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Abstract
We provide a mathematical underpinning of the physically widely known

phenomenon of stochastic resonance, i.e. the optimal noise-induced increase of a
dynamical system’s sensitivity and ability to amplify small periodic signals. The
effect was first discovered in energy-balance models designed for a qualitative un-
derstanding of global glacial cycles. More recently, stochastic resonance has been
rediscovered in more subtle and realistic simulations interpreting paleoclimatic
data: the Dansgaard-Oeschger and Heinrich events. The underlying mathemati-
cal model is a diffusion in a periodically changing potential landscape with large
forcing period. We study ’optimal tuning of the diffusion trajectories with the
deterministic input forcing by means of the spectral power amplification measure.
Our results contain a surprise: due to small fluctuations in the potential valley
bottoms the diffusion — contrary to physical folklore — does not show tuning
patterns corresponding to continuous time Markov chains which describe the re-
duced motion on the metastable states. This discrepancy can only be avoided
for more robust notions of tuning, e.g. spectral amplification after elimination of
the small fluctuations.
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1 Introduction and Heuristics

1.1 The paradigm of stochastic resonance and heuristics

To gain physical insight into real climate phenomena or only virtual ones resulting
from simulations based on ever more complex general circulation models, reduced mod-
els of the climate have been of paramount importance. This fact is nicely exemplified
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by research performed at the PIK (Potsdamer Institut für Klimafolgenforschung), in
particular the group of Rahmstorf (see [21, 37]). Their qualitative results obtained by
effective simulations based on climate models of intermediate complexity (CLIMBER)
concerning the switching of the thermohaline circulation of the North Atlantic have in-
creased our understanding of mechanisms controlling transitions between warm and ice
ages, and more recently even intermediate warmer periods during ice ages (Dansgaard-
Oeschger events). They brought back to stage the physical phenomenon of stochastic
resonance which had been discovered as a stochastic effect much earlier in the con-
text of very simple and rough energy-balance models designed to explain qualitatively
glacial cycles through global energy balances [30, 2, 3, 4].

To explain the physical heuristics and mathematical basics of stochastic resonance,
this simple model will be helpful, despite its evident lack of realistic features.

The modern methods of acquiring and interpreting climate records indicate at least
seven major climate changes in the last 700,000 years. These changes occurred with
the periodicity of about 100,000 years and are characterized by a substantial variation
of the average global temperature of about 10K.

The effect can be explained with the help of a simple energy balance model (for an
extended review of the subject see [25]). The Earth is considered as a point in space,
and its temporally and spatially averaged temperature X(t) described by the equation

cẊ(t) = Ein − Eout. (1)

Due to the first law of thermodynamics, the instant change of the Earth’s temperature is
determined by the difference between the incoming (Ein) and outgoing (Eout) radiative
energy. The positive constant c describes heat capacity.
Ein is proportional to the so-called solar constant Q(t) which quantifies the solar

energy reaching the Earth at time t. It is known that due to the influence of Jupiter the
eccentricity of the Earth’s orbit oscillates with a period of about 105 years (Milankovich
cycle). This causes the solar constant to vary with the same period. The amplitude
of this variation is estimated to be about 0.1%, and we may assume that Q(t) =
Q(1 + A sin(2πt

2T
)), where 2T ≈ 105 years, A = 0.001.
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Fig. 1: The Earth’s albedo in Budyko–Sellers model as a function of temperature X.

On the other hand, Ein is proportional to the global absorption coefficient, which is
equal to 1 − a(X), where a(X) is the average albedo, i.e., the proportion of the solar
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radiation at temperature X reflected back into space. In a simple model suggested
by Budyko [11] and Sellers [35] two characteristic temperature levels Xl < Xh appear.
Below Xl the surface water is supposed to have frozen, the planet is bright causing
high albedo. On the other hand, if X > Xh, it is very warm, the planet is green and
brown, and the albedo is uniformly low. For temperatures between Xl and Xh a linear
interpolation for a is used, see Fig. 1.

To describe Eout the Earth is considered a black body, so that due to the Stefan–
Boltzmann law its radiative energy is proportional to X4. So the energy difference
takes the form

Ein − Eout = Q(1 + A sin (2πt
2T

)){1− a(X(t))} − γX(t)4, (2)

where γ is the Stefan constant. For appropriate parameter values, the graph of Ein −

X

U(X(t), t)

Xi(t) Xm(t) Xw(t)Xl Xh

Eout

Ein

Fig. 2: The energies Ein and Eout, and the corresponding potential U(x, t).

Eout has three time-dependent zeroes, say Xi(t), Xm(t) and Xw(t), the stable ones of
which can be interpreted as the very slowly varying meta-stable states of the system. As
we are in the one-dimensional situation, 1

c
(Ein−Eout) can be represented as a gradient

of some potential U(x, t), which has two wells with minima in Xi(t) and Xw(t) and a
saddle point at Xm(t). This yields the following equation for the global temperature:

Ẋ(t) = − ∂

∂x
U(X(t),

t

2T
) (3)

The time-dependence of U(x, t) caused by the sin-term from (2) produces two effects.
Firstly, the extrema Xi(t), Xm(t) and Xw(t) oscillate deterministically with small am-
plitudes and a period of about 105 years. Secondly, the depths of the potential wells
oscillate with the same period. Note that due to the smallness of A, the potential does
not degenerate into a one-well potential for all t ≥ 0.

The lower meta-stable state Xi(t) is interpreted as the temperature in the Ice Age’s
regime, the upper state Xw(t) in the warm age’s. They are both stable, whereas the
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intermediate state Xm(t) is not. Any solution of (3) is deterministic and is attracted
to one of the meta-stable states. Unfortunately, (3) allows no hopping between Xi

and Xw: the climate of the Earth is completely determined by the initial conditions.
Therefore the picture the deterministic system yields can hardly account for the real
observations. Both amplitudes of the curves Xi and Xw are too small to account for
the 10K observed difference. More importantly, observations show (see e.g. Claussen
et al. [12]) that transitions between stable climate states happen very abruptly and
spontaneously. In particular, the relaxation time between different states in scales of
thousands of years are often only several years.

It is therefore natural that C. Nicolis [30] and Benzi et al. [2, 3, 4] propose to
complete the energy-balance equation by a stochastic term of intensity ε, and look at

Ẋ(t) = −U ′(X(t),
t

2T
) +

√
εẆt, (4)

where Ẇ is white noise and U ′(x, t) = ∂
∂x
U(x, t). So, mathematically we find ourselves

in the domain of randomly and periodically perturbed dynamical systems which has
not been studied very intensively so far.

Confident to retain the essential effects of periodicity, to simplify further, we allow
the time dependence of U to be discontinuous. We consider the asymmetric time-
independent double-well potential U(x) with minima at ±1 and a saddle point at 0.
Then, the time-dependent potential is given by U for t ∈ [0, 1

2
), and U(−·) for t ∈ [1

2
, 1),

with a periodic continuation, see Fig. 3. We study the qualitative behaviour of sample
paths of (4) for fixed T and different values of ε. To emphasize their dependence on ε
and T we denote by Xε,T

t (x) the solutions of (4) starting at x.

x

U(x, t)U(x, t)

x1 100−1 −1

t ∈ [0, 1
2
) t ∈ [1

2
, 1)

Fig. 3: The time-periodic double-well potential U(x, t) on t ∈ [0, 1), x ∈ R.

If ε is very small, jumps between the wells are rare, and the typical time between
two jumps is much bigger than T . Thus, we observe a picture as in Fig. 4, exhibiting
only double-well structure of the potential, not time-periodicity. If ε � 1 the jumps
occur very often, and the trajectorial variance is so large (see Fig. 5) that we cannot
say anything about the spatial geometry of U and its time dependence. The most
interesting case concerns moderate ε. It turns out that there exists some ‘optimal’
value of ε such that the sample paths become ‘as periodic as possible’, with period 2T .
This means that although the trajectories are random, they stay close to the minimum
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Fig. 4: The sample path of Xε,T , ε ∼ 0.
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Fig. 5: The sample path of Xε,T , ε� 1.

of the deep well of U . As the wells switch their roles, they follow the global minimum
of the potential, see Fig. 6. In the language of climate modelling this means that the
Ice Ages might be a result of a spontaneous transition or even an ‘optimal tuning’
of the solar system, that is, the small random fluctuations (of weather, solar activity
etc.) and the small deterministic periodic influence of Jupiter might have produced
the drastic cumulative effect of abrupt climate change on the Earth. In Fig. 6 this new

T 3T2T

−1

t

Xε,T
t

1

0

Fig. 6: The sample path of Xε,T for ‘optimal’ ε.

regime is shown.
The natural question arises: can one quantify the effect by defining a measure of

goodness for the system (4) capable of distinguishing a noise intensity ε0 of optimal
tuning for which the trajectories follow the periodic input signal in a ‘best possible’
way?

Benzi et al. [3] studied the system (4) numerically with respect to the following
measure. They considered sample paths of the system on long time intervals, Fourier
analyzed them and plotted the power of the spectral component with period 2T as a

5



function of ε, averaged over some hundreds of realizations. It turns out that this curve
has a strong peak near some ε = ε0, which means that at this noise level the random
trajectories on average have the largest possible periodic component of period 2T .
This spectral measure of goodness was called the spectral power amplification (SPA)
coefficient. The phenomenon of optimal tunability was named stochastic resonance.
In comparison to conventional resonance, where the amplitude of the system increases
if the frequency of the external periodic driving force is close to the eigenfrequency of
the system, stochastic resonance is an effect of amplification of the random output’s
periodic component as a reply to a weak periodic perturbation in the presence of noise.

Stochastic resonance recently had a comeback in some higher-dimensional systems
studied by Ganopolski and Rahmstorf [21] which are much more realistic than en-
ergy balance models. In the analysis of the Greenland ice core record, the statisti-
cal properties of spontaneous intermediate warmings which are commonly known as
Dansgaard-Oeschger events, were found to be consistent with this effect. It is observed
that besides the metastable ice and warm age temperature states with transition times
around multiples of 104−105 years there is another metastable state at an intermediate
temperature accessible from the glacial state. Transition intervals cluster around inte-
ger multiples of 1500 years. Ganopolski and Rahmstorf reproduce these observations
by a simulation based on the CLIMBER coupled ocean-atmosphere model of moderate
complexity established by the Potsdam group. A stability analysis shows the exis-
tence of the intermediate metastable state, and suitable small periodic and random
excitations of the salinity balance of the North Atlantic as one of the system variables
produce temperature curves with abrupt transitions of the observed type. The empiri-
cal distribution of the interspike intervals (i.e. multiples of the basic transition period)
is seen to be a function of the noise amplitude (see also Imkeller and Herrmann [22]).

Since its discovery in the climate dynamical paradigm sketched above, the effect of
stochastic resonance has been found in a variety of physical systems: passive optical
bistable systems [13], in experiments with magnetoelastic ribbons [36], in supercon-
ducting quantum interference devices [23]. It was also observed in chemical systems
[28], as well as in biological ones [34, 26, 19]. For more information the reader is referred
to two big reviews on stochastic resonance [20, 1] which contain hundreds of references.

While physical studies of stochastic resonance usually deal with real or numerical
experiments, mathematical approaches face a number of difficulties. To overcome them,
simpler two-state models were suggested in [30, 14, 29]. They reduce the dynamics of
a diffusion in a double-well potential to the dynamics of a two-state process on the
skeleton space consisting only of the metastable states. For a more general investigation
of metastability in stochastic dynamics see Bovier et al. [10, 8, 9]. Indeed, if the noise
level is small, the diffusion sample paths are close to the local minima of the potential
wells. Thus, if we identify the left and the right wells with, say −1 and 1, and consider
a new process on the discrete space consisting of ±1, it carries information about the
inter-well dynamics of the diffusion. The intra-well small fluctuations of the diffusion
near the potential minima are now completely neglected.

McNamara and Wiesenfeld in [29] formally reduce the diffusion dynamics to a two-
state process. It is known that for small noise intensity ε transitions between the
potential wells occur at Kramers’ times. To exponential order they are given by e

∆U
ε ,
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where ∆U is the work to be done against the potential gradient to cross the barrier.
Assuming that transitions of their two-state process are induced by these times and the
height of the potential barrier is periodically modulated they approximately determine
the spectral properties of the two-state process in the limit as the amplitude of the
periodic signal vanishes.

