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The purpose of this work is to obtain an approximation for the top Lyapunov exponent,
the exponential growth rate, of the response of a single-well Kramers oscillator driven
by either a multiplicative or an additive white noise process. To this end, we consider
the equations of motion as dissipative and noisy perturbations of a two-dimensional
Hamiltonian system. A perturbation approach is used to obtain explicit expressions for
the exponent in the presence of small intensity noise and small dissipation. We show
analytically that the top Lyapunov exponent is positive, and for small values of noise

intensity /€ and dissipation € the exponent grows in proportion with €3.



1 INTRODUCTION

No theorem has had so direct and powerful an influence upon the study of stochastic
stability of noisy dynamical systems as the multiplicative ergodic theorem (MET) of
Oseledec [1], which established the existence of (typically) finitely many deterministic
exponential growth rates called Lyapunov exponents. The stability of linear stochastic
systems based on MET has been well established [2, 3] and the top Lyapunov exponent
can be evaluated explicitly with relative ease when the noisy perturbations and dissipation

are weak [4, 5].

The primary concern in the analysis of nonlinear dynamical systems, is the determination
and prediction of steady-states or stationary motions (e.g. invariant measures of the local
random dynamical systems), and their corresponding stability. The challenge is to ex-
plicitly evaluate the top Lyapunov exponents of these stationary measures asymptotically

when the noise is weak, which is the problem we shall address in this paper.

For example, many engineering systems under additive white noise excitations can be

expressed as
i .,  oU )
xt—i—ﬁixt%—@(xt) =&(), i=1,2,..,n, (1)

where &;(t)’s are stationary stochastic processes, §;’s represent the damping in each mode,
and U is the potential. Under the assumptions that &;(¢)’s are uncorrelated Gaussian pro-
cesses, and the ratio of the spectral density of each excitation, &;(t), to the corresponding
damping, §;, is the same, i.e.,

vy = f—z for all 4, where E[&(t+ 7)&(t)] = 2k40(7),

the stationary probability density of (1) can be easily written as

} |

Such stationary probability densities exist for an even larger class of multi-dimensional

n

p(z, &) = Cexp {—7 E > (i)? + Ulx)

=1

nonlinear systems and there is a vast engineering literature that deals with the determi-



nation of such stationary densities (see for example, Lin and Cai [6]). However, there are
no concrete results on the sign of the top Lyapunov exponents corresponding to these
stationary measures. Hence, their stability is not known. The study of asymptotic stabil-
ity of nonlinear systems with noise, which we shall address in this paper, opens the door
to a host of physically interesting problems in random vibrations, from simple oscillators

to noisy autoparametric systems.

Schimansky-Geier and Herzel [7] were the first to consider numerically the Lyapunov
exponents of a two dimensional nonlinear system under additive noise. Their work was

devoted to the effect of noise on the Kramers oscillator

By +edy + U'(xy)) = \/2?5(0, (2)
where U(z) = —%2° + %x“, a,b > 0, with double-well potential, which was studied by

Kramers in his celebrated work [8]. It was shown [7] that the top Lyapunov exponent is

positive, i.e.,
A(e) > 0 for e not too large.

The top Lyapunov exponent is determined by the simultaneous behavior of two neigh-
boring orbits, or the two-point motion of the Kramers oscillator. A positive Lyapunov
exponent implies that, while for each single initial condition the corresponding solution
trajectory builds-up a nontrivial stationary measure, the distance between any two initial
conditions will grow at an exponential rate. Hence, an additive noise in (2) induces an
unstable stationary measure. Our task in this paper is to show analytically this remark-
able observation for (2) as well for similar systems with multiplicative noise. A brief

summary of these results was published in Arnold et al. [9]

The Kramers oscillator with double-well potential, considered by Schimansky-Geier and
Herzel 7], has multiple fixed points, one of which is connected to itself by a homoclinic
orbit. The procedure presented here relies upon an implicit assumption that the instan-

taneous frequency of the unperturbed motion (¢ = 0) must be non-zero or the periods of



oscillations or rotations are finite. Hence, a subtle treatment is necessary in a neighbor-
hood of the homoclinic orbit where the unperturbed orbits have arbitrarily long periods.
In order to remedy this problem, two different models, one which is valid away from the
homoclinic orbit, the other valid in a boundary layer about the homoclinic orbit should
be introduced and it is beyond the scope of this paper. Thus, we do not consider it
fruitful to attempt to make a general theory for all types of two dimensional nonlinear
Hamiltonians. Rather, we restrict our development to the case for Hamiltonians with
wsolated single elliptic fized point, i.e., a weakly perturbed oscillator with a single-well
potential

b
U(z) = g:ﬁ +47' ab>0, (3)

excited by a white noise process, £(t). Here we present a general, effective, systematic ap-
proach to determine the asymptotic sample stability of weakly perturbed (dissipatively
and stochastically) two dimensional nonlinear Hamiltonian systems. Random pertur-
bations of Hamiltonian systems are of great interest, particularly, in the study of noisy
nonlinear mechanical systems. Randomly-perturbed Hamiltonian system on R? with mul-
tiple fixed points are considered by Freidlin and Wentzell [10] in the context of stochastic
averaging and by Freidlin and Wentzell [11] in the context of large deviations techniques.
The analysis developed in this paper could be extended with some effort to provide anal-
ogous theorems pertaining to Hamiltonians with multiple fixed points. The versatility of

the method presented here, will make this method to be adopted to such situations.

In Section 2, we shall place the random vibration problem (1) within the general frame-
work of random dynamical systems. In Section 3, we state the mathematical structure of
the problem and briefly recall some results obtained by Arnold and Imkeller [12] which
are relevant to this paper. In section 4, we introduce the concept of action-angle vari-
ables [13], apply the classical results of symplectic transformation and derive the evolution
of the action-angle variables. In section 5, due to the nilpotent structure of the linear
variational equations, Pinsky and Wihstutz [14] re-scaling is used in the linear variational

equations to derive the Furstenberg-Khasminskii formula. In sections 6 and 7 we appeal

3



to the results of Sri Namachchivaya and Van Roessel [5] and Imkeller and Lederer [15]

to evaluate the first term in the asymptotic expansion of the top Lyapunov exponent.

2 RANDOM DYNAMICAL SYSTEMS

Here we restrict ourselves to the smooth (i.e. C™) case, two-sided continuous time T = R,
and state space R?. A smooth random dynamical system consists of the following two

“ingredients” (see Arnold [3]):

1. Model of the noise: A metric dynamical system (Q, F,P, (6;)ier) (for short: 8),
i.e. a probability space (2, F,P) with a measurable flow of measure preserving
transformations 6, : Q — Q, ie. 6y =id, 0.5 = 6,00, forallt,s e R, ;P =P,

and (¢, w) — Bw measurable.

