The Mathematical Work of Helmut Koch

Kay Wingberg, Berlin October 2012

Talk on the occasion of Helmut Koch's 80th birthday

イロト イポト イヨト イヨト

1 Local Algebraic Number Theory

2 Global Algebraic Number Theory

- Class Field Towers
- Restricted Ramification, Wild Case
- Restricted Ramification, Tame Case

Istory of Mathematics, Books on Number Theory

・ 同 ト ・ ヨ ト ・ ヨ ト

Local Algebraic Number Theory

- Primitive representations of the Galois group of a local field (Henniart, Koch, E.-W. Zink)
- Local Langlands conjecture, representations of the multiplicative group of divisions algebras (Henniart, Koch, E.-W. Zink)

< ロ > < 同 > < 三 > < 三 >

Local Algebraic Number Theory

- Primitive representations of the Galois group of a local field (Henniart, Koch, E.-W. Zink)
- Local Langlands conjecture, representations of the multiplicative group of divisions algebras (Henniart, Koch, E.-W. Zink)
- Meta-abelian local class field theory (de Shalit, Koch, Kukkuk, Labute)

A (10) × (10) × (10) ×

Local Algebraic Number Theory

- Primitive representations of the Galois group of a local field (Henniart, Koch, E.-W. Zink)
- Local Langlands conjecture, representations of the multiplicative group of divisions algebras (Henniart, Koch, E.-W. Zink)
- Meta-abelian local class field theory (de Shalit, Koch, Kukkuk, Labute)
- Structure of the absolute Galois group of p-adic fields (Koch)

< ロ > < 同 > < 三 > < 三 >

Local Algebraic Number Theory

- Primitive representations of the Galois group of a local field (Henniart, Koch, E.-W. Zink)
- Local Langlands conjecture, representations of the multiplicative group of divisions algebras (Henniart, Koch, E.-W. Zink)
- Meta-abelian local class field theory (de Shalit, Koch, Kukkuk, Labute)
- Structure of the absolute Galois group of p-adic fields (Koch)

(4月) トイヨト イヨト

Über Galoissche Gruppen von p-adischen Zahlkörpern Math. Nachr. 29 (1965) 77-111

The Galois Group of a *p*-closed extension of a local field Dolk. Akad. Nauk SSSR 238 (1978) 10-13

・ 同 ト ・ ヨ ト ・ ヨ ト

Class Field Towers Restricted Ramification, Wild Case Restricted Ramification, Tame Case

Global Theory: Class Field Towers

k a number field, p a prime number,

$$H_{\infty}(p) = \bigcup_{n} H_{n}(p)$$

is the *p*-class field tower of *k*, where $H_{n+1}(p)$ is the maximal unramified abelian *p*-extension of $H_n(p)$, $H_0(p) = k$. Question: Is the pro-*p* group

$$G_{\varnothing}(k)(p) = Gal(H_{\infty}(p)|k)$$

finite or infinite? Answered 1964 by E.S.Golod and I.R.Šafarevič by a purely group-theoretical result. This result was improved by W.Gaschütz and E.B.Vinberg:

Class Field Towers Restricted Ramification, Wild Case Restricted Ramification, Tame Case

イロト イヨト イヨト イヨト

Theorem (Ga/V 1965): Let G be a finite p-group,

 $h_1(G)$ the minimal generator rank of $G = \dim_{\mathbb{F}_p} H^1(G, \mathbb{Z}/p\mathbb{Z}),$ $h_2(G)$ the minimal relation rank of $G = \dim_{\mathbb{F}_p} H^2(G, \mathbb{Z}/p\mathbb{Z}),$

then we have the inequality

$$h_2(G) > rac{h_1(G)^2}{4}$$
 .

Result is sharp: there exists a family of finite *p*-groups such that the quotient of the right side by the left side of the inequality converges to 1 (A.J.Kostrikin (1964), H.Koch (1975), J. Wisliceny (1979)).