Despite its popularity in the physical society, stochastic resonance attracted the at-
tention of mathematicians relatively lately. The first mathematical paper on this sub-
ject by Freidlin [17] considers the phenomenon from the point of view of the Freidlin-
Wentzell theory of large deviations. In this paper diffusions in a general potential
landscape with finitely many minima are considered. The attractor basins are sub-
divided into a hierarchy of cycles with main states corresponding to the deepest one
among the cycle states. In the presence of periodic forcing with period time scale eλ/ε,
in the small noise limit ε → 0 transitions between (the main states of) cycles with
critical hopping work close to λ will be periodically observed. Transitions with smaller
critical work may happen, but are negligible in the limit. So in the limit one observes
quasi-deterministic periodic hopping between some cycles of potential minima. In the
simplest case of two minima of potential depth V

2
and v

2
, v < V , the role of which

switches periodically with period T , for T larger than ev/ε it is shown that the diffu-
sion will be close to the deterministic periodic function jumping between the locations
of the deepest wells. We shall sketch Freidlin’s approach in Section 2.

A different step towards a mathematical understanding of stochastic resonance was
made recently by Berglund and Gentz [5, 6, 7]. For parametrized deterministic dynam-
ical systems passing through a pitchfork bifurcation point, the relaxation of solutions
to stable equilibria are known to happen after well known delays. Berglund and Gentz
exploit this observation to derive pathwise estimates for the trajectories of noisy pertur-
bations of these systems. These results are applied to situations in which the parameter
moves the system periodically or in hysteresis loops back and forth through bifurca-
tion points, for example in periodically changing double-well potentials. The papers
thus address some questions concerning the trajectorial behaviour in the context of
stochastic resonance.

1.2 Aims and scope of the paper

This paper deals with a mathematical foundation of the physical paradigm of stochastic
resonance. As opposed to Berglund and Gentz [5, 6, 7] we study the physicists’ favourite
measure of goodness for periodic tuning, the spectral power amplification coefficient
(SPA). In particular, we assess the question of whether reduced Markov chain models
as in McNamara, Wiesenfeld [29] present a robust and fiable picture of the diffusion’s
behaviour in the small noise limit.

Our main tool in studying stochastic resonance is the equilibrium (invariant) mea-
sure µε,T of the diffusion given by (4) which lives on the infinite cylinder R × [0, 2T ).
The SPA coefficient we investigate describes the spectral energy of period 2T carried
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by the averaged trajectories and is defined by

ηX(ε, T ) =

∣∣∣∣∫ 1

0

EµX
ε,T
2Tse

2πis ds

∣∣∣∣2 ,
where Eµ denotes the expectation with respect to the invariant measure. This measure
of goodness is considered as a function of the noise level ε and the half-period T .
Stochastic resonance occurs if ε 7→ ηX(ε, T ) has a local maximum. We shall determine
the optimal tuning rate, i.e. the coordinate ε(T ) of this maximum if T is large. Freidlin’s
results suggest that we have to restrict our search to the interval ( v

log T
,∞), since only

above the critical level v
log T

the process is able to leave the shallow well at all and
therefore show periodic behaviour.

The first step to find optimal tuning intensities ε consists in effectively reducing the
dynamics of the diffusion to the discrete space consisting of the two metastable states.
This will be done in Section 3. To mimic well the diffusion dynamics, we define two-
state continuous time Markov chains Y with transition probabilities corresponding to
the inverses of the Kramers’ times for leaving the corresponding wells. So transitions
from −1 to 1 happen at rate ϕ = pe−

V
ε , and at rate ψ = qe−

v
ε with constant arbitrary

pre-factors p, q. The time-periodic invariant measure is obtained as a solution of a
corresponding forward Kolmogorov equation, and the SPA coefficient of Y described
in Proposition 3.3 by

ηY (ε, T ) =
4

π2

T 2(ϕ− ψ)2

(ϕ+ ψ)2T 2 + π2

It is no surprise, that in the large period limit the resonance point exists for all values
of the parameters and is located at ε(T ) ≈ V+v

2 log T
.

In Section 4, we deal with the diffusion. Its equilibrium density is a solution of a
forward Kolmogorov (Fokker-Planck) equation, which in this case is a parabolic partial
differential equation. We study its solution using the Fourier method of separation of
variables. To apply it, the spectral properties of the diffusion’s infinitesimal generator
have to be studied precisely. This is done in Pavlyukevich [32] and will be dealt with in
a forthcoming paper. The essential observations are the following. Besides the trivial
eigenvalue of order zero, the first one λ1(ε) turns out to be exponentially small for
small noise level ε, and the first eigenfunction’s asymptotics can therefore be very well
described by means of a series expansion in powers of λ1(ε).

Of central importance to the analysis of goodness of tuning is a spectral gap property
of the second eigenvalue. We show that its absolute value is bounded below by some
positive constant which is independent of noise intensity. This has crucial implications
for ηX and ηY to be developed in Section 4. First of all, it means that only the first
two terms in the series expansion of the invariant density matter in the description the
SPA coefficient ηX . We obtain the following formula where the remainder term is very
small under weak conditions concerning the geometry of U

ηX(ε, T ) =
4

π2

(∫
R
ye−2U(y)/ε∫
R
e−2U(y)/ε

)2
T 2λ2

1

T 2λ2
1 + π2

+ r(ε, T ). (5)
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The expression for ηX is close to the SPA coefficient for a two-state Markov chain. In-

deed, if we choose the pre-factors in its infinitesimal generator as p =

√
U ′′(−1)|U ′′(0)|

2π
and

q =

√
U ′′(1)|U ′′(0)|

2π
, then ηX and ηY look very similar, since the factor in the parenthesis

in (5) is approximately 1 for small ε.
Surprisingly, however, dependencies on the fine structure of the potential function

U in the minima beyond the expected curvature properties enter the game and lead
to quite unexpected results. For example, a subtle drag away from the other well
caused by the sign of the third derivative of U in the deep well suffices to prevent
the spectral power amplification curve from having a local maximum in the parameter
range suggested by the approximating Markov chain. Contrary to what intuition tells
one of the physicists’ favourite quality functions does not show resonance effects at
all where the reduced model requires it should (Theorem 4.1). The reason for this
unexpected dramatic deviation from the approximating Markov chain behaviour lies
in the significance attributed to small fluctuations inside the potential wells by the
spectral power amplification coefficient. If these fluctuations are cut off, the Markov
chain is seen to be a good approximation in the small noise limit, and provides the
optimal tuning rate (Theorem 4.2). In all our fine asymptotics studies we extensively
use Laplace’s method of asymptotic evaluation of integrals depending on a parameter.
In an Appendix we collect all facts and formulae about this method used in the paper.

2 Stochastic Dynamics of Reduced Models

Although more than four hundred physical papers concerning stochastic resonance were
published in the last twenty years, a rigorous mathematical approach to the effect was
given only recently in [17]. In this paper stochastic resonance was considered from the
point of view of large deviations, and a lower bound for optimal tuning of the random
output to the periodic input was given. In this section we briefly formulate the facts
needed from Freidlin-Wentzell theory of perturbed dynamical systems [18] in the one-
dimensional case and discuss the results of [17] concerning the ‘optimal tuning’ of the
double-well oscillator.

2.1 Diffusion with small noise

Let ε > 0. We first consider the real valued diffusion Xε in a temporally fixed potential
landscape, given by the solution of the SDE

dXε
t = −U ′(Xε

t ) dt+
√
ε dWt, Xε

0 = x, t ≥ 0,

where W is a standard Brownian motion, and U a smooth function. We follow Freidlin
[17].

For T > 0, we introduce the action functional on the space C[0, T ] corresponding to
U by

S0T (h) =

{
1
2

∫ T
0

(ḣs + U ′(hs))2 ds, h absolutely continuous,
+∞, otherwise.
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It is easy to see that S0T ≥ 0, and if S0T (h) = 0 then h is a trajectory of the dynamical
system ẋ = −U ′(x) on the interval [0, T ].

Let x, y ∈ R. By means of the action functional we define the quasipotential

V (x, y) = inf{S0T (h) : h ∈ C[0, T ], h0 = x, hT = y, T > 0}.
The quasipotential describes the work done by a physical particle moving in the po-
tential landscape given by U to get from x to y. More precisely, let τ εy = inf{t > 0 :
Xε
t = y} and denote by Px the law of the diffusion starting at x. In these terms

V (x, y) = lim
T→∞

lim
ε→0

− logPx(τ
ε
y ≤ T ).

By means of the quasipotential one can describe the asymptotic behaviour of the
diffusion as ε → 0. Describing the asymptotics of transition times, it contains a
mathematical formulation of Kramers’ law.

Theorem 2.1 ([18]) Let [a, b] be a finite interval, 0 ∈ [a, b] be the unique zero of
U ′(x) on the interval, and 0 be the asymptotically stable point of the dynamical system
ẋ = −U ′(x). Let τ ε = inf{t > 0 : Xε

t /∈ [a, b]}. Then for any x ∈ (a, b) the following
holds:

lim
ε→0

ε logExτ
ε = min{V (0, a), V (0, b)} = V0,

lim
ε→0

Px(e
(V0−δ)/ε < τ ε < e(V0+δ)/ε) = 1 for any δ > 0.

�

Let us now specify U further. Let it be a double-well potential with minima at ±1
and a saddle point at the origin, and assume U(x) →∞, as |x| → ∞. Let U(−1) = −V

2
,

U(1) = −v
2
, U(0) = 0, 0 < v < V . This implies in particular that −1 marks the deep

well.
If x and y are in the same well it is easy to show that

V (x, y) = 2 max{U(y)− U(x), 0}. (6)

The pre-factor 2 in (6) explains why we choose the depths as V
2

and v
2
. In particular

U(y) < U(x) implies V (x, y) = 0 because we can descend in the potential landscape
from x to y along the deterministic trajectory, on which the action functional equals
zero. On the other hand, the way ‘up’ from y to x costs twice the difference between
U(x) and U(y).

Let x and y belong to different wells and suppose for example that −1 ≤ x, y ≤ 1.
In this case, we have to overcome a potential barrier of height U(0) − U(x) on the
way between x and 0, and the way ‘down’ to y is free. Consequently, V (x, y) =
2(U(0) − U(x)). Analogously, V (y, x) = 2(U(0)) − U(y). In particular, if x = −1
then V (x, y) = V , and if y = 1, we have V (y, x) = v. From Theorem 2.1 we can
conclude that the mean time to jump from the left well to the right is exponentially
large in ε, and is of order eV/ε. The mean time to jump back is smaller and is of order
ev/ε. These asymptotics suggest that if we want to record the inter-well motion of
the diffusion we should consider it on exponentially long time intervals. The following
theorem describes this behaviour precisely.
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Theorem 2.2 ([17]) Let T = T (ε) be such that

lim
ε→0

ε logT (ε) = λ > 0.

Let δ and A be arbitrary positive numbers, x ∈ R, and Λ denote the Lebesgue measure
on R. If λ > v, we have

Λ(t ∈ [0, A] : |Xε
tT (ε) + 1| > δ) → 0

in Px-probability as ε→ 0. If λ < v, we have

Λ(t ∈ [0, A] : |Xε
tT (ε) − sgn x| > δ) → 0

in Px-probability as ε→ 0. �

Xε
tT (ε)

t

21

−1

1

0

Fig. 7: The sample path of Xε
tT (ε), λ > v.

Indeed, on the time interval of length eλ/ε the diffusion always has enough time to
reach the deep well if λ > v. Moreover, it can make jumps back to the shallow well,
but the sum of the periods in which the trajectory is outside of a δ-neighbourhood of
−1 has a total length which is negligible in the limit ε→ 0 (see Fig. 7). If λ < v then
during the period of length eλ/ε the diffusion does not have enough time to leave the
well where it has started, so it stays in the δ-neighbourhood of the corresponding local
minimum with high probability.

2.2 Stochastic periodicity above critical noise level

Consider now the diffusion Xε,T in a time periodic potential given by the solution of
the SDE

dXε,T
t = −U ′(Xε,T

t ,
t

2T
) dt+

√
ε dWt, Xε,T

0 = x ∈ R, t ≥ 0, (7)

where the potential U(x, t) = U(−x, t + 1
2
) is a 1-periodic function of time and U ′

denotes ∂U
∂x

. We also assume that on the time interval [0, 1
2
) the function U is a double-

well potential as described in the previous section (see Fig. 3, p. 4). The parameter
T denotes the half-period with which the drift term in (7) switches its form. On the
intervals [kT, (k + 1)T ), k = 0, 1, . . . the diffusion Xε,T is time-homogeneous, one can
calculate the quasipotentials, and if the half period T is long enough, one can apply
Theorem 2.2 on each of the intervals. This leads to the following result.
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Theorem 2.3 ([17]) For ε > 0, let the half-period T = T (ε) be such that

lim
ε→0

ε logT (ε) = λ > 0

and δ > 0 and A > 0 be arbitrary, x ∈ R. Define a periodic and deterministic function
of time by

φ(t) =

{ −1, t ∈ [k, k + 1
2
),

1, t ∈ [k + 1
2
, k + 1), k ∈ Z+,

and denote by Λ the Lebesgue measure on R. If λ > v, we have

Λ(t ∈ [0, A] : |Xε,T
2T (ε)t − φ(t)| > δ) → 0 (8)

in Px-probability as ε→ 0.
If λ < v, we have

Λ(t ∈ [0, A] : |Xε,T
2T (ε)t − sgn x| > δ) → 0

in Px-probability as ε→ 0. �

1

1 2

−1

0

t

Xε,T
2T (ε)t

Fig. 8: The sample path of Xε,T
2T (ε)t, λ > v.