2. Model of the system perturbed by noise: A cocycle ¢ over 6 of smooth mappings

of R¢, i.e. a measurable mapping
P:Rx QxR =R, (tw,z) = ot w)r,

for which (¢, z) — ¢(t,w)z is continuous in (¢,z) and smooth in x, and ¢ satisfies

the cocycle property
©(0,w) = idga, o(t+ s,w) = @(t,0w) o p(s,w) Vs,t R and w € Q.

The cocycle property implies that p(¢,w)™! = ¢(—t, 0w), i.e. the mapping ¢(t,w) :

R? — R? is a (smooth) diffeomorphism.

The flow ©; on  x R? given by O;(w, z) := (fiw, p(t,w)x) is called the skew product flow

corresponding to ¢.

Dynamical systems driven by white noise are rigorously dealt with in stochastic analysis

and are solutions of (Stratonovich) stochastic differential equations

dz = f(z) dt + g(x) o dW,, (4)



where f, g are smooth vector fields in R?, which is short for

ot ) =z + / F(o(s,)z) ds + / 9((s,)) 0 AW,

Let us now consider (4), or equivalently (1), in the context of random dynamical systems.
White noise can be canonically modeled as a metric dynamical system as follows: Let
Q= {w € C(RRY) : w(0) = 0}, F the Borel sigma-algebra of 2, and P the Wiener
measure, i.e. the measure generated by the Wiener process (Brownian motion) (W;):er
in R™. This process has stationary independent increments with Wy, — W, ~ N (0, |h|I),
continuous trajectories, and satisfies Wy = 0. The shift f;w(-) := w(t + -) — w(t) leaves
P invariant since the increments are stationary. Then # is an ergodic metric dynamical

system on (€2, F,P) “driving” the stochastic differential equation (4) and W = w(%).

Theorem 1 (Arnold and Scheutzow [16]) Let f,g € Cg°. Then the stochastic differen-
tial equation (4) has a unique solution x — @(t,w)x which is a smooth random dynamical
system. The Jacobian Do(t,w, ) is a matriz cocycle over © and uniquely solves the vari-

ational equation

dv = Df(p(t,-)x)vdt+ Dg(o(t,-)z) v o dW;. (5)

2.1 INVARIANT MEASURES

For all further steps we need the notion of an invariant measure for a random dynamical
system. Let ¢ be a random dynamical system. A random probability measure w — p,,

on (R?,B¢), where B¢ denotes the space of Borel sets in R?, is called invariant under o,

if
o(t, )ty = pg,w P —a.s. forallteR.

For random dynamical systems whose one-point motions Rt > ¢ — (¢, w)x are Markov

processes with transition probability P(t,z, B) = P{w : ¢(t,w)z € B} and generator G



(for solutions of stochastic differential equation (4)), a measure p on R? is called stationary

if it satisfies for all t € R

o) = [ Plt.s) ola)
R4
equivalently, if it solves the Fokker-Planck equation
* . 1 2
G*p=0, with G=f+§g (6)

Here we have written GG in the Hérmander form. There is a one-to-one correspondence
between stationary p’s and those invariant p,’s for ¢ which are measurable w.r.t. the

past F°_ of the noise, via the “pullback”

p = py = lim o(=t,w) "o, gy = Bu. = p, (7)
t—00

(see Arnold [3], Sect. 1.7). The procedure of passing from a deterministic stationary
measure p to a random invariant measure y,, described by (7) is called disintegration of
p. There are, however, in general more invariant measures y, than those obtained from

stationary measures.

2.2 LYAPUNOV EXPONENTS

The fundamental theorem of Oseledec [1] provides us with the stochastic analogues of a
deterministic eigenvalue and eigenspace of a matrix. Let ¢ be a smooth random dynam-
ical system, and let y be an ergodic invariant measure. It is clear from Theorem 1 that
Dy is a linear cocycle over © and uniquely solves the linear variational equation (5). The

exponential growth rate
A( )= li 11 [ De(t )vl|
W, T,v) : tlmt og||De(t,w, x)v|,

describes the Lyapunov exponent of the solution vi(z,v), for the the initial condition v
(v # 0) in (5). According to MET [1], A takes on one of r fixed or non-random values

A1 < -++ < Ar. Which ); is realized depends on the initial condition v. The multiplicities



of the Lyapunov exponents sum to the dimension of the system, d. The maximum of
these, \;, determines the almost-sure stability of the random dynamical system (¢, w)

generated by (4) under the stationary measure p [2, 3].

Rewriting the variational equation (5) in polar coordinates

s=rr€8TL r=u] € (0,00)

v
o]

yields

dry = qo(zy, S¢)1edt + q1 (x4, $¢)1 © AW, dsy = ho(xy, s¢)dt + hy (x4, 8;) 0o dWy,  (8)

where

ho(z, s) def Df(z)s — qo(z, 8)s, qo(z,s) def (Df(x)s,s)

hi(z, s) o Dg(z)s — q1(z,s)s, q(z,s) o (Dg(x)s, s)

and (z,y) is the standard scalar product in R¢. In (8), the equation for s; is decoupled
from the one for r;, so that the pair (z;,s;) forms a Markov process with state space
R¢ x S4°1 whose generator for the additive noise case simplifies to L et ho(z,s)2.
Integrating the equation for the radial process r; in (8) and using the classical ergodic
theorem yields the Furstenberg-Khasminskii formula | [3], Chap. 6] for the top Lyapunov
exponent

A= | Q(z,s) v(dz,ds) (9)

Rd x§d—1

where () is some explicitly known function, which for the additive noise case simplifies
to Q(x,s) = qo(z,s) and v is the (to be determined) joint stationary measure for the
Markov process (ry,s;) on R¢ x S%! with marginal p on R?. The sign of A in (9)
is of particular interest as it determines the stability of the variational equation (5)
and in turn the stability of the original nonlinear random dynamical system generated
by (4). Formula (9) forms the basis of all asymptotic studies of Lyapunov exponents and

particularly the presentation given in this paper.
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2.3 SCALAR NOISY NONLINEAR SYSTEMS

Before we proceed further, we should mention in this context some well-known results
pertaining to one-dimensional nonlinear stochastic systems. It has been shown that the
two point motion of a one dimensional nonlinear stochastic system has a unique property.

