ∈ R.

2.3 The spectral gap

We have assumed in (2.1) that the time dependent potential U is a step function of
the time variable. In the region (x, t) ∈ R× (0, 1

2
) it is identical to a time independent

double well potential U1, and therefore the Fokker–Planck equation turns into a one-
dimensional parabolic PDE

1

T

∂

∂t
µ(x, t) =

ε

2

∂2

∂x2
µ(x, t) +

∂

∂x

(
µ(x, t)

∂

∂x
U1(x)

)
. (2.7)

Let L∗ε denote the second order differential operator appearing on the right hand side
of (2.7).

To determine µ we shall use the Fourier method of separation of variables which
consists in expanding the solution of (2.7) into a Fourier series with respect to the
system of eigenfunctions of the operator L∗ε. It turns out that under the condition
that U1 is smooth and increases at least super-linearly at ±∞, the operator L∗ε is

essentially self-adjoint in L2(R, e 2U1
ε dx), its spectrum is discrete and non-positive, and

the corresponding eigenspaces are one-dimensional. Denoting by ‖ · ‖ and 〈·, ·〉 the

norm and the inner product in L2(R, e 2U1
ε dx) we consider the following formal Floquet

type expansion

µ(x, t) =
∞∑

k=0

ak
Ψk(x)

‖Ψk‖
e−Tλkt, (x, t) ∈ R× [0, 1

2
], (2.8)
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where {−λk, Ψk

‖Ψk‖
}k≥0 is the orthonormal basis corresponding to the spectral decom-

position of L∗ε, where λ0 < λ1 < λ2 < · · · , and the Fourier coefficients ak are obtained
from the boundary condition µ(x, 0) = µ(−x, 1

2
), x ∈ R.

Here is the key observation opening the route towards finding local maxima of the
SPA coefficient. The terms in the sum (2.8) decay in time exponentially fast with rates
λk, and therefore the terms corresponding to larger eigenvalues contribute less than
the ones belonging to the low lying eigenvalues. This underlines their key importance.
Fortunately, in the case of a double well potential the following theorem holds.

Theorem 2.3 (‘spectral gap’) In the limit of small noise, the following asymptotics
holds:

λ0 = λ0(ε) = 0, and Ψ0 = e−
2U1

ε ,

λ1 = λ1(ε) =
1

2π

√
U ′′1 (1)|U ′′1 (0)| · e−v/ε(1 +O(ε)),

λ2 = λ2(ε) ≥ C > 0 uniformly in ε.

The result of Theorem 2.3 plays a crucial role in our analysis. There is a spectral
gap between the first eigenvalue and the rest of the spectrum. Consequently, only the
first two terms of (2.8) can have an essential contribution to the SPA coefficient ηX .

2.4 Asymptotics of the SPA coefficient

The following theorem gives the asymptotics of the first two Fourier coefficients a0 and
a1 in the Floquet type expansion of the previous subsection.

Theorem 2.4

a0 = ‖Ψ0‖,

a1 =
‖Ψ1‖
‖Ψ0‖2

· 〈Ψ0(−·),Ψ1〉
‖Ψ1‖2 − e−

1
2
Tλ1〈Ψ1(−·),Ψ1〉

+ r

where r vanishes in the limit of small noise and for T ≥ exp {(v + δ)/ε}, δ being
positive and sufficiently small.

Recall the definition (2.6) of the SPA coefficient. Denote

SX(ε, T ) =

∫ 1
2

0

EµX
ε,T
Ts · e2πis ds. (2.9)

Then we identify ηX = 4|SX |2.

Theorem 2.5 Let T ≥ exp {(v + δ)/ε} for δ positive and sufficiently small. Then the
following expansion for SX holds in the small noise limit ε→ 0

SX =
1

πi
b0 +

1

πi− 1
2
λ1T

b1 + r1
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where the rest term r1 tends to zero and the coefficients are given by

b0 =

∫
y e−

2U1(y)
ε dy

∫
e−

2U1(y)
ε dy

,

b1 = −
1 + e−

1
2
Tλ1

2
·
∫
yΨ1(y) dy

∫
e−

2U1(y)
ε dy

· 〈Ψ0(−·),Ψ1〉
‖Ψ1‖2 − e−

1
2
Tλ1〈Ψ1(−·),Ψ1〉

.

Finally,

ηX = b20
4

π2
(λ1T )

2

4π2 + (λ1T )2
+R. (2.10)

where R tends to zero with ε.

Let us now study the resonance behaviour of the SPA coefficient ηX , i.e. investigate
whether it has a local maximum in ε. We formulate the following Lemma which
is obtained by application of Laplace’s method of asymptotic expansion of singular
integrals, see [10, 22] or also [24, 19].

Lemma 2.6 (‘Laplace’s method’) In the small noise limit, the following holds true:

b0 = −1−
1

4

U
(3)
1 (−1)
U ′′1 (−1)2

ε+O(ε2),

b1 = −1 +O(ε),

and consequently

b20 = 1 +
1

2

U
(3)
1 (−1)
U ′′1 (−1)2

ε+O(ε2), (2.11)

(b0 − b1)
2 = O(ε2).

The following Theorem exhibits the defect of the notion of spectral power amplifi-
cation for our diffusions in periodically and discontinuously switching potential states.

