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Abstract. Recently, a paper [14] on Newton’s method for continuous functions in finite di-
mension appeared. We check and compare the approach with known ones for locally Lipschitz
functions. It turns out that [14] contains no non-Lipschitz functions such that the claimed
local or global convergence holds true. Moreover, the given sufficient condition based on
directional boundedness even prevents local superlinear convergence for real, non-Lipschitz
functions. The hypotheses for global convergence imply directly the global Lipschitz property
on the crucial set.

Additionally, we present some convergence statements for the Lipschitz case, certain
auxiliary results for continuous functions as well as non-Lipschitz examples of different type
where Newton’s method, indeed, superlinearly converges. Three errors concerning inverse
mappings, semismoothness and the proof of global convergence will be corrected, too.
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1 Introduction
The paper [14] on Newton’s method (briefly NM) for continuous functions f : IRn → IRn

begins with the following ambitious abstract.
“This paper concerns developing a numerical method of the Newton type to solve sys-

tems of nonlinear equations described by nonsmooth continuous functions. We propose and
justify a new generalized Newton algorithm based on graphical derivatives, which have never
been used to derive a Newton-type method for solving nonsmooth equations. Based on ad-
vanced techniques of variational analysis and generalized differentiation, we establish the
well-posedness of the algorithm, its local superlinear convergence, and its global convergence
of the Kantorovich type. Our convergence results hold with no semismoothness assumption,
which is illustrated by examples. The algorithm and main results obtained in the paper are
compared with well-recognized semismooth and B-differentiable versions of Newton’s method
for nonsmooth Lipschitzian equations.”

Since relevant papers can be easily overlooked, we consider next mainly papers which
are also cited in [14], in particular [20] and [23]. Additional references can be found in the
summary. Right, for locally Lipschitz f (briefly f ∈ C0,1), Newton methods have been inves-
tigated under several viewpoints in [8], [20], [32], [33], [35], [36], [38] mentioned in [14] and
here. Without supposing semismoothness, they are studied in [20, Chapter 10]. In Sect. 10.3,
NM is explicitly based on graphical derivatives Cf (notation from [39], we say contingent
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derivatives as in [1]), on Thibault derivatives Tf , directional derivatives f ′(x;u) and general-
ized Jacobians ∂f . There, one finds also a detailed analysis of approximate solutions and of
the required conditions. Continuous f , multifunctions f(x) + Γ(x), and approximations (e.g.
by contingent derivatives) are permitted in [23] with auxiliary problems 0 ∈ F (xk+1, xk), in
spite of other comments in [14].

Nevertheless, the present paper is not written because of missed references. It is written
for mathematical reasons. Though, for f ∈ C0,1, there is already a developed theory of
“graphical derivative based” NM (Section 3.1 contains few main topics), new results for the
class D of continuous, not locally Lipschitz functions would be really of interest. Having our
comment in [20] for such extensions in mind (here Rem. 3.7), some skepticism is advisable.
In particular, the reader of [14] learns nothing for the case of f ∈ D:

(i) A first observation shows that [14] does not contain any concrete function f ∈ D the
convergence results can be applied to. Though the contrary is asserted everywhere and exam-
ples are added which satisfy (or do not satisfy) some imposed conditions, they never fulfill
all requirements of the local/global convergence-statements [14, Thm. 3.3/3.4], respectively.
This is also true for the most complicated example Ex. 3.16 = [14, Ex. 4.10].

(ii) The given sufficient conditions for the hypotheses of Thm. 3.11 = [14, Thm. 3.3],
namely (H1), (H2) and metric regularity (MR) together (in particular for (H2) alone) concern
only semismooth functions f ∈ C0,1. Thus the extension [14, Thm. 3.3] to continuous f may
concern the empty set. This is not surprising since directional boundedness (3.5) along with
(MR) just implies, at least for real f ∈ D, that NM cannot superlinearly converge, cf. Thm.
4.1. Note that (3.5) plus strong regularity was the only sufficient condition for (H1) presented
in [14], cf. Prop. 3.13 =[14, Prop. 4.4]

(iii) By Rem. 3.18, the hypotheses of Prop. 3.17 = [14, Thm. 3.4] automatically imply
that the continuous function f is globally Lipschitz on the crucial set Ω. In addition, our
Rem. 2.8 shows why the authors proof is wrong and works only in the trivial situation when
also f−1 is Lipschitz of f(Ω). More comments are contained in Sect. 3.2.3.

(iv) The example [23, Sect.2.3] = [20, BE1] = [8, Ex. 7.4.1] shows, in contrary to the
assertion at the end of [14, Sect. 5]: Nonsingularity of the generalized Jacobian does not
imply semismoothness of a Lipschitzian transformation H : IRn → IRn. Rem. 2.1 indicates
another error related to the inverse.

(v) Speaking (as in the abstract) about a “numerical method” is not justified. For piece-
wise C1 functions, the auxiliary problems (2.3) are linear complementarity problems. For
continuous f , they are highly nontrivial without any tool for computing the crucial sets
Cf(x)(u). In view of using “advanced techniques”, the authors are not stringent in doing this.
On the one hand, they apply Cf(x) for NM, on the other hand they ignore that (MR) guaran-
tees immediately solvability of the auxiliary problems by the well-known openness condition
(2.16). Instead, they emphasize the (MR)-characterization kerD∗f(x̄) = {0} as being an
essential tool. This may be true, but not in the present context where all essential statements
depend on Cf and C̃f only.

(vi) Metric regularity, throughout required, excludes not only the abs-value-function
from all considerations. It is too strong for [14, Thm. 3.3] and too weak at least for the proof
of [14, Thm. 3.4].