More precisely if a noisy one dimensional equation,
iy = f() + g(2)€(2), To =z €R (10)
has a stationary invariant measure with density

o e[ )

provided p(z) is normalizable, then as in Arnold [3], the Lyapunov exponent is

A= -9 /0 h [@]2 p(z) dz. (12)

g(z)

The Lyapunov exponent is always negative provided f(z) # 0. Similar results are also

presented by Leng et al. [17].

The challenge has been to extend the existing techniques in order to explicitly evaluate
the top Lyapunov exponent of higher (d > 2) dimensional nonlinear systems with noise,
and in particular additive white noise. It is this need and challenge that we shall address

in this paper.

3 STATEMENT OF THE PROBLEM

We consider an idealized particle moving in a symmetric single well potential described

by a function U defined on R. The Hamiltonian of the system will be given by

H(z,y) = Ul(x) +

2
%, z,y € R

and it is assumed that the Hamiltonian has an isolated elliptic fized point. The purpose

of this paper is to examine the asymptotic sample stability of this nonlinear system under
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random and dissipative perturbations. We restrict to this class of potentials from the
beginning to make the calculations of the top Lyapunov exponent become less cumber-
some. The particular set of global variables discussed in the subsequent sections of this

paper will shed light on this restriction. Formally, we assume
U>0, U(0)=0, U(zx)=U(—x),z €R,

and z — U(x) strictly increasing on R, . The motion of the corresponding Hamiltonian
system is periodic returning to the same point z,y € R in the phase space after a period

T(x,y). For each z,y € R, define the return time
T(z,y) inf {t > 0: &(2) = 2} (13)

where &(z) is the Hamiltonian flow for all (z,y) = z € R?. It is clear that T depends
solely on H(z,y) and that it is nonnegative on R? \ {0}. Thus we start out with a

Hamiltonian energy function with a very simple structure.

Assumption 3.1 (Hamiltonian): We assume that H : R* — R is C*™ and nonnegative.
We assume also that H(z,y) = 0 if and only if x = 0,y = 0. Secondly, H(z,y) =
H(—z,—y) for all z,y € R. Thirdly, we assume that

AY D2H(0)

is positive-definite. Finally, we assume that for each h > 0, the set H™'(h) is connected

and of finite 1-dimensional Hausdorff measure.

Finally, we assume that the particle is weakly damped and weakly perturbed by a white
noise process. The primary concern is the determination of the stability of the stationary
invariant measures, which are the stochastic analogue of steady state solutions in non-
linear deterministic systems. The perturbations are scaled by appropriate powers of ¢,
(e << 1), in order to obtain the effect of the damping and the noise at the same order.

To this end, random perturbation of a two-dimensional Hamiltonian system, with an



isolated elliptic fixed point, is precisely given by

dzy =y, dt,
(14)
dy, = (—ey, — U'(z,)) dt + V20 (x1,41) 0 dW.
Here o : R? — R is supposed to be a smooth function of sublinear growth. Equation
(14) represents the random vibration of single degree of freedom mechanical systems
under either parametric or additive white noise excitations. Hence, the typical examples
that we consider are given by the additive noise case, i.e., o(x,y) = o = const, which
has been studied extensively in the literature (see for example, Bolotin [18]), or by the
multiplicative noise coupled to the displacement, i.e. o(z,y) = z, or the velocity, i.e.
o(x,y) =y. Our aim is to obtain an asymptotic expansion of the top Lyapunov exponent

of the random dynamical system described in (14) by making use of the prescribed scaling.

Now, we shall place our noisy Hamiltonian system (14) within the general framework of
random dynamical systems presented in the previous Section 2 and briefly recall some
results obtained by Arnold and Imkeller [12] which are relevant to this paper. First,
a straightforward application of Arnold and Scheutzow’s [16] results on generation of

random dynamical systems for continuous time yields the following result.

Theorem 2 The stochastic differential equation (14) uniquely generates a smooth ran-

dom dynamical system ¢ in R2.

Although the random dynamical system ¢ depends on ¢, the invariant measure is inde-

pendent of ¢, that is,

Theorem 3 The stochastic differential equation (14) has a unique stationary measure

given by

plas) = Coxp {307 - U | (15)

where the properties of the potential function U satisfy (3). Furthermore, the disintegra-

tion of p is the unique Markov measure.
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We now turn to the asymptotic expansion of the top Lyapunov exponent of the random

dynamical system ¢ corresponding to the stationary measure with density p given by (15).

Theorem 4 (Arnold and Imkeller [12])) Let ¢ be the random dynamical system given
in Theorem 2 for the Kramers oscillator and p(dz,dy) = p(x,y)dxdy be the unique sta-
tionary measure (15). Parametrizing the unit cicle S by s = (cos o, sin ) and identifying
points o = 0 and o = 27 of the interval [0,27], we have the angle process of the varia-

tional equation
3, € .
dsy = he(Ty, Yg, o) dt = —5% (1 + cos2ay) + cos2ay — 5 sin 20y | dt,
and the Markov process (x4, ys, ;) on R? x [0, 27] with the generator

0 0 0 0
Le=Ge+ he(z,y, a)a—a = y(’)_x —(ey +U'(z)) 8_y + he(z,y, a)a—a,

which has exactly one stationary measure with marginal density p on R?. This measure
has support R? x [0, 27r] and C* density q.(z,y, c). The Furstenberg-Khasminskii formula

for the top Lyapunov exponent is
27 1
\ = / / 3 ((2 — 32”) sin 2 + €(cos 2a — 1)) qc(,y, @) dvdz dy. (16)
R2 Jo

It turns out that the cartesian coordinates are not appropriate for the small noise asymp-
totic expansion of the top Lyapunov exponent (16). In the absence of dissipation and
random perturbations (¢ = 0), system (14) is integrable (Hamiltonian). Unperturbed
Hamiltonian dynamics provides amazingly successful descriptions of the nonlinear dy-
namics and its mathematical theory [13] has evolved alongside the physical understand-
ing, to a point of high sophistication. Hence, we will not use the formula (16) directly
but rather change first to action-angle coordinates. The underpinning of the method
presented here is a separation of scales. The slowly varying coordinate is the value of
the Hamiltonian and the quickly varying coordinate is the position (or angle) in the

appropriate level set of the Hamiltonian.
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4 ACTION-ANGLE FORMULATION

The random motions consist of fast rotations along the unperturbed trajectories of the
deterministic system and slow motion across these trajectories. The nature of our system
thus suggests a set of coordinates which splits the two components of motion: action-angle
coordinates. They are commonly used in the classical perturbation theory of mechanical
systems (see Arnold [13]). The action part is defined by the area enclosed by the level
curves of H. Hence, it captures the slow component of the motion. Whereas the angle
part describes uniform motion along the level curves, and is therefore related with the

fast component.