Theorem 2.7 Let us fix δ positive and sufficiently small and ∆ > v + δ. Let also
U1(x)− 2U1(−x) < v+V for all x ∈ R (no strong asymmetry!). Then for T →∞ and
ε from the domain

v + δ

lnT
≤ ε ≤ ∆

lnT
(2.12)

the following asymptotic expansion for the SPA coefficient holds:

ηX(ε, T ) =
4

π2

(
1 +

1

2

U
(3)
1 (−1)
U ′′1 (−1)2

ε

)
+O

(
1

ln2 T

)
.

This result has the following surprising consequences.

11



Corollary 2.8 For T → ∞ and ε ∈ [ v+δ
lnT

, ∆
lnT

] the SPA coefficient is a decreasing

function of ε if U
(3)
1 (−1) < 0 and an increasing function of ε if U

(3)
1 (−1) > 0.

Thus, the SPA coefficient as quality measure for tuning shows no resonance in a
domain above Freidlin’s threshold for quasi-deterministic periodicity (Theorem 2.2).
This contradicts the physical intuition for the ‘effective dynamics’. The reason for this
surprising phenomenon can only be hidden in the intrawell behaviour of the diffusion
neglected when passing to the reduced Markov chain. We return to this question later.
Let us next study mathematically the ‘effective dynamics’ of the diffusion (2.2).

2.5 The ‘effective dynamics’: two-state Markov chain

The idea of approximation of diffusions in potential landscapes by appropriate finite
state Markov chains in the context of stochastic resonance was suggested by Eckmann
and Thomas [9], and C. Nicolis [21], and developed by McNamara and Wiesenfeld [20].
In this section we follow [24, 19]. The discrete time case was studied in [18].

In order to catch the main features of the spatial interwell hoppings of the diffusion
(2.2) we consider the time inhomogeneous Markov chain Y ε,T living on the diffusion’s
meta-stable states ±1. The infinitesimal generator of Y ε,T is periodic in time and is
given by

Qε,T (t) =





(
−ϕ ϕ

ψ −ψ

)
, t

T
(mod 1) ∈ [0, 1

2
),

(
−ψ ψ

ϕ −ϕ

)
, t

T
(mod 1) ∈ [1

2
, 1).

(2.13)

The transition rates ϕ and ψ which are responsible for the similarity of the two processes
are chosen to be exponentially small in ε:

ϕ =
1

2π

√
U ′′1 (−1)|U ′′1 (0)| · e−V/ε and ψ =

1

2π

√
U ′′1 (1)|U ′′1 (0)| · e−v/ε.

To exponential order they correspond (as they should) to the inverses of the Kramers’
transition times (see Theorem 2.1). The invariant measure of Y ε,T

T t can be obtained as
a solution of a forward Kolmogorov equation and is given by

ν−(t) =
ψ

ϕ+ ψ
+
ϕ− ψ

ϕ+ ψ

e−(ϕ+ψ)Tt

1 + e−
1
2
(ϕ+ψ)Tt

,

ν+(t) =
ϕ

ϕ+ ψ
− ϕ− ψ

ϕ+ ψ

e−(ϕ+ψ)Tt

1 + e−
1
2
(ϕ+ψ)Tt

, t ∈ [0, 1
2
],

(2.14)

and ν±(t) = ν∓(t+ 1
2
) for t ≥ 0.

We define the SPA coefficient ηY for the Markov chain Y ε,T analogously to (2.6). In
this much simpler setting given it can be described explicitly.

Theorem 2.9 For all ε > 0 and T > 0 the following holds:

ηY (ε, T ) =
4

π2
T 2(ϕ− ψ)2

4π2 + T 2(ϕ+ ψ)2
. (2.15)
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ηY (ε, T )

Fig. 8: SPA coefficient ηY of the two-state Markov chain.

Compare (2.15) with (2.10). Since (ϕ±ψ)2 ≈ λ21 in the limit of small ε, the formulae for
ηX and ηY differ only in the ‘geometric’ pre-factor b20 and the asymptotically negligible
rest term R.

The explicit formula (2.15) allows to study the local maxima of ηY as a function of
noise intensity for large periods T in great detail (see Fig. 8).

Theorem 2.10 In the limit T → ∞ the function ε 7→ ηY (ε, T ) has a local maximum
at

ε(T ) ≈ v + V

2

1

lnT
,

or in terms of T

T (ε) ≈ π√
2pq

√
v

V − v
e

V +v
ε .

The ‘resonance’ behaviors of ηX and ηY are quite different. Whereas the diffusion’s
SPA has no extremum for small ε, the Markov chain’s always has. What can be re-
sponsible for this discrepancy? Note that the Markov chain mimicks only the interwell
dynamics of the diffusion. Thus, the SPA coefficient ηY measures only the spectral
energy contributed by interwell jumps. On the other hand, ηX also counts the nu-
merous intrawell fluctuations of the diffusion the weight of which evidently becomes
overwhelming in the small noise limit. These fluctuations have small energy. But since
the diffusion spends most of its time near ±1 the local asymmetries of the potential at
these points dominate the picture and destroy optimal tuning.

To underpin this heuristics mathematically, let us now make the idea of neglecting
the diffusion’s intrawell fluctuations precise. For example, we cut off those among
them which have not enough energy to reach half the height of the potential barrier
between the wells. Consider the cut-off function g defined by

g(x) =





−1, x ∈ [x1, x2],

1, x ∈ [y1, y2],

x, otherwise,

13



where x1 < −1 < x2 < 0 and 0 < y1 < 1 < y2 are such that U1(x1) = U1(x2) = −V
4

and U1(y1) = U1(y2) = −v
4
, see Fig. 9. Now we study the modified SPA coefficient of

−1 1 x

g(x)

−1

1

x1 x2 y1 y2

Fig. 9: Function g designed to cut off diffusion’s intrawell dynamics.

a diffusion defined by

η̃X(ε, T ) =

∣∣∣∣
∫ 1

0

Eµ

[
g(Xε,T

Ts )
]
e2πis ds

∣∣∣∣
2

.