The statement of Theorem 2.3 is clear: the function φ(t) exhibits the location of the
global minimum of U at time 2T (ε)t. If the exponential order of T (ε) is bigger than v,
then independently of the initial point the trajectory has enough time to reach the deep
well during a half-period. In this case we observe some type of stochastic periodicity.
If λ < v, then T (ε) is too short for the diffusion to ‘feel’ the change of the potential,
and it stays in the same well with very high probability.

Theorem 2.3 provides one possible measure for periodicity of the trajectories. It is
given by the Lebesgue measure of the time the diffusion spends outside of a δ-tube
of the deterministic function φ. Some type of optimal tuning is also given: if the
half-period T (ε) is such that limε→0 ε logT (ε) < v we observe no reply to the periodic
perturbation of the drift in (7). Periodicity in the diffusion paths appears only if
limε→0 ε logT (ε) > v, and thus we have obtained the lower bound for possible periodic
tuning rates. We note also that the lower bound for tuning does not depend on the
absolute values of v and V . It is only important that v < V .

12



Theorem 2.3 gives no upper bound for T (ε). However, the upper bound should exist,
but, maybe, for some different measure of quality of the paths. Indeed, let λ� v. The
corresponding value T (ε) is then exponentially larger than both the mean times to
jump from the left to the right well and back. This means that Xε,T can make many
excursions to the shallow well, the cumulative duration of which is exponentially small
in comparison with the time spent in the deep well. The Lebesgue measure in (8) still
goes to zero in probability, but if we look at the sample paths, periodicity is destroyed
(see Fig. 9).

t

−1

1

1 20

Xε,T
2T (ε)t

Fig. 9: The sample path of Xε,T
2T (ε)t, λ� v.

A natural question arises: what other measures of quality for periodicity of the paths
can be considered, and what is the optimal tuning rate they provide? We shall deal
with these questions in the next sections, and compare the answers with Theorem 2.3.

3 Stochastic Resonance in Two-State Markov

Chains with Continuous Time

In the small noise limit, the diffusion given by (4) will spend most of its time very
close to the metastable states given by the potential minima ±1, while transitions
between the wells happen spontaneously with relatively short relaxation times. It is
therefore more than legitimate to expect that the main features of stochastic transition
phenomena such as our resonance problem are in fact well described by Markovian
motions on the reduced space consisting of the metastable states, with dynamics derived
from Kramers’ law. This point of view, taken in McNamara, Wiesenfeld [29], is very
common in related problems (see Huisinga et al. [24], Fischer et al. [16]). In this section,
we shall therefore study the stochastic resonance problem for two state Markov chains
with continuous time. With the genuine transition laws to be described in detail below,
we shall investigate tuning by means of the physicists’ favourite quality measure, the
SPA coefficient. It measures the amplitude of the spectral component of the averaged
diffusion trajectories corresponding to the input period 2T . We shall show that in
the simple setting induced by the geometry of the potential of our diffusion both
the invariant measure and the SPA coefficient of the reduced Markov chains can be
explicitly calculated. As a consequence, the optimal tuning rate maximizing the SPA
coefficient as a function of noise intensity ε can easily be determined.
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3.1 The Markov chain and its invariant measure

More precisely, consider a family of Markov chains Y ε,T = (Y ε,T
t )t≥0 on the state space

SY = {−1, 1}. Let us denote transition probabilities in the following way

pij(s, t; ε, T ) = P(Y ε,T
t = j|Y ε,T

s = i), i, j = ±1, 0 ≤ s ≤ t. (9)

As the diffusion given by (7), the Markov chain Y ε,T should be time-homogeneous on
intervals corresponding to half-periods. On these intervals the behaviour of the diffusion
is governed by the potential U(·) or U(−·) (see Fig. 3). The spatial antisymmetry of the
potential function can be transferred to the Markov chain by setting its infinitesimal
generator Qε,T (2Tt) to be temporally periodic with period 2T and equal to

Qε,T (t) =


Q1 =

(
−ϕ ϕ

ψ −ψ

)
, 0 ≤ t (mod 1) < 1

2
,

Q2 =

(
−ψ ψ

ϕ −ϕ

)
, 1

2
≤ t (mod 1) < 1,

(10)

We now have to define the transition probabilities ϕ and ψ figuring in Q1, Q2 in such
a way that the Markov chain retains the dynamical behaviour of the diffusion reduced
to its metastable states. In our setting, the states ±1 of the process Y ε,T correspond
to the right respectively left well of the potential. Theorem 2.1 states that the mean
time to leave the deep well of depth V

2
is of order e

V
ε and the mean time to leave the

shallow well of depth v
2
< V

2
is of order e

v
ε .

On the other hand, for the time-homogeneous Markov chain governed, for example,
by the infinitesimal matrix Q1 the mean time to jump from −1 to 1 equals ϕ−1 and the
mean time to jump from 1 to −1 equals ψ−1 which suggests the following expressions
for ϕ and ψ:

ϕ = pe−V/ε, ψ = qe−v/ε,

ε > 0, 0 < v < V,
(11)

with some subexponential pre-factors p, q > 0 not further specified at the moment.
On the intervals [kT, (k+1)T ), k ≥ 0, the process Y ε,T is therefore time-homogeneous

and its transition probabilities (9) are asymptotically as h→ 0 given by

p−1,1(t, t+ h; ε, T ) = ϕh+ o(h),

p1,−1(t, t+ h; ε, T ) = ψh+ o(h), 0 ≤ t (mod 2T ) < T,
(12)

and
p−1,1(t, t+ h; ε, T ) = ψh+ o(h),

p1,−1(t, t+ h; ε, T ) = ϕh+ o(h), T ≤ t (mod 2T ) < 2T,
(13)

To determine the invariant law of the process Y ε,T we formally have to consider a
new two-dimensional Markov process

Yε,T
t =

(
Y ε,T

2Tt ,
t

2T
(mod 1)

)
, t ≥ 0,
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on the state space SY = {−1, 1}× S1, which topologically corresponds to the product
of two circles.

The process Yε,T is time-homogeneous. Note that we have compressed time: it is
convenient to have the time scale independent of the parameter T . The infinitesimal
generator of Yε,T is given by

Bε,Tf(x, θ) = lim
h→0

Ex,θf
(
Y ε,T

2T (θ+h),
θ+h
2T

(mod 1)
)
− f(x, θ)

h
, (x, θ) ∈ SY. (14)

As x = ±1 we may think thatBε,T is defined on the space of vectors f(θ) = (f−(θ), f+(θ))∗

with smooth components. Using (12) and (13) gives

Bε,Tf =
1

2T

d

dθ
f +Qε,T (θ)f.

Let the vector νε,T = (ν−ε,T (θ), ν+
ε,T (θ))∗, θ ∈ [0, 1], denote the invariant density of Yε,T

w.r.t. the product of counting measure on {−1, 1} and Lebesgue measure on a circle
S1 normalized so that ν−ε,T (θ) + ν+

ε,T (θ) = 1. We shall call νε,T the invariant law of the

process Y ε,T . Indeed, for θ ∈ [0, 1]

Pν(Y
ε,T
2Tθ = ±1) = ν±ε,T (θ).

The invariant measure satisfies the forward Kolmogorov equation

B∗
ε,Tνε,T = 0,

and the continuity condition νε,T (0) = νε,T (1), where the adjoint operator is given by

B∗
ε,Tf = − 1

2T

d

dθ
f +Q∗

ε,T (θ)f.

From the symmetry between Q1 and Q2 in (10) we deduce

Proposition 3.1 The invariant measure of the process Yε,T has the following symme-
try property: ν±ε,T (θ) = ν∓ε,T (θ + 1

2
), 0 ≤ θ ≤ 1

2
.

Proof: The statement follows easily from the fact that if, for example, ν = (ν−, ν+)∗

is a solution of − 1
2T
ν̇ + Q∗

1ν = 0, then ν = (ν+, ν−)∗ satisfies − 1
2T
ν̇ + Q∗

2ν = 0,
together with the continuity condition and the uniqueness of the invariant measure.
Here, ν̇ = d

dθ
ν. �

It follows from Proposition 3.1 that in order to find the invariant measure, it is
enough to solve the boundary value problem

− 1

2T

d

dθ
νε,T +Q∗

1νε,T = 0,

ν−ε,T (0) = ν+
ε,T (1

2
),

ν−ε,T (θ) + ν+
ε,T (θ) = 1,

ν±ε,T (θ) > 0, θ ∈ [0, 1
2
],

(15)

which is done in the following
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Proposition 3.2 For T > 0 and ϕ and ψ defined by (11), the invariant measure of
the process Y ε,T equals

ν−ε,T (θ) =
ψ

ϕ+ ψ
+
ϕ− ψ

ϕ+ ψ

e−2(ϕ+ψ)Tθ

1 + e−(ϕ+ψ)T
,

ν+
ε,T (θ) =

ϕ

ϕ+ ψ
− ϕ− ψ

ϕ+ ψ

e−2(ϕ+ψ)Tθ

1 + e−(ϕ+ψ)T
;{

ν−ε,T (θ + 1
2
) = ν+

ε,T (θ),

ν+
ε,T (θ + 1

2
) = ν−ε,T (θ), 0 ≤ θ ≤ 1

2
.

(16)

Proof: Solving the differential equation in (15) and using the normalizing condition
gives the following general solution

ν−ε,T (θ) =
ψ

ϕ+ ψ
+ Ae−2(ϕ+ψ)Tθ, ν+

ε,T (θ) =
ϕ

ϕ+ ψ
−Ae−2(ϕ+ψ)Tθ,

where A is an arbitrary constant. Applying the boundary condition leads to

A =
ϕ− ψ

ϕ+ ψ

1

1 + e−(ϕ+ψ)T
,

which concludes the proof. �

Note that ν±ε,T (θ) is a sum of two parts. For θ ∈ [0, 1
2
], the time-independent pair

( ψ
ϕ+ψ

, ϕ
ϕ+ψ

) is the invariant measure of the time-homogeneous Markov chain with in-

finitesimal generator Q1, and (ν−ε,T (1
2
), ν+

ε,T (1
2
)) → ( ψ

ϕ+ψ
, ϕ
ϕ+ψ

) exponentially fast with
rate ϕ+ ψ as T →∞. This is an illustration of a classical result about convergence of
the law of a stochastic process to its invariant law.

On the second half-period, the Markov chain is governed by the infinitesimal gener-
ator Q2 and therefore (ν−ε,T (1), ν+

ε,T (1)) → ( ϕ
ϕ+ψ

, ψ
ϕ+ψ

), T → ∞, which is the invariant
law of the Markov process with generator Q2.

The invariant measure obtained in Proposition 3.2 is our main tool in studying the
periodic properties of the process Y ε,T . In the following subsection we shall introduce
and study the physical measure of goodness of periodic tuning.

3.2 Spectral power amplification coefficient

We define the Spectral Power Amplification coefficient as the power carried by the
averaged trajectory of the Markov chain on the period 2T by

ηY (ε, T ) =

∣∣∣∣∫ 1

0

EνY
ε,T
2Tse

2πis ds

∣∣∣∣2 , (17)

where Eν denotes the expectation w.r.t. the invariant measure νε,T .
The goal of this section is to study the behaviour of the SPA coefficient as a function

of ε and T , in particular its local maximum as a function of ε for fixed large T.
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Proposition 3.3 The SPA coefficient is given by

ηY (ε, T ) =
4

π2

T 2(ϕ− ψ)2

(ϕ+ ψ)2T 2 + π2
, (18)

with ϕ and ψ defined by (11).

Proof: We use (16) to obtain∫ 1

0

EνY
ε,T
2Tse

2πis ds =

∫ 1

0

(ν+
ε,T (s)− ν−ε,T (s))e2πis ds

= 2

∫ 1
2

0

(ν+
ε,T (s)− ν−ε,T (s))e2πis ds = 2

ϕ− ψ

ϕ+ ψ

(
i

π
+

1

πi− (ϕ+ ψ)T

)
.