To this end, we need to transform H(z,y) by means of a canonical transformation into
new variables (I, ¢ action-angle) such that the new Hamiltonian is a constant, h(I) and
the angle coordinate ¢ increases by 27 after each complete period T'(z,y) = T'(I) of the
motion. To introduce these variables, following Arnold [13], we work with the generating

function S(I, x), determined by the requirements

y=2(0), 6= (L), Hiz, oo (a) = h(D), a7)

I = I(h) is a function of the possible values h of H. The Hamilton-Jacobi equation in
(17) is solved for the generating function S(I,x) by letting

S(I,a:):/$ y(I1,€)de, —xo(I) <z < zo(1),

—zo(I)

where

z) = V2(h(1) - U()).

It is immediately obvious that S(I,z¢([)) = 7 I. Hence, following Arnold [13], we intro-

duce the transformation

a x T
O = AL, VD V@) d = )/_mom N EDC

and

= £v/2(h( (z(¢, 1)))- (19)
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The main point behind the method that is developed here is to use the geometric structure

of the unperturbed integrable Hamiltonian problem in order to develop an appropriate

set of ”coordinates” for studying the perturbed problem. Now that we have developed

such symplectic coordinates, let us use (18) and (19) to give some information on the

Jacobian of the transformation (x,y) — (¢, I) which is essential in deriving the perturbed

equations in the new variables (¢, I).

Lemma 4.1 For I > 0 we have

0 w0 w
Moreover,
ox oy
_ (2t 9y
w=U'(z) o +y81.
In particular,
ordy 920y _
000l 0Id¢p

i.e. the transformation belongs to a symplectic form.

Proof:
Straight forward. O

Lemma 4.2 For I > 0, ¢ €]0, 7| define

1

w'(I)

¢
ﬁ((baf) :[5 [y2(§,f) -

for ¢ €10, %]

w?(I)

] dg,

) //$
ao(ﬁbal):/o [U( (5,[))2 -

U'(z(&,1))
and for ¢ €]%, 7]

MZ(I)] df,

()

U a(e, )
(60 = | Tiale, D)

13

w2(])

 d€.

(20)

(21)



Then we may write for I > 0 and ¢ €] — m, 7|

owy) _ | & o |_| & v
o) ] |- e-UW@s
for ¢ € [0, ]
o(z,y) _ - % ()+ya0-
8(¢, ]) _U'u(}w) —UI(.’L‘) o ’
and for ¢ €|, ]
owy) _ | ¢ ot tver
8(¢, I) _U'u()z) _UI(CE) a
Moreover, for I > 0,¢ € [—n,n| we have
8
0
O (=0, 1) = oL (BTSN (=6,1) = ~ 009, T).

Proof:

(23)

(24)

(25)

Let us first treat the case —xy(/) < z < 0,y > 0 which corresponds to I > 0,¢ € [0, 5.

Integrating (18) by parts and then differentiating with respect to I, we obtain

wl

_¢_2 =

W

Solving this equation for

1

y Ulx)

.CU

W

+ 8_:10]
oI

yields the requested formula for —$

1

_w/x U”(f)
0 U'(€)* \/2(h(I) —

and noting that by Lemma 4.1 we have d¢ =

£))

de.

o€ )
¢d¢_w

d¢

In case —zo(I) < & < z9(I),y > 0 corresponding to I > 0, ¢ €]0, 7| symmetry allows us

to write the alternative of (18)

o=

T
2

z(¢,1)

Now differentiate with respect to I to get

(

m
2

— )

CUI

w2

14

1
— 4w d€.
) e -Te "
1 O0x z 1
=y, VA T



dz

51> and the integration in z is replaced by an integration

This equation is again solved for

in ¢. This gives (22).

The case 0 < x < z(I),y > 0 is treated as the first case. Finally, (25) is obvious from

the definitions. O

The symplectic property of our coordinate change immediately allows us to give formu-
lae for the inverse of the Jacobian. This is an additional advantage of using canonical

transformation.

Lemma 4.3 We have for [ >0 and ¢ €| — 7, 7|

06, 0) _ | o 5 |_|5-U@B -yp 0
d(z,y) a o V() y
for ¢ €0, 5]
e L o7
0(x,y) U'(@) y
and for ¢ €3, 7]
oo, 1) _ | "U@)an —gigy—yon | (28)
a(z,y) U'(z) y
Moreover, for (z,y) # (0,0) we have
9¢ 04 oI _ol
a_x(xa y) - ax(xay)a ay($’ y)_ax(xay)a (29)
0¢ _ 0¢ oI _ o

Proof:
This follows directly from Lemma 4.2 and the fact that the Jacobian has determinant 1

due to the symplectic character of the transformation. O

15



We are now in a position to describe our basic equations (14) in action-angle variables.
Differentiating the action-angle variables and making use of Lemma 4.2 and Lemma 4.3

yields,

d]t = M Yt dt + L[—G Yt — U,(S(?t)] dt + \/2_6 L 0'($t, yt) @) th
w(ly) w(ly) w(ly)

= € fr(o, I;) dt + \/2_691(¢t,1t) o dW4, (30)
%t 0Tt ey — U ()] dt — /2e % o (4, y) 0 AW,

o = E‘%dt_ﬁ
= w(L) dt + € f4(or, I) dt + V2€ gy, I) 0 AW, (31)

where the vector fields appearing in (30) and (31) are renamed as

o ==L g =y 560,
n(0.1) = LHENLED g6, = (G ole )6,

I>0,¢ € [—m, ], tosimplify notation in the decomposition of the infinitesimal generator
in the following section. For the linearization of our system we need the Jacobian of the
vector fields. For convenience we change the order of ¢ and I and the Jacobian is given

by

F) d d d
- | af, af ’ - | e E) )
Al Al % s Af AL 5t o4

Calculations using the preceding Lemmas yield the formulae for each element of the above
matrices AY and AY9. Furstenberg-Khasminskii formula for the top Lyapunov exponent

is derived in the next section.