Following the steps of Subsection 2.4 we obtain a formula for η̃X which is quite
similar to (2.10) and (2.15):

η̃X(ε, T ) = b̃20
4

π2
(λ1T )

2

4π2 + (λ1T )2
+ R̃,

where R̃ is a small remainder term, and

b̃20 =

(∫
g(y)e−

2U1(y)
ε dy

∫
e−

2U1(y)
ε dy

)2
= 1− 4

√
U ′′1 (−1)
U ′′1 (1)

e−
V−v

ε (1 +O(ε))

(compare to (2.11)).

The modified geometric pre-factor b̃20 is essentially smaller than its counterpart b20.
This has crucial influence on the SPA coefficient η̃X : in the limit of large period and
small noise its behavior now reminds of ηY .

Theorem 2.11 Let the assumptions of Theorem 2.7 hold. Then for any γ > 1 in the
limit T →∞ the function ε 7→ η̃X(ε, T ) has a local maximum on

[
1

γ

v + V

2

1

lnT
, γ
v + V

2

1

lnT

]
.

In other words, the optimal tuning for the measure of goodness η̃X exists and is given
approximately by

ε(T ) ≈ v + V

2

1

lnT
.
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2.6 Two-state Markov chain: different measures of quality of
tuning

In this section we consider further measures of periodic tuning of the random trajec-
tories of the two-state Markov chain Y ε,T with generator (2.13). These measures are
based on the analysis of the invariant law of Y ε,T determined in (2.14). Due to the
simplicity of the stochastic processes we face, they can be explicitly calculated, and
their maxima resp. minima can be obtained rather easily. As seen above, Theorems 2.2
and 2.13 provide lower bounds for the exponential rates T (ε) above which in the small
noise limit ε→ 0 the randomly perturbed system produces trajectories with periodicity
properties. Our results for the Markov chain all agree with this bound and determine
the exact rates of growth for T (ε) as ε→ 0 along with pre-factors. Given the discussion
just completed, it should not be very surprising that they lead to critical tunings of
optimal response, i.e. resonance points, which differ from the SPA resonance point,
and eventually even differ among themselves. These measures have not yet been in-
vestigated in the diffusion framework. A comparison with their diffusion versions will
very likely produce similar discrepancies as for the SPA coefficients discussed. For a
detailed exposition of the results including their elementary proofs see Pavlyukevich
[24].

2.6.1 Signal-to-Noise Ratio

A most prominent physical quality measure is known under the name Signal-to-Noise
Ratio (SNR). It is defined an the ratio of spectral energy carried by the random output
to energy carried by noise. Formally, it is given by

SNR(ε, T ) =
1

ε2

∣∣∣∣
∫ 1

0

Eν(Y
ε,T
Ts ) · e2πis ds

∣∣∣∣
2

=
ηY (ε, T )

ε2
.

In the following Theorem we describe the local maximum of SNR in ε.

Theorem 2.12 In the limit T →∞ the function ε 7→ SNR(ε, T ) has a local maximum
at

ε(T ) ≈ v

lnT
,

or in terms of T

T (ε) ≈ π
√
v

q
√
ε
e

v
ε .

As we see, for the SNR the optimal noise level is smaller.

2.6.2 Out-of-Phase measure

Another interesting quality measure is obtained by taking an averaged variant of Frei-
dlin’s measure considered in Theorem 2.2. Indeed, the approach by Freidlin [11] is

15



valid for a quite general class of stochastic systems. Theorem 2.2 describes the quasi-
deterministic periodic response of the diffusion. In this theorem periodic tuning is
quantified by the Lebesgue measure of the time spent by the trajectory outside of
some neighborhood of the minimum of the deep well. Hence in case of the Markov
chain it describes the total amount of time spent in the ‘wrong’ place.

Theorem 2.13 ([11]) For ε > 0, let the period T = Tε be such that

lim
ε→0

ε lnTε = ω > 0,

let the function φ(t) be defined by (2.5), and Λ denote Lebesgue measure on [0, 1]. Then,
if ω > v,

Λ(t ∈ [0, 1] : Y ε,T
Tεt

6= φ(t))→ 0 (2.16)

in probability as ε→ 0.

We now consider the Lebesgue measure given by (2.16) as a function of ε and T

Λ(ε, T ) = Λ(t ∈ [0, 1] : Y ε,T
T t 6= φ(t)).

Note that Λ(ε, T ) is a random variable. We introduce the out-of-phase measure by

d(ε, T ) = EνΛ(ε, T ) = Eν

∫ 1

0

I(Y ε,T
Ts 6= φ(s)) ds.

The out-of-phase measure describes how much time on average the Markov chain
spends in the ‘wrong’ state.