This directly leads to (18). �

ηY (ε, T )

ε

0.2 0.4 0.6 0.8 10

2

3

1

Fig. 10: If p = q = 1, V = 3, v = 2 and T = 106 the SPA coefficient ηY (ε, T ) has a
local maximum at ε ≈ 0.197.

In the following Proposition we describe the local maxima of ε 7→ ηY (ε, T ).

Proposition 3.4 a) We have ηY (ε, T ) ≥ 0, ηY (0, T ) = 0.
b) Let 0 < β = v

V
< 1 and T > 0 be fixed. Consider the function

p̂(q) =
2π2qβ

2q2T 2(1− β) + π2 +
√

(2q2T 2(1− β) + π2)2 + 8π2q2T 2β(1− β)
, (19)

for which 0 ≤ p̂(q) ≤ βq, if q > 0, and p̂′(0) = β.
Let us consider three disjoint domains (see Fig. 11)

U0 ={(p, q) : 0 < p ≤ p̂(q), q > 0},
U1 ={(p, q) : p̂(q) < p ≤ q, q > 0},
U2 ={(p, q) : 0 < q < p}.

Then the SPA coefficient ηY (ε, T ) depends in the following way on the pre-factors p
and q:

17



0

U0
q

p

U2

U1

βq

Fig. 11: Typical form of the domains U0, U1 and U2.

1. if (p, q) ∈ U0, then ε 7→ ηY (ε, T ) is strictly increasing on (0,+∞);

2. if (p, q) ∈ U1, then ε 7→ ηY (ε, T ) has a unique local maximum on (0,+∞);

3. if (p, q) ∈ U2, then ε 7→ ηY (ε, T ) has a unique local maximum and vanishes at
ε̂ = (V − v)/ log (p

q
).

Moreover, for T → ∞ the domain U0 → ∅, and the ‘optimal tuning’ Tη = Tη(ε)
which gives the maximum of ηY (ε, T ) satisfies

Tη(ε) =
π√
2pq

√
v

V − v
e

V +v
2ε

{
1 +O(e−

V −v
ε )
}

and

ηY (ε, Tη(ε)) → 4

π2
as ε→ 0. (20)

Proof: Statement a) follows directly from (18).
Let us introduce the variable t = exp (−V

ε
) ∈ [0, 1]. Then ϕ = pt and ψ = qtβ, and

ηY (ε, T ) = ηYT (t) =
4

π2

T 2(pt− qtβ)2

(pt+ qtβ)2T 2 + π2
.

Taking the derivative of ηYT we find that the extrema of ηYT are the roots of the equation

tβ(pt− qtβ)
{
π2(qβ − pt1−β)− 2pqT 2(1− β)t(qtβ + pt)

}
= 0. (21)

The first parenthesis of (21) gives the root t = (q/p)
1

1−β which does not depend on T ,
is less than 1 if p > q, and corresponds to ε̂ = (V − v)/ log (p

q
).

Let us show that the function in the second parenthesis of (21) has exactly one root
if (p, q) ∈ U1 ∪U2, and no root if (p, q) ∈ U0. Denote the second parenthesis of (21) by
F (t). Note that F (0) = π2qβ > 0,

F ′(t) = −π2p(1− β)t−β − 2pq2T 2(1− β2)tβ − 4p2qT 2(1− β)t ≤ 0.
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Consequently, F is monotonically decreasing on (0, 1]. Hence, F has a unique root on
t ∈ (0, 1] if and only if F (1) ≤ 0. The latter inequality can be rewritten as the following
quadratic inequality w.r.t. p

2p2qT 2(1− β) + (2q2T 2(1− β) + π2)p− qβπ2 ≥ 0. (22)

Solving this inequality results in (19). The properties of p̂(q) follow from a straightfor-
ward calculation.

To find an ‘optimal tuning’ T = T (ε) we note that F (t) = 0 is a linear equation in
T 2 from which we get that

Tη =
π√
2pq

√
β

1− β
t−

1+β
2

(
1− p

q
1
β
t1−β

1 + p
q
t1−β

) 1
2

. (23)

It is clear that as T tends to ∞, the noise parameter ε tends to 0 and (23) can be
rewritten as

Tη =
π√
2pq

√
v

V − v
e

V +v
2ε

{
1 +O(e−

V −v
ε )
}
. (24)

Note that for large T the solution exists always, for any v, V, p, q, hence U0 → ∅ as
ε→ 0. The limit (20) is obtained by inserting (24) into (18). �

4 Stochastic Resonance in Diffusions

In this section we return to the diffusion in a time-periodic double-well potential. Our
aim is to compare the spectral power amplification coefficient of the diffusion with its
counterpart for the dynamically adapted continuous-time Markov chain on the two-
point space composed of the metastable states of the diffusion. The invariant density
of the diffusion satisfies the forward Kolmogorov (Fokker-Planck) equation, which in
this case is a parabolic partial differential equation with antisymmetric boundary con-
ditions. The invariant density is described by a Floquet type expansion along the
discrete spectrum of the diffusion’s infinitesimal generator. A fine analysis developed
in Pavlyukevich [32] built upon the spectral theory of the infinitesimal generator allows
to distinguish clearly between the important and the asymptotically vanishing parts
in the expansion. The main observation is that due to the double well structure of our
potential the first two eigenvalues of the infinitesimal generator associated with the
time-invariant potential are zero resp. exponentially small, while the remaining point
spectrum is separated from them by a constant positive gap independent of noise inten-
sity. As a consequence, the SPA coefficient which by definition is taken with respect to
the invariant measure will receive essential contributions only from the first two terms
in the invariant density’s expansion. Theorem 4.1 contains the asymptotics of the SPA
coefficient, if the noise parameter ε runs through the intervals [ v+δ

log T
, 2V

log T
], δ > 0. In

the large period limit T → ∞ these intervals shrink in the natural scale on the one
hand. Freidlin [17] on the other hand suggests that these are the relevant resonance
intervals to look for. This impression is in particular supported by the observation
made in Section 3 where we prove that the Markov chain SPA coefficient has a local
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maximum at ε ∼ v+V
2 log T

. Surprisingly, it turns out that for the diffusion the SPA tuning
curve is either decreasing or increasing on the resonance intervals. This means that the
reduction to a Markov chain on the metastable states, however naturally it main retain
the dynamical properties of the diffusion, does not preserve optimal tuning effects, at
least not for the physicists’ favourite measure of quality. The reason for this is hidden
in the significance of many small random fluctuations of the diffusion in the potential
valley bottoms where it spends most of the time. If we cut off these fluctuations by
identifying the valley bottoms with the minima themselves, we obtain a modified SPA
coefficient which exactly shows the same resonance effects as the Markov chain in the
large period limit (small noise limit).

4.1 Diffusion with time-periodic drift and its invariant density

Let us first formulate assumptions concerning the potential function generating our
diffusion.
U(·, ·) is periodic in time, i.e. U(·, t) = U(·, t + 1). We also assume that it is a

step-function in time alternating between two spatially antisymmetric states, i.e.

U(x, t) =

{
U(x), t ∈ [k, k + 1

2
),

U(−x), t ∈ [k + 1
2
, k + 1), k ∈ Z+.

(25)

The following hypotheses on the geometry of U will be used:

(S) U ∈ C∞(R);

(G) there exists R > 0 such that U(x) = x4/4 for |x| ≥ R;

(M) U has exactly two local minima at x = ±1 and one local maximum
at x = 0; moreover,

U(−1) = −V
2
, U(0) = 0, U(1) = −v

2
,

2

3
<

v

V
< 1;

the extrema are non-degenerate, i.e.

U ′′(±1) = ω± > 0, U ′′(0) = −ω0 < 0.

The condition 2
3
< v

V
< 1 may seem little transparent at first glance. Note that

it only means that the depths of the two potential wells are not too different. The
process Xε,T has continuous trajectories. The fast increase of the potential at infinity
guarantees that the process is positively recurrent. This means that for any initial
point, the mean time to enter any interval on R is finite. For details see [27], [18].

In case the process is defined by the SDE (4) there is no invariant measure in the
usual sense since the process in not time-homogeneous. On the other hand, the time-
periodicity of the drift −U ′(·, t) suggests that the law of Xε,T

t should converge to some
time-periodic law.

For convenience we rescale time t 7→ t
2T

. To give a rigorous mathematical meaning
to this we consider a new two-dimensional process

Xε,T
t = (Xε,T

2Tt, t (mod 1)), t ≥ 0.

20



It takes values on the cylinder R × S1, and is a time-homogeneous Markov process.
This means that it has an invariant measure mε,T on B(R × S1) with density µε,T ,
which is the unique positive solution of the forward Kolmogorov equation

A∗ε,Tµ
ε,T (x, θ) = 0, (x, θ) ∈ R × ([0, 1), (26)

with the continuity condition

µε,T (·, 0) = µε,T (·, 1) (27)

and such that
∫ 1

0

∫
R
µε,T (x, θ) dxdθ = 1. Note that µε,T (·, θ) determines the law of the

r.v. Xε,T
θ , and therefore

∫
R
µε,T (x, θ) dx = 1 for any θ ∈ [0, 1].

The operator

A∗ε,Tf =
ε

2

∂2

∂x2
f +

∂

∂x

(
∂

∂x
U f

)
− 1

2T

∂

∂θ
f, f ∈ C∞

0 (R × S1),

is the formal adjoint of the infinitesimal generator of Xε,T

Aε,Tf =
ε

2

∂2

∂x2
f − ∂

∂x
U
∂

∂x
f +

1

2T

∂

∂θ
f, f ∈ C∞

0 (R × S1).

Taking (25) into account we rewrite (26) and (27) in the form

ε

2

∂2

∂x2
µε,T +

∂

∂x

(
µε,TU ′

)
=

1

2T

∂

∂θ
µε,T , on R × (0, 1

2
),

ε

2

∂2

∂x2
µε,T (x, θ) +

∂

∂x

(
µε,TU

′)
=

1

2T

∂

∂θ
µε,T , on R × (1

2
, 1),

µε,T is positive and continuous on R × [0, 1],∫
R

µε,T (x, θ) dx = 1, θ ∈ [0, 1].

(28)

From the spatial antisymmetry (25) we can immediately deduce a similar antisymmetry
property for µε,T .

Proposition 4.1 For x ∈ R and θ ∈ (0, 1
2
) we have

µε,T (x, θ) = µε,T (−x, θ + 1
2
).

This proposition is analogous to Proposition 3.1 concerning the invariant law of the
Markov chain.

Proposition 4.1 together with (28) show that it is enough to find the invariant density
on the first half-period, i.e. in the strip R × [0, 1

2
] where it is a solution of the following

boundary-value problem

ε

2

∂2

∂x2
µε,T +

∂

∂x
(µε,TU ′) =

1

2T

∂

∂θ
µε,T on R × (0, 1

2
),

µε,T (·, 0) = µε,T (−·, 1
2
),

µε,T > 0, on R × [0, 1
2
],∫

R

µε,T (x, θ) dx = 1, θ ∈ [0, 1
2
].

(29)
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Fig. 12: The invariant density of time-inhomogeneous diffusion Xε,T .

A typical form of the invariant density µε,T as a function of x and θ is shown in Fig. 12.

In the following subsection we describe µε,T in the small noise limit in a Fourier type
expansion.

4.2 Asymptotic expansion of the invariant density

On the way to solve (29), separation of variables lead us to an eigenvalue problem for
the infinitesimal generator of a time-homogeneous diffusion. Assume that a solution
µε,T of the partial differential equation in (29) allows a factorization

µε,T (x, θ) = Ψε,T (x)Θε,T (θ), x ∈ R, θ ∈ (0, 1
2
).

Then it follows from (29) that

ε

2

(Ψε,T )′′

Ψε,T
+ U ′

(Ψε,T )′

Ψε,T
+ U ′′ =

1

2T

Θ̇ε,T

Θε,T
= −λ,

where f ′ = df
dx

and ġ = dg
dθ

etc. The constant λ does not depend on x and θ and is an
eigenvalue of the differential operator −L∗, where

L∗f =
ε

2
f ′′ + U ′f ′ + U ′′f, f ∈ C∞0 (R).

Due to the geometric properties of U (for details see Pavlyukevich [32]), L∗ is the
formal adjoint of the infinitesimal generator of the time-homogeneous diffusion with
potential U . As an operator on L2(R, ρ dx) with ρ = e

2U
ε it has a discrete spectrum

{−λk}k≥0 such that 0 = λ0 < λ1 < λ2 < · · · . Between λ1 and λ2 there is a spectral
gap. More precisely, there exists M > 0 and ε0 > 0 such that

λ2(ε) ≥M, for all 0 < ε ≤ ε0.
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Moreover, (see Pavlyukevich [32] for details), we have λ0 = 0, and the first eigenvalue

of L∗ is exponentially small in ε and equals λ1(ε) =
√
ω0ω+

2π
e−

v
ε (1 +O(ε)).