5 SCALING AND PROJECTION

Following the notation of the preceding section we shall now consider the stochastic

system in action-angle variables given by in (30) and (31). Our aim is to obtain an

16



asymptotic expansion of the top Lyapunov exponent of the random dynamical system
described by (30) and (31). For this purpose we have to study its linearization. Let us
denote the linearized variables by (X,Y’) and keeping track of the notation introduced

in the preceding section, we have

[dXt ] J ’ 0] [Xt ] dt+eAl (¢, 1) [Xt ] dt + /26 A9 (¢, 1,) [Xt] o dW;.(33)
Lavi | Lo o] | v ] v ] v ]

Because of the special structure of the zeroth order terms in equations (30) and (31),

the linear variational equations (33) naturally exhibit a nilpotent structure. In order to
obtain a formula for the top Lyapunov exponent, one needs the Hormander’s condition

for hypoellipticity of the associated generator. Hérmander’s condition can be replaced

by a sufficient condition in a coordinate-free form, particularly when the deterministic

matrix is nilpotent.

Let A represent the matrix corresponding to the stochastic terms. Then for a d X d
nilpotent matrix /N and its one-dimensional kernel v € ker N, the sufficient condition for

hypoellipticity is given by
rank {(adg\,A) vij=12.,n-1}=d (34)

where we define, adyA = A, adyA = [N,A] = AN — NA, ad’yA = [N,ad’]"] for
j=1,2,3..... It can be easily shown (Pinsky and Wihstutz [14]) that the matrix element
A1q # 0 implies (34). This in turn implies that for our situation the stationary density
exists and is smooth if A, # 0. This nilpotent form and the term (AJ,) are responsible
for the main results on the asymptotic expansion of its top Lyapunov exponent to be

developed in this and the following sections.

5.1 PINSKY-WIHSTUTZ SCALING

In the previous section, it is shown that a smooth stationary density exists, however in

order to calculate this we need to make use of the small parameter € that naturally exists
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in our problem. In terms of polar coordinates # = tan™!(Y/X) and p = log VX2 + Y?,
the angular component 6;,¢ € R, of the process (33) reads

df, = {ﬁg(@, I, et) + eizg(@, I, 0,:) } dt + \ﬁig(@’ I, 075) o dWy, (35)

with the generator

0

o 1 a1\’
L€:L0+€L17 LO :hg((ﬁalve)%: Ll :hg(d):jag)%—i_i (hﬁ((ﬁala 0)_> (36)

d
where for I > 0, ¢ € [—m, 7], 8 € [0, 7] we have ’
hS(p,1,0) = w'(I)cosd
Ro(6,1,0) = AL (6,1) cos? 6 + (A%, — A%)(,I) cosOsind — AL, (4, 1) sin®@
Ro($,1,0) = A3 (¢, 1) cos®+ (A, — AI)(¢,I) cosfsinh — Al (¢, I) sin® 0

In the perturbative form of problem (35), the generator Ly associated with the nilpotent
part vanishes for some 6, = +7/2, which is of the order 2 and the measure g of Liug =0
will not have a smooth density, but rather Darac measures at 7/2, i.e., gg = dir/2.
Therefore, we must smooth the measure by applying a suitable scaling as pointed out by

Pinsky and Wihstutz [14]. Let us elaborate on this point.

Since the invariant measure of the angular part of the linearization (nilpotent) trivializes
in one direction, we appeal to the results of Pinsky and Wihstutz [14]. Pinsky -Wihstutz
scaling stretches the coordinates such a way that the leading order diffusion part balances
the leading order dift term. This allows us to replace the generalized measure g = 0 by a
smooth measure. Accordingly, the variables (X,Y’) are rescaled with a certain fractional
power of €, i.e.,

X=eU Y=V,

in order to see the correct asymptotics. In the rescaled variables we obtain the equation

av, | eAl (¢, 1)  EAL(en 1) | | U u
dVy esw' + C%A£1(¢ta L) €Aly(¢n, 1) Vi
3 A9 (¢, 1, s A9 (b, 1, U
N e2 A1) (¢, 1) €s Aly (¢, 1) t o dW,.

e%w’(It) + G%Agl(qbtalt) 6A!2’2(¢ta It) Vi
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5.2 FURSTENBERG-KHASMINSKII FORMULA

We next apply the Khasminskii transformation so that the above linear equation is
decomposed into radial and angular part. This provides the most convenient setting for
the description of the top Lyapunov exponent by means of the so-called Furstenberg-

Khasminskii formula. Write
U=rcosf, V =rsinf.

Then the angular component described by the process 6;,t € R, satisfies the stochastic

differential equation
b, = hi(pe, I, ;) dt + BY (1, 1y, 0,) o AW, (37)
where for I > 0,¢ € [—m,7|,0 € [0, 7] we have
R, 1,6) = €3 w'(I) cos?d — e3 AL, (¢, 1) sin® 6
+ €e(AL, — Al)(¢,1) sinfcos b + €3 Al (6,1) cos? 6,
h?(q&, I’ 0) = \/5 [_6% A?2(¢7 I) Sin2 0
T e (A%, — AY)(p, 1) sinfcos 6 + €6 Af (¢, 1) cos? 0.
For the rest of this section we shall be concerned with a calculation of the scaled decom-
position of the infinitesimal generator of our 3-dimensional system given by (30), (31)

and (35) as well as the functional of the radial part appearing in the representation of

Lyapunov exponents in formulae of the Furstenberg-Khasminskii type.

Appropriately adding the drift and the diffusion parts (see Appendix for details), finally
yields the infinitesimal generator L¢ of our system (30), (31) and (35) as

Lt = L0+6%L1+€%L2+€L3+€%L4+62L5; (38)
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where

0
LO = w%,
0 02
Ly = —w'u’ o+ (AD)" 5,
Ly = [(AL,+ gi4%, + A)]a [2A9,(AY, — A)]%ﬂ(%ﬁ)
2 = 12 T 91éi91 T 9ol 12(Agg u auU EY
0? 52
2gr A 2
+ [gI 12]8[8 +[9¢ 12]3¢8u’

0 0
Ly = [fi+91 A%+ ge A!{Q]a_z + [fo + 91 A3, + 9¢Agz]%
2 2 2
oI ' 7?9¢? 0Id¢
- [A£2 - A11 + gI(A221 A111) + 9¢(A222 A?m)] u

0 0
+[(A52 - A§1) A'(1}2A52’1] u ( 8u)

82 g g 82
——— —[294(A5, — A —
9Iou [294(A3, 11)]u8¢)8u’

9
ou

— [291(A3, — AY))]u
L, = —[A£1 + g1A% + 95A45:5)] u’

+[244, (A, — Af)] u?
82 g ) 82
Ly = (44w (u) (39)

— 29 Agl]UQ

Here and in the sequel we prefer to work with the stereographic projection variable
u=cotf, 6¢€]|0,r],

for simplicity of presentation.