Theorem 2.14 a) The out-of-phase measure is given by

d(ε, T ) =
1

ϕ+ ψ

[
ϕ− 1

T

ϕ− ψ

ϕ+ ψ
tanh

T (ϕ+ ψ)

2

]
.

b) For T large enough, ε 7→ d(ε, T ) has a local minimum. The optimal tuning rate
at which this minimum is attained is given by

ε(T ) ≈ V

lnT
,

or in terms of T

T (ε) ≈ 1

p

v

V − v
e

V
ε

Remark 2.15 The out-of-phase measure can be rewritten as

d(ε, T ) =
1

4

∫ 1

0

Eν(Y
ε,T
Ts − φ(s))2 ds.

This expression represents the mean square deviation of Y ε,T from the deterministic
function φ describing the energetically most favorable place in the potential landscape
as a function of time.
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2.6.3 Relative entropy

Let us introduce the time dependent Dirac mass δφ(t) in φ(t) for t ≥ 0, with φ according
to (2.5). We have δφ(t) = φ−(t)δ−1+φ

+(t)δ1, where φ
−(t) = 1, φ+(t) = 0 if t (mod 1) ∈

[0, 1
2
) and φ−(t) = 0, φ+(t) = 1 if t (mod 1) ∈ [ 1

2
, 1). The measure thus defined has full

mass in the position of the minimum of the deep well as a function of time.
The notion of quality of periodic tuning we next consider is the relative entropy of

the invariant measure νε,T with respect to δφ, and is formally given by

Hφ|ν(ε, T ) =

∫ 1

0

∑

α=+,−

φα(s) ln
φα(s)

ναε,T (s)
ds.

The point of optimal tuning for relative entropy is given by minimization this time, and
corresponds to exponential order to the one described by the Out-of-Phase measure.

Theorem 2.16 a) The relative entropy is explicitly given by

Hφ|ν(ε, T ) = − ln
ψ

ϕ+ ψ
+

1

T (ϕ+ ψ)

[
Li2

(
ψ − ϕ

ψ

e−T (ϕ+ψ)

1 + e−T (ϕ+ψ)

)
− Li2

(
ψ − ϕ

ψ

1

1 + e−T (ϕ+ψ)

)]
,

where Li2(x) is the dilogarithm function defined by Li2(x) =
∫ 0
x
ln (1−y)

y
dy, x ≤ 1.

b) For T large enough, ε 7→ Hφ|ν(ε, T ) has a local minimum, and an optimal tuning
rate is given by

T (ε) ≈ π2

6p

v

V − v
e

V
ε

or in terms of ε

ε(T ) ≈ V

lnT
.

2.6.4 Entropy

The entropy of the invariant measure ν±ε,T at time t ∈ [0, 1] is given by

Ht(ε, T ) = −ν−ε,T (t) ln ν−ε,T (t)− ν+ε,T (t) ln ν
+
ε,T (t), t ∈ [0, 1].

With its help we may define the entire entropy of ν±ε,T by

H(ε, T ) =

∫ 1

0

Hs(ε, T ) ds.

The following Theorem quantifies the entire entropy explicitly, and asymptotically
characterizes its minimum as the point of optimal tuning corresponding to this measure.
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Theorem 2.17 a) The entire entropy of νε,T is given by (see Fig. 10)

H(ε,T ) = ln (ϕ+ ψ)− ϕ lnϕ+ ψ lnψ

ϕ+ ψ

+
ϕ

T (ϕ+ ψ)2

[
Li2

(
ϕ− ψ

ϕ

1

1 + e−T (ϕ+ψ)

)
− Li2

(
ϕ− ψ

ϕ

e−T (ϕ+ψ)

1 + e−T (ϕ+ψ)

)]

+
ψ

T (ϕ+ ψ)2

[
Li2

(
ψ − ϕ

ψ

1

1 + e−T (ϕ+ψ)

)
− Li2

(
ψ − ϕ

ψ

e−T (ϕ+ψ)

1 + e−T (ϕ+ψ)

)]
,

where Li2(x) is the dilogarithm function, Li2(x) =
∫ 0
x
ln (1−y)

y
dy, x ≤ 1.

b) For T large enough H(ε, T ) always has a local minimum, and an optimal tuning
rate is given by

T (ε) ≈ π2

6p

vε

(V − v)2
e

V
ε ,

or in terms of ε

ε ≈ V

lnT
.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

H(ε, T )

ε

0

Fig. 10: The entire entropy of the invariant measure of the two-state Markov chain as
a function of noise intensity.

The measures of quality studied here can be subdivided into two groups. The SPA
coefficient and the SNR belong to the first group. They are based on the interpretation
of the Markov chain as a random amplifier and depend on the spectral properties of
the averaged output. The key result which may seem counterintuitive is as follows:
an optimal transfer of a deterministic periodic signal through a random system is not
guaranteed by the elimination of noise, but rather by tuning it in on some essentially
non-zero intensity level.

The same result holds for the second group of measures which can be seen as mea-
sures of stabilization. Indeed, the out-of-phase measure and the relative entropy de-
termine the deviation of the random output from a deterministic function φ. Again,
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increasing the noise makes the random output less random. The final measure — the
entropy of the invariant measure of the process — is, roughly speaking, the measure
of randomness. The bigger the entropy, the more chaotic is the system. The fact that
non-zero noise minimizes the entropy is a very good example of noise-induced order.

It is interesting to note that if the exponential rate is v, i.e. corresponds to the depth
of the shallow well, then the pre-factors contain only the parameter q, which stands
for the geometry of the shallow well. Analogously, if T (ε) ∼ eV/ε, then the pre-factor
of the optimal tuning rate only contains p, the geometrical factor of the deep well, and
not q. The only exception is the SPA coefficient ηY whose optimal tuning rate contains
all parameters of the system.