The normalized eigenfunctions { Ψk

‖Ψk‖ρ
}k≥0 provide a complete orthonormal system

in L2(R, ρ dx) with inner product (·, ·)ρ and norm ‖ · ‖ρ, i.e.∫
R

Ψk(y)

‖Ψk‖ρ
Ψj(y)

‖Ψj‖ρ e
2U(y)

ε dy = δkj, k, j ∈ Z+ (30)

We know Ψ0 = ρ−1, up to a multiplicative constant which we choose equal to 1. We
moreover normalize Ψ1 so that Ψ1(1) = e

v
ε . The fact that λ1(ε) is exponentially small

allows us to get rather precise information about the asymptotic properties of the first
eigenfunction Ψ1 of L∗ in the small noise limit. In fact, a series expansion of Ψ1 in pow-
ers of λ1(ε) is used in Pavlyukevich [32] to give precise estimates. Combining these with
Laplace’s method for the evaluation of singular integrals yields the following estimates
which will be important for describing the asymptotic properties of the diffusion’s SPA
coefficient.

Proposition 4.2 In the small noise limit ε→ 0 we have

‖Ψ0‖2
ρ =

√
πε

ω−
e

V
ε (1 +O(ε)),

‖Ψ1‖2
ρ =

√
πε

ω+
e

v
ε (1 +O(ε)),

‖Ψ1e
2U−U

ε ‖2
ρ =

√
πε

ω−
e

V
ε (1 +O(ε)),

(Ψ1,Ψ1)ρ =−
√
πε

ω+

e
v
ε (1 +O(ε)),

(Ψ1,Ψ0)ρ =

√
πε

ω−
e

V
ε (1 +O(ε)),∫

R

yΨ1(y) dy = 2

√
πε

ω+
e

v
ε (1 +O(ε)).

Let µε,T be the unique solution of (29). Consider µε,T (·, 0) and expand it into the
Fourier series with respect to the system {Ψk}k≥0

µε,T (·, 0) =
∞∑
k=0

aε,Tk
Ψk

‖Ψk‖ρ , (31)

where the Fourier coefficients are determined by the inner products

aε,Tk =

(
Ψk

‖Ψk‖ρ , µ
ε,T (·, 0)

)
ρ

, k ≥ 0.

Parseval’s equality states that

‖µε,T (·, 0)‖2
ρ =

∞∑
k=0

(aε,Tk )2.
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From the existence and uniqueness theorem for parabolic partial differential equa-
tions [15, 33] we obtain the following

Proposition 4.3 µε,T can be represented by the series

µε,T (x, s) =

∞∑
k=0

aε,Tk
Ψk(x)

‖Ψk‖ρ exp (−2Tλk s), x ∈ R, s ∈ [0, 1
2
]. (32)

The coefficients aε,Tk in the representation (31) can be expressed in terms of the
function µε,T (·, 0). Next we determine the first coefficient explicitly.

Proposition 4.4 For ε > 0 and T > 0

aε,T0 = aε0 = ‖Ψ0‖−1
ρ =

(∫
R

e−
2U(y)

ε dy

)−1/2

. (33)

Proof: Using the condition that
∫
R
µε,T (x, s) dx = 1 for any s and Ψ0 = e−

2U
ε we find

1 =

∫
R

µε,T (x, 0)e
2U(x)

ε
Ψ0(x)

‖Ψ0‖ρ‖Ψ0‖ρ dx = ‖Ψ0‖ρ
(
µε,T (·, 0),

Ψ0

‖Ψ0‖ρ

)
ρ

= aε,T0 ‖Ψ0‖ρ = aε,T0

(∫
R

e−
2U(y)

ε dy

)1/2

.

�

Corollary 4.1 Let T > 0 and s ≥ 0. There exists ε0 > 0 such that for 0 < ε ≤ ε0

‖µε,T (·, s)‖ρ ≥ aε0 ≥ Cε−1/4e−
V
2ε

Proof: The proof consists in evaluating the integral from (33) by Laplace’s method,
see (74). �

The second coefficient in the expansion (32) cannot be described explicitly. But
the following proposition gives an approximation the goodness of which is guaranteed
by the spectral gap. Recall that the spatially symmetric counterpart of a function
f : R → R will be denoted by f , i.e. f(x) = f(−x), x ∈ R.

Proposition 4.5 Let M be the constant marking the spectral gap. There exist ε0 > 0
such that for 0 < ε ≤ ε0 and T > 0 we have

aε,T1 =
1

‖Ψ0‖ρ

(
Ψ0

‖Ψ0‖ρ
, Ψ1

‖Ψ1‖ρ

)
ρ
+ r(ε, T )

1− e−λ1T
(

Ψ1

‖Ψ1‖ρ
, Ψ1

‖Ψ1‖ρ

)
ρ

, (34)

where

|r(ε, T )| ≤ e−MT‖µε,T (·, 0)‖ρ ·
∥∥∥∥ Ψ1

‖Ψ1‖ρ e
2(U−U)

ε

∥∥∥∥
ρ

. (35)
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Proof: From (32) and the boundary condition µε,T (x, 0) = µε,T (−x, 1
2
), x ∈ R, we

obtain ∞∑
k=0

aε,Tk
Ψk

‖Ψk‖ρ =
∞∑
k=0

aε,Tk e−λkT
Ψk

‖Ψk‖ρ . (36)

Multiplying both sides of (36) by e
2U
ε

Ψ1

‖Ψ1‖ρ
, integrating, and using (30) gives

aε,T1 = aε0

(
Ψ0

‖Ψ0‖ρ ,
Ψ1

‖Ψ1‖ρ

)
ρ

+ aε,T1 e−λ1T

(
Ψ1

‖Ψ1‖ρ ,
Ψ1

‖Ψ1‖ρ

)
ρ

+ r(ε, T ),

where

r(ε, T ) =

∞∑
k=2

aε,Tk e−λkT

(
Ψk

‖Ψk‖ρ ,
Ψ1

‖Ψ1‖ρ

)
ρ

.

This implies (34). To estimate the remainder term r, we now use the spectral gap
result. We may choose ε0 such that for ε ≤ ε0 the third eigenvalue λ2 ≥M > 0. Hence

|r(ε, T )| ≤ e−MT

∞∑
k=2

|aε,Tk |
∣∣∣∣∣
(

Ψk

‖Ψk‖ρ ,
Ψ1

‖Ψ1‖ρ

)
ρ

∣∣∣∣∣
≤ e−MT

[ ∞∑
k=2

(aε,Tk )2

]1/2 [ ∞∑
k=2

(
Ψk

‖Ψk‖ρ ,
Ψ1

‖Ψ1‖ρ

)2

ρ

]1/2

.

The inner products can be rewritten in the following form:(
Ψk

‖Ψk‖ρ ,
Ψ1

‖Ψ1‖ρ

)
ρ

=

∫
R

Ψk

‖Ψk‖ρ
Ψ1

‖Ψ1‖ρ e
2U
ε dx

=

∫
R

Ψk

‖Ψk‖ρ
Ψ1

‖Ψ1‖ρ e
2U
ε e−

2U
ε e

2U
ε dx

=

(
Ψ1

‖Ψ1‖ρ e
2(U−U)

ε ,
Ψk

‖Ψk‖ρ

)
ρ

Two applications of Parseval’s equality complete the estimate (35). �

The only function not even approximately known which appears in the estimate
(35) is µε,T (·, 0). The following proposition provides an upper bound for its ρ-norm in

terms of the explicit function ρ−1 = e−
2U
ε . Denote c =

∫
R
ρ−1(y) dy = (aε0)

−2. Then,
the function ρ−1/c is the invariant density of the time-homogeneous diffusion in the
potential U(x) = U(−x), x ∈ R. The spectral gap between λ0 = 0 and λ1 of the
corresponding infinitesimal generator implies that the law of the diffusion converges
to the invariant law exponentially fast and determines the rate of convergence. This
indicates that the density µε,T (·, 0) = µε,T (·, 1) should be close to ρ−1/c if T is large
enough. One can obtain the following estimate for the norm.

Proposition 4.6 For any δ > 0 there exist T0, ε0 > 0 such that for T ≥ T0, ε ∈
[ v+δ
log T

, ε0]

‖µε,T (·, 0)‖ρ ≤ 6‖ρ−1/c‖ρ. (37)
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Proof: Combining the triangle inequality with the inequality (a + b)2 ≤ 2(a2 + b2),
a, b ∈ R, gives

‖µε,T (·, 0)‖2
ρ ≤ 2‖µε,T (·, 0)− ρ−1

c
‖2
ρ + 2‖ρ

−1

c
‖2
ρ. (38)

For n ∈ N , denote by PΨ
n the orthogonal projector on the orthogonal complement of

the span of the first n eigenfunctions Ψ0, . . . ,Ψn−1. Let us estimate the first summand
in (38). Using the boundary condition in (29) we obtain

‖µε,T (·, 0)− ρ−1

c
‖2
ρ = ‖µε,T (·, 1

2
)− ρ−1

c
‖2
ρ = ‖µε,T (·, 1

2
)− ρ−1

c
‖2
ρ

=

∫
R

(
PΨ

1 µ
ε,T (·, 1

2
)
)2
ρ dy =

∫
R

∣∣PΨ
1 µ

ε,T (·, 1
2
)
∣∣ · ∣∣∣∣µε,T (·, 1

2
)− ρ−1

c

∣∣∣∣ ρ dy
≤
∫
R

∣∣PΨ
1 µ

ε,T (·, 1
2
)
∣∣µε,T (·, 1

2
)ρ dy +

∫
R

∣∣PΨ
1 µ

ε,T (·, 1
2
)
∣∣ ρ−1

c
ρ dy

≤
∫
R

∣∣PΨ
1 µ

ε,T (·, 1
2
)
∣∣µε,T (·, 1

2
)ρρ−1 ρ dy +

∫
R

∣∣PΨ
1 µ

ε,T (·, 1
2
)
∣∣ ρ−2

c
ρ ρ dy

≤ ‖PΨ
1 µ

ε,T (·, 1
2
)‖ρ
[∫

R

(
µε,T (·, 1

2
)
)2

(ρρ−1)2ρ dy

] 1
2

+

+ ‖PΨ
1 µ

ε,T (·, 1
2
)‖ρ
[∫

R

(
ρρ−2

c

)2

ρ dy

]1
2

≤ e−λ1T max{ρρ−1} · ‖µε,T (·, 0)‖2
ρ +

e−λ1T

c

[∫
R

ρ2ρ−3 dy

]1
2 ‖µε,T (·, 0)‖ρ.

Taking into account the latter inequality and (38) we obtain a quadratic inequality for
‖µε,T (·, 0)‖ρ

(1− 2e−λ1T max{ρρ−1})‖µε,T (·, 0)‖2
ρ

− 2
e−λ1T

c

[∫
R

ρ2ρ−3 dy

]1
2 ‖µε,T (·, 0)‖ρ − 2‖ρ

−1

c
‖2
ρ ≤ 0.

(39)

Let us estimate the coefficients of (39) and thus find an upper bound for ‖µε,T (·, 0)‖ρ.
Let ε0 be given by the spectral gap condition. For any δ > 0 and T large enough to

be specified later let v+δ
log T

≤ ε ≤ ε0. Then for some C > 0, recalling the asymptotics of

λ1(ε)

e−λ1T ≤ exp {−
√
ω0ω+

2π
T−

v
v+δT (1 +O(

1

log T
))} ≤ exp {−CT δ

v+δ}. (40)

This expression tends to 0 exponentially fast as T →∞. Moreover,

max{ρρ−1} = exp {2

ε
max(U(−x) − U(x))} = exp {α

ε
},

where α = 2 max{U(−x)−U(x)} ≥ V −v > 0 is a finite number, given by the potential
U . For ε ≥ v+δ

log T
we obtain

max{ρρ−1} ≤ T
α

v+δ . (41)
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Similarly, let β ′ = 2 max {2U(−x)− 3U(x)} ≥ 3V − 2v > 0. Then, using Laplace’s
method, see (74), and recalling (G) we can estimate for some C1 > 0

1

c

[∫
R

ρ2ρ−3 dy

]1
2

≤ C1

√
εe

β′−V
ε ≤ T

β
v+δ (42)

for T large enough, ε ≥ v+δ
log T

and some β > β ′ − V ≥ 2(V − v) > 0.