Refinement by Koch: Let G_n be the Zassenhaus filtration of a pro-p group G.

Theorem (Koch 1969): Let

$$1 \longrightarrow R \longrightarrow F \longrightarrow G \longrightarrow 1$$

be a minimal representation of the finite p-group G by a free pro-p group F with "relations" R such that $R \subseteq F_m$. Then

$$h_2(G) > rac{h_1(G)^m}{m^m}(m-1)^{m-1}$$
 .

This means: the complicated the relations are the more have to exist if the group is finite.

Class Field Towers Restricted Ramification, Wild Case Restricted Ramification, Tame Case

イロト イボト イヨト イヨト

1. Application in Number Theory: Unramified extensions. **Theorem**: Let $k|\mathbb{Q}$ be a quadratic field such that at least

> 8 prime numbers are ramified, if k is real, or 6 prime numbers are ramified, if k is imaginary,

then $G_{\varnothing}(k)(2)$ is infinite.

This follows by the (Ga/V)-inequality. The refinement of Koch gives much more:

Theorem (Koch/Venkov 1975): Let p be odd and $k|\mathbb{Q}$ a quadratic field such that the p-rank of the class group Cl(k) is at least 3,

$$h_1(G_{\varnothing}(k)(p)) = \dim_{\mathbb{F}_p} Cl(k)/p \geq 3$$
,

then $G_{\emptyset}(k)(p)$ is infinite.

		Local	Algebra	aic	Number	Theory
		Global	Algebra	aic	Number	Theory
History	of	Mathematics,	Books of	on	Number	Theory

イロト イボト イヨト イヨト

2. The Geometric Class Field Tower Problem.

Serre (1966) and Koch (1969) realized that the Golod/Šafarevič inequality and Koch's refinement also hold for finitely generated p-adic analytic pro-p groups G, i.e.

 $G \hookrightarrow Gl_n(\mathbb{Q}_p)$.

Therefore the Galois group $G_{\varnothing}(k)(p)$ is i. g. infinite but not *p*-adic analytic. A consequence of the **Fontaine-Mazur Conjecture**, which postulates a very general geometric principle, is the following conjecture:

Geometric class field tower conjecture: Let K|k be a tamely ramified Galois p-extension such that Gal(K|k) is a p-adic analytic group, then K|k is finite.

Class Field Towers Restricted Ramification, Wild Case Restricted Ramification, Tame Case

Global Theory: Restricted Ramification, Wild Case

We consider the Galois group

$$G_S(k)(p) = Gal(k_S(p)|k),$$

where $k_S(p)$ is the maximal *p*-extension of *k* which is unramified outside the finite set of primes *S*. The case where the set S_p of primes above *p* is contained in *S* is called the "wild" case.

For an arbitrary finite set of primes S Šafarevič and Koch showed:

Theorem: For the generator- and relation-rank the following holds:

$$h_1(G_{\mathcal{S}}(k)(p)) = \sum_{\mathfrak{p} \in \mathcal{S} \setminus S_{\mathbb{C}}} \delta_{\mathfrak{p}} - \delta + 1 + \dim_{\mathbb{F}_p} \mathbb{E}_{\mathcal{S}}(k) + \sum_{\mathfrak{p} \in \mathcal{S} \cap S_p} n_{\mathfrak{p}} - r,$$

$$h_2(G_{\mathcal{S}}(k)(p)) \leq \sum_{\mathfrak{p} \in \mathcal{S} \setminus \mathcal{S}_{\mathbb{C}}} \delta_{\mathfrak{p}} - \delta + \dim_{\mathbb{F}_p} \mathbb{E}_{\mathcal{S}}(k) + \theta$$

,

where $n_{\mathfrak{p}} = [k_{\mathfrak{p}} : \mathbb{Q}_{\mathfrak{p}}]$ is the local degree with respect to \mathfrak{p} and $r = r_1 + r_2$ the number of archimedean primes, $\theta \in \{0, 1\}$, $\mathbb{B}_{\mathcal{S}}(k)$ is a finite obstruction group and

$$\delta = \begin{cases} 1, & \mu_p \subseteq k, \\ 0, & \mu_p \nsubseteq k, \end{cases} \quad \text{and} \quad \delta_{\mathfrak{p}} = \begin{cases} 1, & \mu_p \subseteq k_{\mathfrak{p}}, \\ 0, & \mu_p \nsubseteq k_{\mathfrak{p}}. \end{cases}$$

Here μ_p is the group of the p-th roots of unity.