3 Smooth periodic potentials and a robust reso-

nance notion

The serious defect of the SPA coefficient in the prediction of the stochastic resonance
point in the Markov chain models containing the effective dynamics of complex diffusion
models motivated us to look for robust notions of quality of periodic tuning. Since the
dynamics of the Markov chain only retains the rough mechanism of transitions between
the domains of attraction given in the underlying potential landscape, such a notion
should only take into account the most important aspects of the attractor hopping.
Also, as the alternative notions discussed in the preceding section show, the resonance
point is by no means a canonical object, independent of the way tuning quality is
measured. We think that the methods of advanced large deviations’ theory behind the
notion to be explained in this section will give it a more natural place, and possibly
qualify it as canonical.

At the same time, we essentially generalize the simplified model of time periodic
potential considered in the previous section, and lift the study of stochastic resonance
to a somewhat more abstract level. The potential function U in the present section
will still be supposed to be one-dimensional in space. But its periodic time variation
will just be assumed to be continuous, and otherwise quite general. More precisely,
we study diffusion processes driven by a Brownian motion of intensity ε given by the
stochastic differential equation

dXε,T
t = −U ′(Xε,T

t ,
t

T
) dt+

√
ε dWt, t ≥ 0.

The underlying potential landscape (see Fig. 11) is described by a function U(x, t),
x ∈ R, t ≥ 0, which is periodic in time with period 1, and its temporal variation, by
the rescaling with very large T , acts on the diffusion at a very small frequency. U is
supposed to have exactly two wells located at ±1, separated by a saddle at 0. The
depth of U(·, t) at ±1 is given by the 1-periodic depth functions 1

2
D±1(t) which are

assumed to never fall below zero. If we look at time scales T = eω/ε, Freidlin’s theory
of quasi-deterministic motion explained in Section 2.1 indicates that transitions e.g.
from the domain of attraction of −1 to the domain of attraction of 1 will occur as soon
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Fig. 11: Potential landscape U .

as D−1 gets less than ω, i.e. at time

a±1ω = inf{t ≥ 0 : D±1(t) ≤ ω}.
This triggers periodic behavior of the diffusion trajectories on long time scales. The
modern theory of meta-stability in time homogeneous diffusion processes produces the
exponential decay rates of transition probabilities between different domains of attrac-
tion of a potential landscape together with very sharp multiplicative error estimates,
uniformly on compacts in system parameters. Their sharpest forms are presented in
some very recent papers by Bovier et al. [5, 6]. We use this powerful machinery in order
to obtain very precise estimates of the exponential tails of the laws of the transition
times between domains of attraction. To this end, we have to extend the estimates by
Bovier et al. [6] to the framework of time inhomogeneous diffusions. In the underly-
ing one-dimensional situation, this can be realized by freezing the time dependence of
the potential on small time intervals to define lower and upper bound time homoge-
neous potentials not differing very much from the original one. Comparison theorems
are used to control the transition behavior from above and below through the cor-
responding time homogeneous diffusions. This allows very precise estimates on the
probabilities with which the diffusion at time scale T = eω/ε transits from the domain
of attraction of −1 to the domain of attraction of 1 or vice versa within time windows
[(aω − h)T, (aω + h)T ] for small h > 0. If τx(X

ε,T ) denotes the transit time to x, it is
given by

lim
ε→0

ε ln (1−M(ε, ω)) = max
i=±1

{
ω −Di(a

i
ω − h)

}
,

with

M(ε, ω) = min
i=±1

Pi(τ−i(X
ε,T ) ∈ [(aiω − h)T, (aiω + h)T ]), ε > 0, ω ∈ IR,

and where IR is the resonance interval, i.e. the set of scale parameters for which trivial
or chaotic transition behavior of the trajectories is excluded. The stated convergence is
uniform in ω on compact subsets of IR. This allows us to take M(ε, ω) as our measure
of periodic tuning, compute the scale ω0(h) for which the transition rate is optimal,
and define the stochastic resonance point as the eventually existing limit of ω0(h) as
h → 0. This resonance notion has the big advantage of being robust for the passage
from the diffusion to the two state Markov chain describing the effective dynamics.

20



3.1 Transition times for the Markov chain

Let us first discuss the effective dynamics modelled by a continuous time two state
Markov chain. The states represent the positions of the bottoms of the wells of the
double well potential. The transition rates picture the transition mechanism of the
diffusion to which we return later. We shall first define the interval of time scales for
which transitions are not trivial.

3.1.1 Definition of the resonance interval

Let us consider the time continuous Markov chain Y ε,T = (Y ε,T
t )t≥0 taking values in

the state space {−1, 1} with initial data Y ε,T
0 = −1. Suppose that the infinitesimal

generator is given by

Gε,T (t) =

(
−ϕ( t

T
) ϕ( t

T
)

ψ( t
T
) −ψ( t

T
)

)
,

where T is an exponentially large time scale (we assume that T = eω/ε, ω > 0), ψ and ϕ
are 1-periodic functions describing a rate which just produces the transition dynamics
of the diffusion between the potential minima ±1. Let us recall that, if we consider
some time-independent potential U then the mean transition time between the wells
is given by Kramers’ law. If the diffusion starts in the minimum of one well, the mean
exit time is equivalent to eV/ε, where V

2
is the height of the barrier separating the two

minima of the potential. Consequently the transition rate should be proportional to
e−V/ε.