Since max{U(x) − 2U(−x)} ≥ V − v
2
> 0, the free term of (39) is estimated for

v+δ
log T

≤ ε ≤ ε0 by ∥∥∥∥ρ−1

c

∥∥∥∥2

ρ

=
1

c2

∫
R

e
2
ε
(U(y)−2U(−y)) dy ≥ C2 logTT−

v
v+δ , (43)

where C2 is a positive constant. This estimate means that the norm ‖ρ−1/c‖ρ decays
in T not faster than polynomially.

Using (38), (40), (41) and (42) implies that (39) holds if the following inequality
holds:

‖µε,T (·, 0)‖2
ρ(1− 2e−CT

δ
v+δ

T
α

v+δ )− 2e−CT
δ

v+δ
T

β
v+δ ‖µε,T (·, 0)‖ρ − 2

∥∥∥∥ρ−1

c

∥∥∥∥2

ρ

≤ 0.

Consequently,

‖µε,T (·, 0)‖ρ ≤
e−CT

δ
v+δ

T
β

v+δ +

√
(e−CT

δ
v+δ T

β
v+δ )2 + 2‖ρ−1

c
‖2
ρ(1− 2e−CT

δ
v+δ T

α
v+δ )

1− 2e−CT
δ

v+δ T
α

v+δ

≤ 2

(
‖ρ

−1

c
‖ρ +

√
‖ρ

−1

c
‖2
ρ + 2‖ρ

−1

c
‖2
ρ

)

≤ 6‖ρ
−1

c
‖ρ

for T ≥ T0, where T0 is the minimal value for which v+δ
log T

≤ ε0,

1− 2e−CT
δ

v+δ
T

α
v+δ ≥ 1

2
,

and

e−CT
δ

v+δ
T

β
v+δ ≤ C1 logTT−

v
v+δ ≤ ‖ρ

−1

c
‖ρ.

�

4.3 Spectral power amplification

This and the following subsections are devoted to the problem of stochastic resonance
for the diffusion (4). As a measure of quality of tuning, we shall consider the spectral
power amplification coefficient, just as for the two-state reduction in Section 3. Of
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course, to make the two-state chain a consistent model of the reduced diffusion dy-
namics, we now have to adapt the pre-factors p and q to recover the true asymptotics
of Kramers’ times hidden in the precise description of λ1. In this setting, our original
plan was to prove that the resonance point obtained in Section 3 for the SPA coeffi-
cient of the Markov chain determines and thus characterizes a resonance point for the
diffusion, in the small noise limit. To our surprise, this turns out not to be the case,
as we shall now make precise.

The spectral power amplification coefficient is defined by

ηX(ε, T ) =

∣∣∣∣∫ 1

0

EµX
ε,T
2Tse

2πis ds

∣∣∣∣2 . (44)

It will be compared with the analogous coefficient (17) of the Markov chain. Hereby
we take the average with respect to the invariant law of the diffusion the density of
which is µε,T .

The SPA coefficient describes the energy of the averaged trajectory carried by the
spectral component of period 2T , i.e. the period of the ‘input signal’.

First, let us rewrite and simplify (44). We get

ηX(ε, T ) =

∣∣∣∣∫ 1

0

EµX
ε,T
2Tse

2πis ds

∣∣∣∣2
=

∣∣∣∣∣
∫ 1/2

0

e2πis
∫
R

xµε,T (x, s) dx ds+

∫ 1

1/2

e2πis
∫
R

xµε,T (x, s) dx ds

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ 1/2

0

e2πis
∫
R

xµε,T (x, s) dx ds+ eπi
∫ 1/2

0

e2πis
∫
R

xµε,T (x, s+
1

2
) dx ds

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ 1/2

0

e2πis
∫
R

xµε,T (x, s) dx ds−
∫ 1/2

0

e2πis
∫
R

xµε,T (−x, s) dx ds
∣∣∣∣∣
2

= 4

∣∣∣∣∣
∫ 1/2

0

e2πis
∫
R

xµε,T (x, s) dx ds

∣∣∣∣∣
2

= 4
∣∣SX(ε, T )

∣∣2 .
Using (32) we find

SX(ε, T ) =

∫ 1/2

0

e2πis
∫
R

xµε,T (x, s) dx ds =

aε0

∫ 1/2

0

e2πis ds

∫
R

x
Ψ0(x)

‖Ψ0‖ρ dx+

aε,T1

∫ 1/2

0

e2πise−2λ1Ts ds

∫
R

x
Ψ1(x)

‖Ψ1‖ρ dx+ r1(ε, T ),

(45)

where

r1(ε, T ) =

∫ 1/2

0

e2πis
∫
R

x
∞∑
k=2

aε,Tk
Ψk(x)

‖Ψk‖ρ exp (−2Tλk s) dx ds. (46)
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In the sequel, we shall occasionally use the symbol x to also denote the identity function
on R, x 7→ x.

Proposition 4.7 There exists ε0 > 0 such that for 0 < ε ≤ ε0 and T > 0 we have

|r1(ε, T )| ≤ 1

2TM
‖µε,T (·, 0)‖ρ · ‖xe− 2U

ε ‖ρ, (47)

with M from the spectral gap condition.

Proof: Indeed, employing the spectral gap for the fourth inequality, we deduce

|r1(ε, T )| ≤
∞∑
k=2

|aε,Tk |
∫ 1/2

0

e−2Tλks ds

∣∣∣∣∫
R

x
Ψk(x)

‖Ψk‖ρ dx
∣∣∣∣

≤
∞∑
k=2

|aε,Tk |
∣∣∣∣∫
R

x
Ψk(x)

‖Ψk‖ρ dx
∣∣∣∣ 1− exp (−λkT )

2λkT

≤ 1

2λ2T

∞∑
k=2

|aε,Tk |
∣∣∣∣∫
R

x
Ψk(x)

‖Ψk‖ρ dx
∣∣∣∣

≤ 1

2MT

[ ∞∑
k=2

(aε,Tk )2

∞∑
k=2

(
xe−

2U
ε ,

Ψk

‖Ψk‖ρ

)2

ρ

]1/2

.

It remains to apply Parseval’s equality. �

We next determine the leading term of SX(ε, T ). We use formula (45), and recall
that the coefficients aε0 and aε,T1 are obtained in Propositions 4.4 resp. 4.5.

Lemma 4.1 For any δ > 0 there exist T0, ε0 > 0 such that for T ≥ T0 and ε ∈ [ v+δ
log T

, ε0]

SX(ε, T ) =
i

π

∫
R
yΨ0(y) dy

‖Ψ0‖2
ρ

− 1 + e−λ1T

2(πi− λ1T )

∫
R
yΨ1(y) dy

‖Ψ0‖2
ρ

(Ψ0,Ψ1)ρ

‖Ψ1‖2
ρ − e−λ1T (Ψ1,Ψ1)ρ

+ r2(ε, T ),

(48)

where

|r2(ε, T )| ≤ 6

MT

(∫
R

e−
2U(y)

ε dy

)−1

‖e− 2U
ε ‖ρ · ‖xe− 2U

ε ‖ρ, (49)

and M is the spectral gap constant.

Proof: The leading term of (48) is obtained from (45) by integration in s ∈ [0, 1
2
].

Let us estimate the error term r2(ε, T ) which is composed of r1(ε, T ) and r(ε, T ) from
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formula (34). Using Proposition 4.7 and Proposition 4.5, we get

|r2(ε, T )| ≤ |r1(ε, T )|

+
|r(ε, T )|

‖Ψ0‖ρ|1− e−λ1T ( Ψ1

‖Ψ1‖ρ
, Ψ1

‖Ψ1‖ρ
)ρ|

∣∣∣∣ 1 + e−λ1T

2(πi− λ1T )

∫
R

y
Ψ1(y)

‖Ψ1‖ρ dy
∣∣∣∣

≤ 1

2MT
‖µε,T (·, 0)‖ρ · ‖xe− 2U

ε ‖ρ

+
e−MT

‖Ψ0‖ρ
‖µε,T (·, 0)‖ρ · ‖Ψ1e

2U−U
ε ‖ρ

|‖Ψ1‖2
ρ − e−λ1T (Ψ1,Ψ1)ρ|

∣∣∣∣∫
R

yΨ1(y) dy

∣∣∣∣
=

1

2MT
‖µε,T (·, 0)‖ρ

×
(
‖xe− 2U

ε ‖ρ +
2MTe−MT

‖Ψ0‖ρ
‖Ψ1e

2U−U
ε ‖ρ · |

∫
R
yΨ1(y) dy|

|‖Ψ1‖2
ρ − e−λ1T (Ψ1,Ψ1)ρ|

)
.

(50)

Note that for T large enough Laplace’s method yields

C1 ≤ max
ε∈[ v+δ

log T
,ε0]
‖xe− 2U

ε ‖ρ = max
ε∈[ v+δ

log T
,ε0]

(∫
R

y2e−
2U(y)

ε dy

)1
2

≤ C2T
V

2(v+δ)

for some positive constants C1 and C2. This means that ‖xe− 2U
ε ‖ρ is bounded on

[ v+δ
log T

, ε0] polynomially in T . Next we show that due to the factor e−MT the second

summand in the parenthesis in (50) is exponentially small in T .
Using Proposition 4.2 we estimate in ε ∈ [ v+δ

log T
, ε0] for T large enough and with

universal constant C eventually changing from line to line

2MTe−MT

‖Ψ0‖ρ
‖Ψ1e

2U−U
ε ‖ρ · |

∫
R
yΨ1(y) dy|

|‖Ψ1‖2
ρ − e−λ1T (Ψ1,Ψ1)ρ|

≤ CTe−MT
4
√
εe

V
2ε · √εe v

ε

4
√
εe

V
2ε
√
εe

v
ε (1 + e−λ1T )

≤ CTe−MT ≤ ‖xe− 2U
ε ‖ρ.

(51)

Applying the previous formula and the inequality ‖µε,T (·, 0)‖ρ ≤ 6‖ρ−1/c‖ρ obtained
in Proposition 4.6 to (50) completes the proof. �

Next we determine the value of the spectral power amplification coefficient ηX(ε, T )
in the interval [ v+δ

log T
, ε0] for δ > 0 and large T . For abbreviation of the leading term,

let us set

b0 = bε0 =

∫
R
yΨ0(y) dy

‖Ψ0‖2
ρ

=

∫
R
ye−

2U(y)
ε dy∫

R
e−

2U(y)
ε dy

,

b1 = bε,T1 = −1 + e−λ1T

2

∫
R
yΨ1(y) dy

‖Ψ0‖2
ρ

(Ψ0,Ψ1)ρ

‖Ψ1‖2
ρ − e−λ1T (Ψ1,Ψ1)ρ

.

30



Then (48) can be rewritten in the form

SX(ε, T ) =
i

π
b0 +

1

πi− λ1T
b1 + r2(ε, T ),

and therefore

ηX(ε, T ) = 4|SX(ε, T )|2 =
4

π2

b20(λ1T )2

π2 + (λ1T )2
+ 4

(b1 − b0)
2

π2 + (λ1T )2
+ r3(ε, T ), (52)

where
r3 = 4|r2|2 + 8 Re (sXr∗2), (53)

‘∗’ denotes the complex conjugate and sX = i
π
b0 + 1

πi−λ1T
b1 is the leading term of SX .

We see that ηX is represented as a sum of three terms. Let us recall its Markov chain
counterpart ηY determined in Proposition 3.3. We have

ηY (ε, T ) =
4

π2

T 2(ϕ− ψ)2

π2 + (ϕ+ ψ)2T 2
. (54)

It is clearly seen, that the first leading term of (52) is similar to (54). The correspon-
dence were exact if λ1 ≈ ψ ± ϕ and b0 ≈ 1.

In the following Lemma we obtain asymptotic estimates for b0 and b1.

Lemma 4.2 There is ε0 > 0 such that for ε ≤ ε0 we have

b0 = −1− U (3)(−1)

4ω2−
ε+O(ε2), (55)

b1 = −1 +O(ε), (56)

and consequently

b20 = 1 +
U (3)(−1)

2ω2−
ε+O(ε2), (57)

(b1 − b0)
2 = O(ε2). (58)

Proof: We use Laplace’s method to obtain the asymptotic expansions for the integrals∫
R
e−

2U(y)
ε dy and

∫
R
ye−

2U(y)
ε dy; compare the formulae (73) and (75) in the Appendix.