If $S_p \cup S_\infty \subseteq S$ (and k totally imaginary, if p = 2), then we have for the cohomological dimension

 $\operatorname{cd}_{p} G_{S}(k)(p) \leq 2.$

In Koch's book "Galois Theory of *p*-Extensions" is a section with the title: "The Structure of $G_S(p)$ in Special Cases". Here one can find a description of the so-called "degenerated case" for the structure of the group $G_S(p)$. Later it was shown that in the "generic case" $G_S(p)$ is a **duality group**.

Theorem: Let $S_p \cup S_{\infty} \subseteq S$ (and $p \neq 2$, $\mu_p \subseteq k$). Then $G_S(k)(p)$ has one of the following forms:

(i) If the obstruction groups $\mathbb{B}_{\{v\}}^{S} \neq 0$ for all finite primes $v \in S$, then $G_{S}(k)(p)$ is a duality group of dimension 2 ("generic case"), i.e. for all $i \in \mathbb{Z}$ and all finite $G_{S}(p)$ -modules A there are canonical isomorphisms

$$H^i(G_{\mathcal{S}}(p), \operatorname{Hom}(A, I)) \cong H^{2-i}(G_{\mathcal{S}}(p), A)^*.$$

Here I is dualizing module of $G_S(p)$.

(ii) If $B_{\{v_0\}}^S = 0$ for a finite prime $v_0 \in S$, then $G_S(k)(p)$ is a free pro-p product of decomposition groups \mathcal{G}_v and a free pro-p group F ("degenerated case"):

$$\underset{\nu\in S\setminus\{v_0\}}{*} \mathcal{G}_{\nu} * F \xrightarrow{\sim} \mathcal{G}_{S}(k)(p).$$

Global Theory: Restricted Ramification, Tame Case

Again we consider the pro-p group $G_S(k)(p) = Gal(k_S(p)|k)$, where now

$$S \cap S_p = \varnothing.$$

By the theorem of Golod/Šafarevič and the refinement of Koch we get the following result for $k = \mathbb{Q}$ (there are similar results for arbitrary number fields k):

Theorem (Šafarevič 1964, Koch 1969): Let $p \neq 2$. Then the group $G_S(\mathbb{Q})(p)$ is infinite, if $\#S \ge 4$. If $\#S \le 3$, then $G_S(\mathbb{Q})(p)$ can be infinite or finite.

Nothing was known concerning the cohomological dimension of $G_{5}(k)(p)$ (if it is infinite) for a long time. But 2006 John Labute introduced:

mild pro-p groups,

i.e. groups having a suitable representation by generators and relations. These groups have cohomological dimension 2 ("mildness" was first introduced by D.Anick for discrete groups). A special case are pro-p groups G, which Labute called groups of Koch-Typ, with additional properties:

G has a minimal representation by generators x_1,\ldots,x_d and relations w_1,\ldots,w_r such that $r\leq d$ and the relations are of the form

$$w_i \equiv x_i^{p a_i} \prod_{i \neq j} [x_i, x_j]^{a_{ij}} \mod F_3$$

where $a_i, a_{ij} \in \mathbb{Z}$ (the "linking numbers").

イロト イボト イヨト イヨト

If $k = \mathbb{Q}$, then $G(\mathbb{Q}_{S}(p)|\mathbb{Q})$, $S \cap S_{p} = \emptyset$, is of Koch-Typ (Koch 1970). More general: Arithmetically Koch-groups are Galois groups having only local relations.