In the framework we now consider the depth of the wells depends continuously on
time. In this situation it is natural to consider the following periodic infinitesimal
probabilities

ϕ(t) = e−D−1(t)/ε, t ≥ 0. (3.1)

Let us assume that D1(t) = D−1(t+ α), t ≥ 0, with phase shift α ∈]0, 1[ and

- all local extrema of D±1(·) are global;

- the functions D±1(·) are strictly monotonous between the extrema.

Hence ψ(t) = ϕ(t+ α), t ≥ 0, and

ψ(t) = e−D1(t)/ε, t ≥ 0. (3.2)

Let us define S−1 to be the normalized time of the first jump from the state −1 to 1,
i.e. S−1 = inf{t ≥ 0 : Y ε,T

tT = 1} Analogously, S1 will be the time of first jump from
state 1 to −1, starting with Y0 = 1. We are especially interested in the behavior of S
as T becomes very large, that is as ε → 0. In fact we get the following dichotomy of
possible behavior:

• If ω > inft≥0D−1(t), the law of S−1 tends to the Dirac measure in the point a−1ω
given by

a±1ω = inf{t ≥ 0 : D±1(t) ≤ ω}. (3.3)
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• If ω ≤ inft≥0D−1(t), then the probability measure of S−1 tends weakly to the
null measure.

It suffices to replace D−1 by D1 and a
−1
ω by a1ω to obtain similar results for S1.

This leads to the following interpretation:
If ω ≥ D−1(0), that is, if the time scale T is very large, then on this exponential

scale, the asymptotic behavior of the Markov chain is characterized by an instantaneous
jump, i.e. a−1ω = 0. This just means that a clock ticking in units of T will record a
jump of the process as instantaneous, since it occurs on a smaller scale.

In case ω < inft≥0D−1(t), the time scale T is too small compared to the transition
rates. Consequently no transitions will be observed, and the process never jumps on
this scale.

In the last case D−1(0) > ω > inft≥0D−1(t). So the infinitesimal probability at time
0 is too small to allow any transition, and the Markov chain will have to wait until
this probability is small enough to allow for jumps, that is approximatively aωT . This
case is the only interesting case, in the sense that the chain stays for some time in the
starting state before it jumps to the other one.

To observe stochastic resonance we obviously need to study both transitions from
−1 to 1 and vice versa. So we define some interval IR called interval of resonance (see
Fig. 12) which is to contain those exponential scales in which the process on the one
hand asymptotically cannot always stay in the same state with positive probability,
and on the other hand asymptotically cannot jump instantaneously from one state to
the other.

D
−1(t)

IR

t

D1(t)

Fig. 12: Resonance interval IR.

IR =]max
i=±1

inf
t≥0

Di(t), inf
t≥0

max
i=±1

Di(t)[.

3.1.2 Optimal tuning for the Markov chain

Let us now assume that we are in the range of non-trivial jumping, that is ω ∈ IR. We
next determine an optimal tuning rate or stochastic resonance point. It will be based
on the density of the first jump, in particular the intensity of its peak, which we propose
as a new measure of quality of tuning. For h > 0 we shall compare the probabilities
with which the first transition takes place within the window of exponential length
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[(aiω − h)T, (aiω + h)T ], i = ±1, for different ω, maximize this quantity in ω and finally
take the window length to 0. More formally, for h > 0 small enough define

N(ε, ω) = min
i=±1

Pi(Si ∈ [(aiω − h)T, (aiω + h)T ]), ε > 0, ω ∈ IR, (3.4)

and call it transition probability for a time window of width h for the Markov chain.
The optimal parameter ω0 will tell us at which time scale it is most likely to see
trajectories of the chain with first jump in the corresponding window, and further
jumps in accordingly displaced windows. In particular, it will tell us at which scale
periodic trajectories of just this period are most probable. Since the probability density
of the first transition times from one state to the other is well known, for example the
density of S−1 equals

p(t) = ϕ(t)e−
∫ t

0 ϕ(s)ds,

we can compute an explicit expression for N(ε, ω). The optimal time scale will be
determined by a combination of a large deviations result concerning the first jump of
the Markov chain parametrized by the logarithmic scale ω of time, and a maximization
problem for the large deviation rates in ω to which the transition probabilities converge
uniformly.

Using Laplace’s method to estimate the singular integrals appearing as ε → 0, we
obtain the required asymptotic result.

Theorem 3.1 Let Γ be a compact subset of IR, h0 < max{a−1ω , T
2
− a−1ω }. Then for

0 < h ≤ h0
lim
ε→0

ε ln(1−N(ε, ω)) = max
i=±1

{
ω −Di(a

i
ω − h)

}
(3.5)

uniformly for ω ∈ Γ.

Since the convergence is uniform in ω, it suffices to minimize the left hand side of (3.5)
to obtain an optimal tuning point. For h small the eventually existing global minimizer
ωR(h) of

IR 3 ω 7→ max
i=±1

{
ω −Di(a

i
λ − h)

}

is a good candidate for our resonance point. But it still depends on h. To get rid of
this dependence, we shall consider the limit of λR(h) as h→ 0.