We get∫
R

e−
2U(y)

ε dy =

√
πε

ω−
e

V
ε

[
1 +

ε

16ω3−

(
5U (3)(−1)2

3
− ω−U (4)(−1)

)
+O(ε2)

]
,∫

R

ye−
2U(y)

ε dy = −
√
πε

ω−
e

V
ε

×
[
1 +

U (3)(−1)

4ω2−
ε+

ε

16ω3−

(
5U (3)(−1)2

3
− ω−U (4)(−1)

)
+O(ε2)

]
.
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The relationships (55) and (57) follow from these formulae and the asymptotic expan-

sion rule 1+a1ε+O(ε2)
1+a2ε+O(ε2)

= 1 + (a1 − a2)ε+O(ε2), a1, a2 ∈ R.
The estimate for b1 is obtained analogously to Lemma 4.1 with the help of Propo-

sition 4.2. More precisely, we get

b1 = −1 + e−λ1T

2

∫
R
yΨ1(y) dy

‖Ψ0‖2
ρ

(Ψ0,Ψ1)ρ

‖Ψ1‖2
ρ − e−λ1T (Ψ1,Ψ1)ρ

= −
2
(
1 + e−λ1T

) ·√ πε
ω+
e

v
ε (1 +O(ε)) ·

√
πε
ω− e

V
ε (1 +O(ε))

2
√

πε
ω− e

V
ε (1 +O(ε)) ·

(√
πε
ω+
e

v
ε (1 +O(ε)) + e−λε

1T
√

πε
ω+
e

v
ε (1 +O(ε))

)
= −1 +O(ε).

The combination of (55) and (56) leads to (58). �

Let us compare the first term in (52) with ηY . Lemma 4.2 states that b0 ≈ 1 as
ε→ 0. Recall that

λ1 ≈
√
ω0ω+

2π
e−

v
ε ,

and that the infinitesimal probabilities in Section 3 were defined by ϕ = pe−
V
ε and

ψ = pe−
v
ε , with p, q > 0.

We now choose p and q so that Kramers’ times for the diffusion and the reducing
Markov chain coincide not only to exponential order, but in addition up to the leading
subexponential pre-factors. If we set

p =

√
ω0ω−
2π

, q =

√
ω0ω+

2π
(59)

we also get
ψ + ϕ ≈ λ1, ψ − ϕ ≈ λ1

to the leading subexponential pre-factor. This moreover implies

b20
(λ1T )2

π2 + (λ1T )2
≈ (ψ − ϕ)2T 2

π2 + (ψ + ϕ)2T 2
.

This correspondence is a sure temptation for suspecting that provided the remainder
terms in (52) are small enough, the SPA coefficients of the diffusion and the Markov
chain are close. This also strongly suggests that one could be able to relate asymptot-
ically the optimal tuning rates for the diffusion and the reducing Markov chain.

This argument is in fact very common in the physics literature [30, 20, 1] and is
used to pass to a simpler two-state framework for the investigation of various dynamical
properties of the diffusion in the small noise limit, especially in the context of stochastic
resonance. This approach will now be shown to possibly have drastic side effects.
In determining eigenvalues and Kramers’ times we always had to take into account
a multiplicative correction term of the type 1 + O(ε). The errors of order O(ε) in
all the formulae we have derived reflect small random fluctuations of the diffusion
near the metastable states of the potential. Neglecting these terms means neglecting
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the ‘diffusive’ nature of the diffusion. Although these fluctuations are small, they
occur with high probability. This leads to very subtle drag effects in the potential
wells’ bottoms disturbing or even destroying the tuning picture the two-state reduction
presents.

In Section 3 the optimal tuning rate for the Markov chain Y ε,T in the sense of the
SPA coefficient was determined by

ε =
V + v

2 logT

1 +
log
(

π√
2pq

√
v

V−v

)
logT

+O
(

1

log2 T

) .

If the diffusion’s tuning properties corresponding to the SPA coefficient were retained
by the reducing Markov chain, we would expect a local maximum of the SPA coefficient
ηX(·, T ) at some point ε(T ) ≈ V+v

2 log T
. Let us consider α 7→ ηX( α

log T
, T ) for large T on

the interval
[v + δ,∆], for some δ > 0, ∆ > v + δ.

On the ε-scale this corresponds to shrinking intervals [ v+δ
log T

, ∆
logT

]. We shall investigate,

whether α 7→ ηX( α
logT

, T ) possesses a local maximum for large T .

Theorem 4.1 Let 0 < δ < v
3

and ∆ > v + δ be fixed. Let maxx∈R{U(x)− 2U(−x)} <
V + v. Then there exists T0 > 0 such that for T > T0, α ∈ [v + δ,∆] we have

ηX(
α

logT
, T ) =

4

π2

(
1 +

U (3)(−1)

2ω2−

α

log T

)
+O

(
1

log2 T

)
.

Remark 4.1 Geometrically, the condition maxx∈R{U(x)− 2U(−x)} < V + v may be
seen to express the fact that the potential is not too asymmetric outside of the wells.

Proof: The proof consists in expanding (52) as T →∞ and estimating the remainder
terms.

First, we note that in order to apply Lemma 4.1 the noise parameter ε must satisfy
ε ∈ [ v+δ

log T
, ε0] for some ε0 > 0. It is clear that to verify this condition it is enough to

take T0 > e∆/ε0 .
Consider ηX( α

log T
, T ) for T > 0. The factor b0 in the leading term of ηX is expanded

with the help of Lemma 4.2.
On the interval [ v+δ

log T
, ∆

log T
] with some constant C > 0 we estimate

(λ1T )2 ≥ C(e−
v
εT )2 ≥ C(T 1− v

v+δ )2 = CT
2δ

v+δ . (60)

This results in

(λ1T )2

π2 + (λ1T )2
= 1− π2

π2 + (λ1T )2
= 1 +O

(
1

(λ1T )2

)
= 1 +O

(
1

T
2δ

v+δ

)
.

Hence, we obtain the expansion of the leading term of (52)

4

π2

b20(λ1T )2

π2 + (λ1T )2
=

4

π2

(
1 +

U (3)(−1)

2ω2−

α

log T

)
+O

(
1

log2 T

)
.
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It remains to estimate the terms 4(b1−b0)2

π2+(λ1T )2
and |r3|. Analogously to (60), the first one

is of the order T−
2δ

v+δ log−2 T on α ∈ [v + δ,∆] as T →∞ since (b1 − b0)
2 = O( 1

log2 T
).

Consider the third term given by (53):

|r3(ε, T )| ≤ 8|sX(ε, T )||r2(ε, T )|+ 4|r2(ε, T )|2,

where

|sX(ε, T )| =
(

1

π2

b20(λ1T )2

π2 + (λ1T )2
+

4(b1 − b0)
2

π2 + (λ1T )2

) 1
2

≤ 1

2

for T ≥ T0,
v+δ
log T

≤ ε ≤ ∆
log T

.

Let us estimate |r2(ε, T )|. Lemma 4.1 states that

|r2(ε, T )| ≤ 6

MT

[∫
R
e−

2
ε
(2U(−y)−U(y)) dy

]1
2
[∫
R
ye−

2U(y)
ε dy

]1
2∫

R
e−

2U(y)
ε dy

.

Assume that maxx∈R{U(x) − 2U(−x)} < κ, where κ is a positive number. Obviously,
κ > V − v

2
> 0, since

max
x∈R

{U(x)− 2U(−x)} ≥ U(1)− 2U(−1) = V − v

2
.

Then, using Laplace’s method we obtain for some C > 0 independent of ε ≤ ε0

|r2(ε, T )| ≤ C
e

κ
2ε e

V
2ε

Te
V
ε

= C
e

κ−V
2ε

T
.

If we choose κ = V + v and δ ∈ (0, v
3
), then the inequality v+2δ

2(v+δ)
> 2δ

v+δ
entails that

max
α∈[v+δ,∆]

∣∣∣∣r2( α

log T
, T )

∣∣∣∣ ≤ C
1

T 1− v
2(v+δ)

= o

(
1

T
2δ

v+δ

)
, δ ∈ (0, v

3
).

Thus, the remainder terms in (52) are polynomially small and of the order T−
2δ

v+δ log−2 T .
This completes the proof. �

As we see, the form of the tuning curve for the SPA coefficient crucially depends on
the sign of U (3)(−1). If U (3)(−1) > 0, the tuning curve increases in α and does not
have a local maximum on the interval [ v+δ

log T
, ∆

log T
]. If U (3)(−1) < 0 then ηX decreases

and does not have a local maximum either.
Moreover, depending on the sign of U (3)(−1), the resonance curve is either greater or

less than 4
π2 . However on the resonance interval, one can see that the SPA coefficient is

near the maximal value of its Markov chain counterpart. This means, that amplification
occurs, but an optimal tuning rate cannot be determined. Especially, the Markov chain
behaviour is not shared by the diffusion, and the optimal tuning rate by the chain is
not asymptotically equal to an optimal tuning rate for the diffusion, in which sense
ever the latter may exist.
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The observed subtle drag effect may be interpreted in the following way. If U (3)(−1) <
0, the potential in the deep well slightly leans towards the shallow one. Therefore in
the ε-window considered increasing the noise intensity tends to reduce the averaged
overall amplitude of the motion.

In case U (3)(−1) > 0, the outward leaning of the potential in its global maximum
increases the averaged overall amplitude of the random motion with increasing noise
intensity.

4.4 Optimal tuning for the modified SPA coefficient.

Stochastic resonance is an inter-well and not an intra-well effect. Given our experience
gained in the previous subsection, we now suppress fluctuations near the potential
minima and take into account only big hoppings between the wells. In this modified
setting, we shall now show that the behaviour of the reducing Markov chain is correctly
retained asymptotically in the small noise limit.

In order to cut off small random fluctuations near −1 and 1 we define a function

g(x) =


x, x ∈ (−∞, x1] ∪ [x2, y1] ∪ [y2,∞),

−1, x ∈ [x1, x2],

1, x ∈ [y1, y2],

where x1 < −1 < x2 < 0 are such that U(x1) = U(x2) = −V
4
, and 0 < y1 < 1 < y2 are

such that U(y1) = U(y2) = −v
4
.

−1 1 x

g(x)

−1

1

x1 x2 y1 y2

Fig. 13: Function g designed to cut off small fluctuations.

For ε, T > 0 we consider the modified SPA coefficient

η̃X(ε, T ) =

∣∣∣∣∫ 1

0

Eµg(X
ε,T
2Ts)e

2πis ds

∣∣∣∣2 .
By inspection of the steps in the calculations of subsection 4.3, replacing x with g(x)

if necessary, we obtain a formula for η̃X which is analogous to (52):

η̃X(ε, T ) =
4

π2

b̃20(λ1T )2

π2 + (λ1T )2
+ 4

(̃b1 − b̃0)
2

π2 + (λ1T )2
+ r̃3(ε, T ), (61)
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where

b̃0 =

∫
R
g(y)e−

2U(y)
ε dy∫

R
e−

2U(y)
ε dy

,

b̃1 = −1 + e−λ1T

2

∫
R
g(y)Ψ1(y) dy

‖Ψ0‖2
ρ

(Ψ0,Ψ1)ρ

‖Ψ1‖2
ρ − e−λ1T (Ψ1,Ψ1)ρ

,

r̃3(ε, T ) = 4|r̃2(ε, T )|2 + 8 Re (s̃X(ε, T )r̃∗2(ε, T )),

s̃X(ε, T ) =
i

π
b̃0 +

1

πi− λ1T
b̃1,

|r̃2(ε, T )| ≤ 6

MT

(∫
R

e−
2U(y)

ε dy

)−1

‖e− 2U
ε ‖ρ · ‖ge− 2U

ε ‖ρ.

It turns out that the factors b̃0 and b0 have quite different asymptotics. Hence the
modified SPA coefficient η̃X(ε, T ) has a local maximum close to the corresponding one
for the Markov chain.

Lemma 4.3 There is ε0 > 0 such that for ε ≤ ε0, T > 0 we have

b̃0 = −1 + 2

√
ω−
ω+

e−
V −v

ε (1 +O(ε)) ≥ −1, (62)

b̃1 = −1 +O(ε), (63)

and, consequently,

b̃20 = 1− 4

√
ω−
ω+

e−
V −v

ε (1 +O(ε)) ≤ 1 (64)

(̃b1 − b̃0)
2 = O(ε2). (65)

Proof: Consider b̃0 for small ε and use Laplace’s method to obtain (62):

b̃0 =

∫
R
g(y)e−

2U(y)
ε dy∫

R
e−

2U(y)
ε dy

=

(
− ∫ x2

x1
+
∫ y2
y1

)
e−

2U(y)
ε dy +

(∫ x1

−∞ +
∫ y1
x2

+
∫∞
y2

)
ye−

2U(y)
ε dy(∫ x2

x1
+
∫ y2
y1

)
e−

2U(y)
ε dy +

(∫ x1

−∞ +
∫ y1
x2

+
∫∞
y2

)
e−

2U(y)
ε dy

= −
(∫ x2

x1
+
∫ y2
y1

)
e−

2U(y)
ε dy − 2

∫ y2
y1
e−

2U(y)
ε dy +O(e

V
2ε )(∫ x2

x1
+
∫ y2
y1

)
e−

2U(y)
ε dy +O(e

V
2ε )

= −1 +
2
√

πε
ω+
e

v
ε (1 +O(ε))√

πε
ω− e

V
ε (1 +O(ε))

= −1 + 2

√
ω−
ω+

e−
V −v

ε (1 +O(ε)).