The additional properties are condition for the so-called "linking diagram" of the "linking numbers".

Alexander Schmidt generalized Labute's results:

Theorem (Schmidt 2010): Let p be odd and S a finite set of primes of the number field k. Then there exists a finite set of primes S_0 disjoint to $S \cup S_p$, such that $G_{S \cup S_0}(k)(p)$ has cohomological dimension 2.

Important for the proof is the following

Theorem (Labute/Minac, Schmidt 2007): Let p be odd and G a finitely generated pro-p group with $H^2(G, \mathbb{Z}/p\mathbb{Z}) \neq 0$. Assume that there is a decomposition of $H^1(G, \mathbb{Z}/p\mathbb{Z})$ of the form

 $H^1(G,\mathbb{Z}/p\mathbb{Z})=U\oplus V$

as \mathbb{F}_p -vector space such:

(i) The cupproduct $V \otimes V \xrightarrow{\cup} H^2(G, \mathbb{Z}/p\mathbb{Z})$ is trivial.

(ii) The cupproduct $U \otimes V \xrightarrow{\cup} H^2(G, \mathbb{Z}/p\mathbb{Z})$ is surjective.

Then $\operatorname{cd}_p G = 2$.

イロト イボト イヨト イヨト

< ロ > < 同 > < 三 > < 三 >

The situation became more complicated if the cupproduct

$$H^1(G, \mathbb{Z}/p\mathbb{Z}) \otimes H^1(G, \mathbb{Z}/p\mathbb{Z}) \xrightarrow{\cup} H^2(G, \mathbb{Z}/p\mathbb{Z})$$

is trivial, i.e. the relations of G "started with 3-commutators or higher" (besides the *p*-powers). Therefore one has to consider

higher Massey products

(as Koch already mentioned 1978 (or earlier ?)). Morishita (2004), Vogel (2004) and Gärtner(2011) proved analogous results as above.

Theorem (Gärtner 2011): Let p be odd and G a finitely generated pro-p group with $H^2(G, \mathbb{Z}/p\mathbb{Z}) \neq 0$,

 $1 \longrightarrow R \longrightarrow F \longrightarrow G \longrightarrow 1$

a minimal representation of G by a free pro-p group F with relations R such that $R \subseteq F_h$ and $R \nsubseteq F_{h+1}$, , $h < \infty$ (G has "Zassenhaus invariant" h).

Assume that there is a decomposition of $H^1(G, \mathbb{Z}/p\mathbb{Z})$ of the form

$$H^1(G,\mathbb{Z}/p\mathbb{Z})=U\oplus V$$

such that for some $1 \le e \le h - 1$:

(i) The Massey-product $\langle \xi_1, \ldots, \xi_h \rangle = 0$ if at least h - e + 1 of the ξ_i 's lie in V.

(ii) The Massey-product $U^{\otimes e} \otimes V^{\otimes h-e} \xrightarrow{\cup} H^2(G, \mathbb{Z}/p\mathbb{Z})$ is surjective.

Then G is mild and so $cd_pG = 2$ (if h = 2, then this is the result of Labute/Minac-Schmidt).

Class Field Towers Restricted Ramification, Wild Case Restricted Ramification, Tame Case

イロト イポト イヨト イヨト

In particular, there exist mild pro-p groups of the form $G_S(k)(p)$ having trivial cupproduct: for p = 2 Massey products can be related to Rédei-symbols (Rédei 1938), which can be calculated.

History of Mathematics, Books on Number Theory

Historical works: Euler, Dirichlet

Books on number theory:

Galois Theory of *p*-Extensions (1970)

Introduction to Classical Mathematics I (1986) (where are II, III,... ?)

Number Theory (Encyclopaedia of Math. Sciences) (1991) Number Theory (1997)

・ 同 ト ・ ヨ ト ・ ヨ ト

Waiting for the 90-th birthday

・ロト ・日ト ・ヨト ・ヨト

臣