Definition 3.2 Suppose that

IR 3 ω 7→ max
i=±1

{
ω −Di(a

i
ω − h)

}

possesses a global minimum ωR(h). Suppose further that

ωR = lim
h→0

ωR(h)

exists in IR. We call ωR the stochastic resonance point of the Markov chain Y ε,T with
time periodic infinitesimal generator Gε,T .
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In fact the stochastic resonance point exists if one of the depth functions, and therefore
both, due to the phase lag, has a unique point of maximal decrease in the interval in
which it is strictly decreasing.
Example: In fact all the results presented before, in the case of a time dependent

potential U with meta-stable states at ±1 also hold true if the meta-stable states are
allowed to move periodically but stay away from the saddle 0. Then the state −1 of
the Markov chain represents the left meta-stable state and 1 represents the right one.
We shall mention one classical example in stochastic resonance (see, for instance [13])
which is the over-damped motion of a Brownian particle in the potential

2U(x, t) = V (x) + Ax cos(2πt),

where V denotes a reflection-symmetric potential with two wells located at ±1. In this
particular case, for 0 < A < V (0)− V (−1),

D±1(t) = V (0)− V (−1)± A cos(2πt).

Hence the phase lag α is equal to π and the resonance interval is

IR =]V (0)− V (−1)− A, V (0)− V (−1)[.

Let h > 0 small enough, then the logarithmic time scale which asymptotically optimizes
the quality measure N(ε, ω) is given by

ωR(h) = V (0)− V (−1)− A sin(πh).

In order to obtain the resonance point, we just let h tend to zero, to obtain ωR =
limh→0 ωR(h) = V (0)−V (−1), that is the average depth of the time periodic potential
U . In this particular case, it is obvious that the resonance point coincides with the
point of maximal decrease of the depth functions D−1 and D1. This example is treated
in detail in [15].

3.2 Transition times for the diffusion and robustness

As seen in the preceding subsection, for the effective dynamics we obtain both simple
and explicit results. Now we shall show how our measure of quality based purely on the
jumps for the two-state Markov chain can be extended to the diffusion case. We just
have to generalize the notion of jumps to the transition times between the two domains
of attraction of the potential landscape, i.e. the two wells. The accordingly generalized
measure od quality of periodic tuning possesses the desired property of being robust.
The analogous notion of interval of resonance will then be the following.

3.2.1 Resonance interval for diffusions

Recall that the underlying potential is described by a function U(x, t), x ∈ R, t ≥ 0,
such that U ′(·, ·) is both continuous in time and space. The local minima are located
at ±1 and the saddle point at 0, independently of time. Our main concern will be the
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asymptotics of the transition times from the domain of attraction ] −∞, 0[ of −1 to
the domain of attraction ]0,∞[ associated with 1 of the time inhomogeneous diffusion
in the small noise limit ε → 0. More precisely we will be interested in describing
the exponential transition rate from the domain of attraction of −1 to the domain
of attraction of 1. Our potential not being time homogeneous, we shall make use of
comparison arguments with diffusions possessing time independent potentials in order
to perform a careful reduction of the inhomogeneous exit problem to the homogeneous
one, and use the asymptotic results well known for this particular case. This will be
achieved by freezing the driving force derived from the potential on small time intervals
on the minimal or maximal level it takes there. To be more precise, for each interval
I ⊂ R+ let

RI

∂U
∂x

(·, t) for
some t in I

VI

x

0−1 1

Fig. 13: Definition of VI and RI .

VI(x) = sup
t∈I

∂U

∂x
(t, x) and RI(x) = inf

t∈I

∂U

∂x
(t, x). (3.6)

The regularity conditions valid for U imply that V and R are continuous functions.

Moreover VI(−1) = RI(−1) = 0, see Fig. 13. If I = [a, b], we denote by X
ε,I

the
solution of the SDE on R+

{
dX

ε,I

t = −RI(X
ε,I

t ) dt+
√
ε dWt,

X
ε,I

0 = Xε,T
aT .

(3.7)

Xε,I is defined in the same way replacing RI by VI . These two time homogeneous
diffusions are used to control the time inhomogeneous diffusion X ε,T as long as time
runs in the interval I. In fact, we have P -a.s.

Xε,I
tT ≤ Xε,T

(t+a)T ≤ X
ε,I

tT , t ∈ [0, b− a].

Hence in order to study the time the diffusion needs to reach 1 starting in the left well,
we shall consider the diffusion on one period. This time interval can be decomposed
into finitely many small time intervals In, 0 ≤ n ≤ n0. We shall then freeze the

potential on In and analyze if the the diffusions Xε,In and X
ε,In

have enough time in
In to reach the top of the barrier between the two wells and, consequently on the same
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scale reach 1, the bottom of the right well. In other words we need to get information

on the exit problem for the homogeneous diffusions Xε,I and X
ε,I
.

We shall refer to the most recent and advanced development of sharp estimates for
transition times presented in Bovier et al. [5] and [6]. They are valid far beyond our
modest framework, and we just present the results we will use here. For this purpose,
suppose that U1(·) is a purely space dependent C2 potential function of the shape
similar to those on Fig. 5. It possesses only ±1 as local minima, separated by the
saddle 0. Suppose that the curvature of U1 at −1 is strictly positive, i.e. U ′′1 (−1) > 0.
As for ultra- or hypercontractivity type properties for U1, we shall assume that it has
exponentially tight level sets, i.e. there is M0 > 0 such that for any M ≥ M0 there
exists a constant C(M) such that for ε ≤ 1

∫

{y:U1(y)≥M}

e−2U1(z)/ε dz < C(M)e−M/ε. (3.8)

We shall concentrate in this situation on an exit of the domain of attraction of the
stable point −1 for the diffusion associated with the SDE

{
dXε

t = −U ′1(Xε
t ) dt+

√
ε dWt,

Xε
0 = x < 0.