For the third equation we used our hypothesis concerning the cutoff levels, and the
inequality V − v < V

2
which follows from (M).
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Formulae (63) and (65) are obtained analogously to Lemma 4.2. Expression (64)
follows directly from (62). �

Theorem 4.2 Let maxx∈R{U(x) − 2U(−x)} < V + v and 0 < δ < v
3
. Then for any

1 < γ < V+v
2(v+δ)

there exists T (γ) such that for T > T (γ) the modified SPA coefficient

ε 7→ η̃X(ε, T ) has a local maximum on [γ−1 V+v
2 log T

, γ V+v
2 logT

]. The optimal tuning rate ε(T )

is exponentially equivalent to V+v
2 log T

in the limit T →∞.

Proof: To show that ε 7→ η̃X(ε, T ) given by (61) has a local maximum we consider it
at the three points

ε1(T ) =
V + v

2 logT
, ε2(T ) = γ

V + v

2 logT
, and ε3(T ) = γ−1 V + v

2 logT
. (66)

Since γ > 1, we have ε3(T ) < ε1(T ) < ε2(T ) (see Fig. 14).

ε3(T ) ε2(T )ε1(T )v+δ
log T

η̃(ε, T )

ε

4

π2

Fig. 14: The modified SPA coefficient η̃X(ε, T ) at the points εi(T ), i = 1, 2, 3, defined
in (66).

Consider the leading term of η̃X(ε1(T ), T ) for T → ∞. The factor b̃20 is given by

Lemma 4.3. Expanding the factor (λ1T )2

π2+(λ1T )2
as T →∞ gives:

4

π2

b̃20(λ1T )2

π2 + (λ1T )2
=

4

π2

(
1− 4

√
ω−
ω+

T−2V −v
V +v (1 +O(log−1 T ))

)
×
(

1− 4π4

ω0ω+

T−2V −v
V +v (1 +O(log−1 T ))

)
=

4

π2
− 16

π2

(√
ω−
ω+

+
π4

ω0ω+

)
T−2V −v

V +v

(
1 +O(log−1 T )

)
.

Analogously to Theorem 4.1 one shows that the remainder terms in (61) are of the

order T−2V −v
V +v log−2 T . This yields that

η̃X(ε1(T ), T ) =
4

π2
− 16

π2

(√
ω−
ω+

+
π4

ω0ω+

)
1

T 2V −v
V +v

(
1 +O

(
1

log T

))
.
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Analogously, we consider the modified SPA coefficient at ε2(T ) and ε3(T ) to obtain

η̃X(ε2(T ), T ) =
4

π2
− 16

π2

√
ω−
ω+

1

T 2 V −v
γ(V +v)

(
1 +O

(
1

log T

))
,

and

η̃X(ε3(T ), T ) =
4

π2
− 16π2

ω0ω+

1

T 2V +v−2γv
V +v

(
1 +O

(
1

log T

))
.

This entails that for T (γ) large enough and T > T (γ) we have

η̃X(ε1(T ), T ) > η̃X(ε2(T ), T ) and

η̃X(ε1(T ), T ) > η̃X(ε3(T ), T )

since V − v > 1
γ
(V − v) and V − v > V + v − 2γv for γ > 1.

Since the differences between the values taken are of higher order than the bounds
for the remainder terms, this completes the proof. �

Let us finish with some remarks concerning the dependence of the optimal tuning
rate on the geometry of the potential U . We have seen in Section 3 that for some values
of the pre-factors p and q and half-period T the tuning curve vanishes at certain noise
levels or is monotonically increasing, see Proposition 3.4. We do not observe such a
phenomenon in the present setting since we consider the SPA coefficient of the diffusion
in the small noise and large period limits. Recall that the Markov chain SPA coefficient
vanishes at ε̂ = (V −v)/ log (p

q
) which is a positive number independent of ε and T . Of

course, it can happen that ηX or η̃X vanishes for some noise intensity. However, our
approach describes neither this effect nor monotonicity of η̃X . The reason is this: in
the small noise limit considered here we are outside of the domains of parameter space
for which this behaviour is exhibited.

A Laplace’s method

Consider the integral

I(ε) =

∫ b

a

e−
2U(x)

ε w(x) dx, (67)

in which a, b ∈ [−∞,+∞], U and w are smooth functions on R, ε > 0. If U has a finite
number of minima, we may break up the integral (67) into a finite number of integrals
so that in each interval U reaches its minimum at one of the end-points and at no other
point. Accordingly, we shall assume that U reaches its minimum at x = a and that
U(x) > U(a), a < x ≤ b. We now precisely formulate the Laplace’s approximation
theorem following [31, Chapters 7,9].

Theorem A.1 Let a ∈ R, b ∈ R ∪ {+∞}, a < b. Let U : R → R be differentiable,
and w : R → R or C be measurable.

Suppose in addition that
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i) the minimum of U is attained only at a;

ii) U ′ and w are continuous in a neighbourhood of a;

iii) as x ↓ a,

U(x) = U(a) + P (x− a)µ +O((x− a)µ+1), w(x) = Q(x− a)λ−1 +O((x− a)λ),

and the first of these relations is differentiable. Here P , µ and λ are positive
constants, and Q is a real or complex constant.

iv)

I(ε) =

∫ b

a

e−
2U(x)

ε w(x) dx,

converges absolutely throughout its range for all sufficiently small ε.

Then

I(ε) =
Q

µ
Γ

(
λ

µ

)( ε

2P

)λ
µ
e−

2U(a)
ε (1 +O(ε

1
µ )).

If the asymptotic expansions in ascending powers of x − a exist for U and w, the
expansion of the integral I(ε) can be also obtained. Although there is no general
formula for this expansion, we determine its first three terms.

Theorem A.2 Let conditions (i), (ii) and (iv) of Theorem A.1 be satisfied and the
expansions

U(x) = U(a) +

n−1∑
s=0

ps(x− a)µ+s +O ((x− a)µ+n
)
,

w(x) =

n−1∑
s=0

qs(x− a)λ−1+s +O ((x− a)λ+n
)

hold. Suppose that p0 6= 0, q0 6= 0. Then

I(ε) = e−
2U(a)

ε

[
n−1∑
s=0

Γ

(
λ+ s

µ

)
as

(ε
2

)λ+s
µ

+O(ε
λ+n

µ )

]
, (68)

where

a0 =
q0

µp
λ/µ
0

,

a1 =

{
q1
µ
− (λ+ 1)p1q0

µ2p0

}
1

p
(λ+1)/µ
0

,

a2 =

[
q2
µ
− (λ+ 2)p1q1

µ2p0
+ {(λ+ µ+ 2)p2

1 − 2µp0p2}(λ+ 2)q0
2µ3p2

0

]
1

p
(λ+2)/µ
0

.

(69)
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Let us apply Theorems A.1 and A.2 to the double-well potential U from Section 4

to find the asymptotics of the integral
∫
R
e−

2U(x)
ε dx for ε→ 0.

The function U is supposed to be infinitely differentiable and to possess a unique
global minimum at −1 such that U(−1) = −V

2
. We break the interval (−∞,+∞) into

two intervals (−∞,−1] and [−1,+∞), and note that∫
R

e−
2U(x)

ε dx =

∫ −1

−∞
e−

2U(x)
ε dx+

∫ ∞

−1

e−
2U(x)

ε dx

=

∫ +∞

−1

e−
2U(x)

ε dx+

∫ +∞

1

e−
2U(x)

ε dx,

(70)

where U(x) = U(−x), x ∈ R. Both integrals in the last line of (70) satisfy the
conditions of Theorem A.2. To determine the coefficients pk, k = 0, 1, 2, we expand U
near −1 and U near 1 to get

U(x) = −V
2

+
ω−
2

(x+ 1)2 +
U (3)(−1)

6
(x+ 1)3 +

U (4)(−1)

24
(x+ 1)4 +O((x+ 1)5),

(71)

U(x) = −V
2

+
ω−
2

(x− 1)2 − U (3)(−1)

6
(x− 1)3 +

U (4)(−1)

24
(x− 1)4 +O((x− 1)5).

(72)

Thus, µ = 2, λ = 1, q0 = 1 and qk = 0, k ≥ 1. A direct application of (69) and (68)
yields ∫ +∞

−1

e−
2U(x)

ε dx = e
V
ε
1

2

√
πε

ω−

×
[
1− U (3)(−1)

3ω
3/2
−
√
π

√
ε+

1

16ω3−

(
5U (3)(−1)2

3
− ω−U (4)(−1)

)
ε+O(ε3/2)

]
∫ +∞

1

e−
2U(x)

ε dx = e
V
ε
1

2

√
πε

ω−

×
[
1 +

U (3)(−1)

3ω
3/2
−
√
π

√
ε+

1

16ω3−

(
5U (3)(−1)2

3
− ω−U (4)(−1)

)
ε+O(ε3/2)

]
,

and consequently∫
R

e−
2U(x)

ε dx = e
V
ε

√
πε

ω−

[
1 +

1

16ω3−

(
5U (3)(−1)2

3
− ω−U (4)(−1)

)
ε+O(ε3/2)

]
. (73)

The error term O(ε3/2) is in fact of order ε2, since due to the infinite differentiability
of U all terms ak with odd indices k vanish. This variant of the asymptotics is used in
Lemma 4.2. The less exact asymptotics∫

R

e−
2U(x)

ε dx = e
V
ε

√
πε

ω−
(1 +O(ε)) (74)
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is also used.
Analogously, one evaluates the integral∫
R

x e−
2U(x)

ε dx =

∫ ∞

−1

x e−
2U(x)

ε dx−
∫ ∞

1

x e−
2U(x)

ε dx =

− e
V
ε

√
πε

ω−

[
1 +

{
U (3)(−1)

4ω2−
+

1

16ω3−

(
5U (3)(−1)2

3
− ω−U (4)(−1)

)}
ε+O(ε2)

]
.

(75)
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pp. 213–240.

[26] Ivey, C., Apkarian, A. V., and Chialvo, D. R. Noise-induced tuning curve
changes in mechanoreceptors. J. Neurophysiol. 79 (1998), 1879–1890.

[27] Khas’minskij, R. Z. Stochastic stability of differential equations. Monographs
and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis, 7. Sijthoff
& Noordhoff., Alphen aan den Rijn, The Netherlands; Rockville, Maryland, USA,
1980.

[28] Leonard, D. S., and Reichl, L. E. Stochastic resonance in a chemical reac-
tion. Physical Review E 49 (Feb. 1994), 1734–1737.

[29] McNamara, B., and Wiesenfeld, K. Theory of stochastic resonance. Physical
Review A (General Physics) 39 (May 1989), 4854–4869.

[30] Nicolis, C. Stochastic aspects of climatic transitions — responses to periodic
forcing. Tellus 34 (1982), 1–9.

[31] Olver, F. W. J. Asymptotics and special functions. Computer Science and
Applied Mathematics. Academic Press, a subsidiary of Harcourt Brace Jovanovich,
Publishers, New York - London, 1974.

[32] Pavlyukevich, I. E. Stochastic Resonance. PhD thesis, Humboldt-Universität,
Berlin, 2002.

[33] Renardy, M., and Rogers, R. C. An introduction to partial differential equ-
ations, vol. 13 of Texts in Applied Mathematics. Springer-Verlag, New York, 1993.

[34] Riani, M., and Simonotto, E. Stochastic resonance in the perceptual inter-
pretation of ambiguous figures: A neural network model. Physical Review Letters
72 (May 1994), 3120–3123.

[35] Sellers, W. B. A global climate model based on the energy balance of the
earth-atmosphere system. J. Appl. Meteor. 8 (1969), 301–320.

[36] Spano, M. L., Wun-Fogle, M., and Ditto, W. L. Experimental observation
of stochastic resonance in a magnetoelastic ribbon. Physical Review A 46 (Oct.
1992), 5253–5256.

[37] Titz, S., Kuhlbrodt, T., Rahmstorf, S., and Feudel, U. On freshwater-
dependent bifurcations in box models of the interhemispheric thermohaline circu-
lation. Tellus — Series A 54, 1 (2002), 89–97.

43