To represent Lyapunov exponents, we shall make use of a formula of Furstenberg - Khas-
minskii. In this formula, the following functional of the radial part of the linearization
has to be integrated with the invariant measure of our system. Due to the regularity
properties of our vector fields, we know that there exists an invariant density p.. In this

case, the formula of Furstenberg-Khasminskii states that the leading Lyapunov exponent
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Ae given by (9) of our system satisfies

Ae = / Q(p, I,u) pe(p, I,u) dodl du.
[—7T,7l']

X]R+ xR

As for the infinitesimal generator, our asymptotic analysis requires that we decompose
Q¢ into fractional powers of ¢35, Similar calculations (see Appendix for details) as for the

generator yield

Q= €3Q1 + €5Qu + €Qy + €5Qy + €3Qs, (40)
where
2
;U g u”—1
. = — —(A%) ——
Ql(a'LL) w1+u2 ( 12) (1+U2)2’
u u(u? — 3)
Q2(.,u) = [A{Z + 914y + 9¢A£1]22]m + Af,(Ad, — AY) ma
2
U
Q3('7 u) = [A{1 + gIA!IJH + g¢A€12] m + [A£2 + 9114321 + 9¢Ag22] m
202 (u? = 1)?
2
+(A%, — Af)) m + A!szglm,
Qi) = (AL +arAD, + godlh] 1 A3 (A, — a2) M D)
4+, = 21 T 914211 T G212 1+ 2 21\4122 11 (1 i u2)2

o u(u? — 1)

Q5(.,U) = (Agl) (1+U2)2 . (41)

6 ASYMPTOTIC EXPANSION

We construct a formal expansion of the invariant measure, i.e.,

Pe=Po+€pi+espyt o teipy +oe
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Substituting this expansion and the expansion for L® into the Fokker-Planck equation

yields the following sequence of Poisson equations to be solved for py, p1, po, - .. :

Lipp = 0

Lipy = —Lipo

Lgp, = —Lip1 — L3po

Lips = —Lipy — Lipy — Lipo

This yields the following expression for the maximal Lyapunov exponent:

A= 6%<Qlap0> +e [(Q2,p0) +(Q1,p1)] + -~

As in [5], a proof that this expansion is, in fact, asymptotic begins with the construction

of the adjoint problem
Lfe=Qc— Ac (42)
with Q¢, L¢ as defined above and
1 2 N
[ = fhtefitesfotefs+---+e3fy,
A = AO + G%Al + E%AQ +6A3 —+ .- +E%AN.
Contrary to the usual form, we allow A€, A;,7 > 0 to be functions of I alone. By using our
formulae for L; and @); and identifying terms in the corresponding expansion following

from (42) then produces a set of Poisson-Type equations. Hence, A;’s are chosen so that

the sequence of equations

Lofo = —Ag
Lofl = Ql - Al - LlfO
L0f2=Q2—A2—L1f1—L2f0 (43)

i=5
Lofy =-Ay =) Lifv-i

i=1
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are solvable. Next we define the truncated density p* = pg + 6%]71 + 6%])2 + -+ E%pN
and assume v(I) as I—marginal of both p. and p°. Then, the error (Q.,p:) — (Qe, D)
introduced by truncating A° at an arbitrary order N > 0 can be evaluated as in [5].
Suppose that the functions pg, p1,--- ,py and fo, fi, -+, fv are constructed such that
all inner products in the expressions for the error are well defined and bounded, then
it it can be shown as in [5] that the expansion for a fixed N > 0 is a valid asymptotic

expansion. In the subsequent section, we compute the leading term

A= (Ql,p0> (44)

along with the estimate of the remainder term in the asymptotic expansion of the top

Lyapunov exponent.

7 CALCULATION OF THE FIRST TERM )\,

In this section we shall compute the leading terms in the asymptotic expansion of the
top Lyapunov exponent of our system, based on its representation in the Furstenberg-
Khasminskii formula. The invariant density of our three dimensional system is the unique
lift of the density v(I) of the I—motion. The density v(I) is given as the solution of the

adjoint equation

d

- 2 —
— U1+ 91A% + gs AV + 97 v] = 0, (45)

where for convenience the average of functions k over ¢ € [—m, 7] is denoted by k. We
can easily calculate v(I) for the three cases we are mostly interested in, i.e., 0 = const

oro(z,y) =z or y, for z,y € R.

Lemma 7.1 Let ¢ > 0 be given such that




Then

) )
o(I) = ¢ exp ( ][ (J)[i555af)+'yQoﬂ(J)] dJ) , (46)

gives the marginal density in I of p.. In particular, if o = constant (i.e., additive noise),

we have

v(I) = ¢1 exp {—hf) } , I>0, (47)

Proof:

Equation (45) may be written equivalently, with some constant ¢ € R

d

(fr — 9149, + 9pA) v+c= Q_?EV

Now an easy calculation gives the formulae

w

w ol w 01
Yo, — (0 +yo,) U'(x)
w? )

g —
A12 -

Use these and periodicity to derive

9¢A‘({2 = _QIAgQ = gIA% — gi0y-

Hence the homogeneous part of the equation determining v is given by

) goe)
o) e

MDZQ&Mi/wUH

with an arbitrary constant ¢;. We may assume that ¢, ! = fooo v (I)dI < 0o and choose

¢ = 0 and get the desired formula. O

Since for the convergence of our algorithm the following condition,
(F) W'(I)>0 forae. I>0,
is important, we shall make this general assumption throughout out this paper.
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For reasons which will become clear, in the computation of the leading term in the
asymptotic expansion of the top Lyapunov exponent, we shall solve for a density po(7,6)
which satisfies both Lip, = 0, the zeroth order term in the expansion of the Fokker-
Planck equation, and L7 py = 0, the solvability of the first order term in the expansion,
ie.,

L3p1 = _LTPO-

Proposition 7.1 ForI,s > 0leta(l) = (AY,)%(1), p(1,s) = (3‘5,1()1‘;)% and let n(u, o) (u)

2

denote the Gaussian density with mean p, variance o°, evaluated at v € R, and

¢, (s) =T(y) 's" " exp(—s), s>0,

the density of a Gamma law with parameter v > 0. Let for I > 0,u € R

o 1
wil.w) = [ nlulr.s) ) s (43)

Then we have

LSPO =0, L_l*po =0.