We are interested in the asymptotics of the first time X ε reaches 1:

τ1(X
ε) = inf{t > 0 : Xε

t = 1}.

Then we obtain the following result.

Theorem 3.3 Let λ(ε) denote the principal eigenvalue of the linear operator

Lεu =
ε

2
u′′ − U ′1u

′, u ∈ L2(]−∞, 1], e−2U1/εdx)

with Dirichlet boundary conditions at 1. Then for every compact K ⊆]−∞, 0[ there is
a constant c > 0 such that

Px(τ1(X
ε) > t) = e−λ(ε)t(1 +OK(e

−c/ε)), (3.9)

where OK denotes an error term which is uniform in x ∈ K, t ≥ 0. Moreover, for the
asymptotic behavior of the eigenvalue λ(ε) the following holds

λ(ε)Ex[τ1(X
ε)]→ 1 uniformly on compacts K ⊆]−∞, 0[ as ε→ 0. (3.10)

Large deviations’ theory reveals the asymptotic behavior of the principal eigenvalue:
limε→0 ε lnλ(ε) = −2(U1(0)−U1(−1)). We deduce that the mean hitting timeEx[τ1(X

ε)]
is equivalent to e2(U1(0)−U1(−1))/ε as ε→ 0. Here U1(0)−U1(−1) is the depth of the start-

ing well. Moreover, by Theorem 3.3, the normalized hitting time τ1(Xε)
Ex[τ1(Xε)]

converges
in law to an exponential random variable with mean 1 as ε→ 0.

These results are very precise. They describe the asymptotic time of the barrier
crossing and at the same time give an estimation of the probability to cross the barrier
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in a small time window around this asymptotic deterministic time. We can apply them
to the ‘frozen’ potential U(·, ·) on the small time intervals In. We thereby assume for
simplicity that the frozen potentials are regular of order C2. Let us choose n ≥ 0 and
set In = [rn, rn+1]. We assume that Xε,T has not reached the top of the barrier before
rnT and study what happens during the time interval [rnT, rn+1T ]. We have already

seen that Xε,T is controlled by both Xε,In and X
ε,In

. On the one hand, it suffices to
prove that Xε,In reaches 1 before rn+1T in order to get τ1(X

ε,T ) ≤ rn+1T . On the other

hand, if we get that X
ε,In

does not hit 1 then so does Xε,T . As ε → 0, Theorem 3.3
tells us, for example, that the probability that X ε,In reaches 1 before rn+1T is close to
1 if the depth of the left well is smaller than limε→0 ε ln(rn+1 − rn)T = ω. Indeed we
get limε→0(rn+1 − rn)λ(ε)T = +∞ which implies by (3.9) that

lim
ε→0

Px(τ1(X
ε,In) > (rn+1 − rn)T ) = 0.

The statements depend weakly on the depth of the well of the potential associated

to Xε,In and X
ε,In

. Since ∂U
∂x

is continuous both in x and t, if we choose the length
of all intervals In small enough then the well depth functions associated with the two
time homogeneous diffusions are equivalent to D−1(rn), the depth of the left well of the
landscape U . Hence the diffusion Xε,T

tT reaches 1 asymptotically as soon as the depth
D−1(t) goes below the level ω. This means

lim
ε→0

τ1(X
ε,T )

T
= a−1ω ,

where a−1ω was defined in (3.3).
Knowing the asymptotics of the time at which the diffusion reaches the barrier

separating the two wells in order to hit 1 puts us again in a position in which we can
discuss a resonance interval as for the reduced model. We obtain the same interval

IR =]max
i=±1

inf
t≥0

Di(t), inf
t≥0

max
i=±1

Di(t)[.

3.2.2 Optimal tuning for the diffusion and robustness

The comparison between time inhomogeneous and homogeneous potentials and the
asymptotic result 3.3 enable us to proceed to the completion of our approach of
stochastic resonance for diffusions. We have very precise estimates on the probabilities
with which the diffusion at time scale T = eω/ε transits from the domain of attrac-
tion of −1 to the domain of attraction of 1 and vice versa within the time windows
[(aiω − h)T, (aiω + h)T ] for small h > 0. On their basis we may define a measure of
quality of tuning for the diffusion which corresponds to (3.4):

M(ε, ω) = min
i=±1

Pi(τ−i(X
ε,T ) ∈ [(aiω − h)T, (aiω + h)T ]), ε > 0, ω ∈ IR, (3.11)

We may now state our main result on uniform transition rates.
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Theorem 3.4 Let Γ be a compact subset of IR, h0 > 0 small enough. Then

lim
ε→0

ε ln(1−M(ε, ω)) = max
i=±1

{
ω −Di(a

i
ω − h)

}
(3.12)

uniformly for ω ∈ Γ.

The stated convergence is uniform in ω on compact subsets of IR. This allows us to
take M(ε, ω) as our measure of periodic tuning, compute the scale ω0(h) for which the
transition rate is optimal, and define the stochastic resonance point as the eventually
existing limit of ω0(h) as h → 0. This notion of quality has the big advantage of
being robust for the passage from the two state Markov chain to the diffusion. So the
following final robustness result holds true.

Theorem 3.5 The resonance points of the diffusion Xε,T with periodic potential U
and of the Markov chain Y ε,T with exponential transition rate functions D±1 coincide.
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