Proof:
Since pq is just a function of I,u, the first equation is obvious. To derive the second,

note first that
— 0 0?
L =—wu=—4+a=—

ou ou?’
We fix I > 0 and have to solve for py(Z,.) satisfying

W) po(I, ) + all) %po(l, ) = (D)

for a constant ¢(I) which is determined by the normalization condition for py(Z,.). Denote

_ w'({l)
@ = L;a(l)

. The obvious solution of the above differential equation given by
u

po(L,u) = e(I) exp(—au3)/ exp(av®)dv

—0o0
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has to be described in an alternative form. For this purpose we may write, setting
v=u—hwith h>0

—a(u® —v®) = —=3ahfu — g]Q - %ahg’.

Using this in the integral representation, and changing variables once again, setting

s = 1ah®, we obtain the alternative expression

1

3«

Wl

w0 = (D) 3 () [T ep(=3a (a5 expl—s) s ds.

2«
Now observe that the renormalization of the quadratic exp —factor in terms of a Gaussian

density will produce an s, so that the Gaussian densities with mean %(%)% = u(l,s)
1 _ 1
6a(d2)s 4% u(l,s)

sity C' - 578 exp(—s), i.e. the density of a I'(3) law. This completes the proof. O

and variance have to be averaged by a probability measure with den-

We now start our asymptotic analysis with the Ansatz of adjoint expansion (42). In order
to obtain the first term in the asymptotic expansion of the top Lyapunov exponent, the

first three of (43) have to be analyzed carefully in the sequel. They are given by

Lofo = —Ao, (49)
Lofi+Lifo = Q1 — A4, (50)
Lofo+ Lifi+Lafo = Q2 — As. (51)

We first obtain

/ Aopod(é,1,u) = — / Lofopod(, I,u) = / foLipod(d,I,u) =0,  (52)

since L{py = 0. This expresses the fact that the zeroth term ), in the development of \°

vanishes. Moreover, we have

0
Lofo=w %fo = —Ay,

hence for I > 0,¢ € [—m,7],u € R

f0(¢7lau) = _AO(I)¢+9(17U)
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But by periodicity in ¢, this in turn implies that

Hence fy is just a function of I and u. Let us next use this knowledge to analyze (50).

Since Lipy = 0 = L; po we get

0 = - [fiLimdé10) = [ Lofimd(s. L0 (54)
= 1@ - A - Lifulpod(o,1,0)
= 1@ - Admdeo,L0) - [ KT weddw
= /[Ql — N pod(o,I,u).
Equation (54) gives us the leading term in the development of the top Lyapunov exponent
of our system. It can also be interpreted as the solvability condition for (50).

Theorem 7.1 We have

/ W'(I)F a(l)s v(I) dI. (55)
0
In particular, Ay > 0.

Proof:
We solve the averaged form of equation (54) for A; and use the equality L; po = 0 to

write for every I > 0

mm=@@4mmmwwmm (56)
= /R@(I, u) po(I, u)du.

We next use split off Q; one part which lies in the range of L;. This is done in the
following way. Setting
1
Flu) = =5 In(1 +u2),
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we calculate

2
, __u " _out = 1
f (’U,) - 1 +u27 f (’U,) - (1+u2)2
and therefore
! > 2 u’ — 1
_ g
Llf('au) =w U’l + ug + (AIQ) (1 + u2)2

which by the formula given for @); leads to

(Lif + Q) (. u) = (Lif +Q1)(,u) = w'u.
Hence we obtain with another appeal to the equation L_l*po = 0 and Proposition 7.1
D) = ) [l du (57)
R
= ) [ D gy ds
0
= QRO [ shay(s)ds
0
r'G)
T~ W
I'(s)

It remains to integrate A; with the density v to obtain the formula claimed. O

N W N W

= (2)s

The difficult part of these calculations is to show that the expansion is, in fact, asymp-
totic, so that the computational algorithm that is developed here is indeed convergent.
For this, we need the estimation of the remainder terms in our asymptotic expansion, i.e.,
we need some more information on f’s. The proof that such an algorithm of computation

is convergent will be presented in Arnold et al. [19].

8 CONCLUSIONS

In this paper we extend the work by Arnold and Imkeller [12] on the Kramers oscillator.
To this end, we made use of the classical results on action-angle variables [13], and more
recent results on Lyapunov exponents by Arnold, Papanicolaou and Wihstutz [4], Pinsky

and Wihstutz [14], Sri Namachchivaya and Van Roessel [5] and Imkeller and Lederer [15].
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An asymptotic expansion for the maximal Lyapunov exponent, the exponential growth
rate, of the response of single-well Kramers oscillator driven by either an additive or
multiplicative white noise process was constructed. However, only the first term of the
asymptotic expansion was analytically evaluated. Based on this, it was shown that the
top Lyapunov exponent is positive, and for small values of noise intensity /€ and dissipa-
tion € the exponent grows proportionally to €3. A similar result is proved by Baxendale
and Goukasian [20] for the multiplicative case, where calculations for the linearized pro-
cess are done with respect to a moving frame. The idea behind such a moving frame
is to use instead of the coordinates which remains parallel to (z,y), a new coordinate
system (u,v) with one axis u moving so as to remain tangent to the unperturbed trajec-
tory, while the other axis v remain perpendicular to the unperturbed trajectory, which
in the dynamical systems literature is known as Diliberto [21] transformations. We only
presented the main results and the proofs of the main theorem. The fact that such an

algorithm of computation is convergent is presented in Arnold et al. [19].

In closing, it seems appropriate to make the following remarks regarding the implica-
tions of the positive top Lyapunov exponent of the stationary measure for the Kramers
Oscillator. Since the corresponding Markov process (z:,4:) generated by (2) (so-called
one-point motion of the Kramers Oscillator) is positive recurrent, the stationary measure
can be viewed as the occupation measure, i.e., the proportion of time spent by a typical
solution of (2) in the volume element dz dy. The top Lyapunov exponents which deal
with stability on the other hand, are determined by the behavior of two neighboring
orbits or the two point motion of the Kramers Oscillator. In this context, the positiv-
ity of the top Lyapunov exponent has remarkable implications. While for each initial
condition the solution trajectory asymptotically approaches the volume element in the
state space giving rise to a nontrivial stationary measure, the distance between any two
initial conditions will grow at an exponentially fast rate. Furthermore, the growth of
two dimensional volume under the solution flow is determined by the sum of the two

Lyapunov exponents which is —e and thus negative. Hence, as ¢ goes to oo the original
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two dimensional volume under the solution flow will shrink, but will be continuously

stretched in one direction (and folded in a complicated manner).
In addition, a positive Lapunov exponent is also an indication of the fact that via Pesin’s

entropy formula, the system under the stationary measure has positive entropy.
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APPENDIX: CALCULATION OF L€ and Q¢

The infinitesimal generator L of our system (30), (31) and (35) is given by
0 0 0 0 0 0
1Y ¢ I ¢
= o 8[+h° 26+ 10 79 (h1 a1 T 5 T 5p)
ohl ohi ohl 0
ey h¢ h0
v or L oo L oo 20 ) a1 oI
Oh{ o 0h 40Kt 0

= [hg + (h

+ I+ 500 7 V5o M%) 35 58)
R Ry Sy

b S0 O S 2+ S0
+h1h‘faja;¢+h’hfa?—(2;9+h¢hlaj;0.

We shall now collect the main steps in the evaluation of L€, starting with the drift part.

Ordering according to powers of €3, the contributions to the drift part of (58) yield the

formula
[hi + (hf oy +h? oy + h? —3}‘{)]( 0) 9
0t Lor . 0¢ Lo 7 ar
oh? ah¢ on? )
¢ 4 I ¢ 6 Y4 o
8h9 oh? oh? 0
0 4 I ¢ O 9 01Y o
_ 8 ! g
=w %—f-e [[w cos” 0 + 2 (Af,)? sin 90080]80]

> 0
— €3 [[(A12 + grAfy; + gpAdy,) sin® 0 + Ady(Ag, — Afl’l)(?) sin® § cos” f — sin 0)]69} (59)
0
+ 6[[f1 +gr A + 95 12]8] + [fo + 9145 + 9¢A22]

+ [(A22 - A nt 91(A221 A111) + g¢(A222 Ai]u)) sin 6l cos 0

+ (A4, — AJ,)? — 2A9, A3, ) (sin  cos® @ — sin® f cos 0) (;99]
4 0
+e3 [[A§1 + 914311 + 95A%5) cos® 0 + AY, (A9, — AY,)(cos” 6 — 3sin®  cos® 6] 80}

5 0
— €3 [[2( 1)? sin 6 cos® 0]80
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After some tedious calculations, we obtain the following formula for the diffusion part of

the infinitesimal generator (58).
0% 1 82 0?
(KL $\2 0
2(h1) 3[2 +35 (h’l) 3¢2 (hl) 602
52 0.y O
toreg T M 000

0? > 0
802} — €3 [214“1]2(1452’2 Af ) sin® 6 cos 0] = 507
_ 0? , 0?

+ [2g7 AY, sin? 6] 5150 + [2g4 A%, sin® 0] 9098

82 2 82
+[((A3, — AY))?* — 2A9,A3)) sin? 0 cos? 0] = 507

82
R hd —— +hlh? ——
T aree T

= b [[(41,)? sin* 0]

2

2—
+clof or T 95
2 2
v 9 A9\
+ 2gfg¢aja¢ + [2g9:(AS, — AY,) sin 6 cos 6] 5750

2

8q§80}
1 . 5 0 0
+es [QAgl(AgQ — AY,) sinf cos Q]W
82 g ) 82
o199 + 296421 05" 0] aqsae}
2

5 0
+ € |[(48,)% cos* 0] |.

+ [294(A5, — AY,) sinf cos ]

+ [2g1 A9, cos® 0]

(60)

Adding the drift and the diffusion parts finally yields the following decomposition of the

infinitesimal generator

Lt = L() + 6%L1 + G%LQ + 6L3 + €%L4 + G%L5,
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where

0
Lo = w—
0 wa¢7
L= 20 +2(A9.)% sin® 60 0—8 A92'40—62
1 = [w' cos® 0+ 2 (Af,)” sin® 6 cos ]ag+[( 7o) sin ]802’

Ly = —[(A], + g1 A%, + gsA%y,) sin? 0

+ Afy(Ag, — Af,)(3sin? f cos® § — sin* ) 9

00
. 0?
— [2A49,(A4, — AY,) sin® O cos O]W
0 oy O A9 sin? 0?
— [2¢1 Ay sin” 0] 5760 [2g,A7, sin” 0] 9696°
0
L3 = [fI + gr A‘(ljl + 9 A"{Q]a
0
+ [fo + 9145, + 9¢Ag2]%

+ [(A£2 - A{1 + 91(A9y; — Afy1) + g¢(ASey — Af}5)) sin 6 cos 6

0
+ ((Ag, — AY))? — 249, A%, )(sin 6 cos® @ — sin® 6 cos 0)] =~

06
» 0 2 0° g 9\2 9 A9\ win2 2 0°
+ 9155 + g¢8—¢2 + [((A3, — Af})" — 2A7,AF,) sin” O cos 9]@
2 2
+ 2919¢m + [291(A3; — Af,) sin 6 cos 0] 9100

2

. 0
+ [2g4(AJ, — Af;) sin 6 cos 6] 5690°

Ly = [A£1 + 9143, + 9¢Ag12) cos” 6

+ A3, (A3, — AY))(cos" @ — 3sin® O cos? 0]%

0?

949 (A% — A9 )sinf cos® 0] L

+ 91 (A% 9.) sin 6 cos ]802
2 2

2 Ag 2
+ [2g4 A%, cos 016(/580’

2

0
g 2
+ [291 AY; cos® 0] 5150

. 0 0
Ls = [2(44)” sin 0 cos® 0] = + (44, cos' 0] ——
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As explained in Section 2, to evaluate the top Lyapunov exponent, we shall make use of

formula (9) of Furstenberg-Khasminskii which requires the calculation of

000
Lon

Q _q°+2[h151 +h18¢ +h

. . . 1
which decomposes into fractional powers of €3 as

Q = 5Qi+65Qs + Qs + € Qu + Qs
where
Q1(.,0) = w'sinf cos § — (AJ,)? sin® f(cos® @ — sin” f),
Q2(.,0) = Al sin 0 cos 0 + A%,(AS, — A%,) sin 6 cos O(cos? O — 3sin? )
+ (g1A%y, + gpAiy,) sinfcos b,
Qs(.,0) = Al cos® 0 + AL, sin® 0 + (A%, — A9,)? 2sin? f cos? 0
+ A{, A3, (cos® @ — sin? 0)% + (g7 AY,; + 94A71,) cos® O

+ (91 Ag21 + 9¢Ag22) sin® 0,

Qa(.,0) = A} sin O cos + A3, (AY, — A%)) sin b cos 0(3 cos® § — sin? 0)
+ (g1A%,, + 9pAS,,) sinf cos 0,
Qs(.,0) = (A3))? cos® f(cos® § — sin? §).

Making use of the stereographic projection
u=-coth, 6¢€]l0,n]

for simplicity, the infinitesimal generator L¢ and Q¢ are expressed in (38) and (40).
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