In consequence, one has even to ask:
(vii) Does there exist at least one function f ∈ D such that NM, based on contingent

(= graphical) derivatives, converges locally superlinear ?
We give a positive answer by the examples 4.3 and 4.4 which do not satisfy the basic

hypothesis (H1) of [14]. The first one does neither satisfy the approximation condition (CA)*,
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known from the C0,1-case, nor (H2). The second one satisfies (H2). Hence also the hypothesis
(H2), which is (CA)* for f ∈ C0,1, is no longer crucial for f ∈ D.

In what follows, we discuss the needed assumptions for the convergence-statements and
their consequences in a detailed manner for f ∈ C0,1 and f ∈ D and justify the assertions (i),
(ii), (iii). We do not comment the selected auxiliary statements of nonsmooth analysis in [14].
In Section 2, we summarize general facts for generalized NM and necessary tools concerning
stability and solvability. In Section 3, we compare the approaches of [14] and [20]. The reader,
interested in f ∈ D only, may omit section 3.1 where we add, for f ∈ C0,1 ∪ D, only state-
ments of [20] which are needed for comparisons. Hence we omit the study of Newton-maps or
locPC1 functions of [20, § 6.4.2] as well as applications to complementarity or KKT- systems
of chapter 11. Section 4 presents (perhaps indeed new) helpful statements and examples for
the real case.

Throughout the paper, we suppose that f : IRn → IRn is continuous if nothing else is explicitly
said. We write f ∈ C0,1 to say that f is locally Lipschitz near the reference point x̄ and f ∈ D
otherwise. All x, y, u, v, with or without an index, belong to IRn. Our notations are standard
in nonsmooth analysis and coincide with [14] where, however, Df stands for Cf . Here, Df
denotes the Fréchet derivative. By x near x̄ we abbreviate for all x in some neighborhood of x̄.
For f being directionally differentiable at x, we write f ′(x;u) = limt↓0 t

−1(f(x+ tu)− f(x)).

2 Generalized NM and superlinear convergence
Contingent derivative: Given any multifunction F : IRn ⇒ IRn and y ∈ F (x) the contingent
(= graphical or Bouligand-) derivative of F at (x, y) is defined by

v ∈ CF (x, y)(u) if ∃ tk ↓ 0, (uk, vk)→ (u, v) : (x+ tkuk, y + tkvk) ∈ gphF. (2.1)

The symmetric form yields for the (multivalued) inverse F−1 the well-known [1] formula

u ∈ CF−1(y, x)(v) ⇔ v ∈ CF (x, y)(u). (2.2)

Setting uk = u in (2.1), one obtains subsets C̃F (x, y)(u) ⊂ CF (x, y)(u).

Remark 2.1. In spite of [14, Prop. 2.2], C̃F does not satisfy (2.2); take F (x) = {x3} with
0 ∈ C̃F (0, 0)(1) and 1 /∈ C̃F−1(0, 0)(0).

For functions f , y = f(x) is unique, and one writes Cf(x, f(x))(u) = Cf(x)(u). Clearly, the
inclusions 0 ∈ C̃f(x)(0) ∩ Cf(x)(0) and C̃f(x)(0) = {0} are always true.

2.1 Newton methods and related generalized derivatives
To describe different Newton methods for f : IRn → IRn, let x ∈ IRn and Gf(x) : IRn ⇒ IRn

be any multifunction. Newton iterations may depend on the “generalized derivative” Gf .
Given x (near a zero x̄ of f) the next (Newton-) iterate is, by definition, any x′ such that

−f(x) ∈ Gf(x) (x′ − x). (2.3)

Let σ(x) denote the set of such x′. Local superlinear convergence of NM then means

σ(x) 6= ∅ ∀x near x̄ and ∀x′ ∈ σ(x) it holds
x′−x̄
‖x−x̄‖ → 0 as x→ x̄, x 6= x̄, i.e., ‖x′ − x̄‖ = o(x− x̄). (2.4)
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Evidently, for x0 sufficiently close to x̄, then the procedure

find xk+1 such that − f(xk) ∈ Gf(xk) (xk+1 − xk); k = 0, 1, 2, ... (2.5)

is well defined and generates a sequence with ‖xk+1 − x̄‖ = o(xk − x̄). Using (2.2) for
Gf = Cf , the iterations (2.5) can be also written as

find xk+1 ∈ xk + Cf−1(f(xk), xk) (−f(xk)); k = 0, 1, 2, ... (2.6)

Possible settings
In the classical case, we have Gf(x)(x′−x) = {Df(x)(x′−x)} and (2.3) is the usual Newton
equation f(x) +Df(x)(x′ − x) = 0. Standard non-smooth Newton methods use non-empty
sets M(x) of regular matrices,

Gf(x)(u) = {Au | A ∈M(x)} and solve f(x) +A(x′ − x) = 0 with any A ∈M(x). (2.7)

Regularity of all A ∈M(x) then implies

∅ 6= Gf(x)(u) and Gf(x)(0) = {0}. (2.8)

Other possible settings for x, u ∈ IRn are, e.g.,

Gf(x)(u) =


{f ′(x;u)} if f is directionally differentiable near x̄
C̃f(x)(u) Set of all directional limits in direct. u
Cf(x)(u) Contingent derivative in direct. u
Tf(x)(u) Thibault derivative in direct. u
∂f(x)(u) Clarke’s generalized Jacobian applied to u if f ∈ C0,1.

(2.9)

The sets C̃f(x)(u), Cf(x)(u), T f(x)(u) contain, by definition, exactly all limits of sequences
{vk} ∈ IRn; k = 1, 2, ... where tk ↓ 0 and

for C̃f(x)(u) : vk = t−1
k [f(x+ tku)− f(x)],

for Cf(x)(u) : vk = t−1
k [f(x+ tkuk)− f(x)] with uk → u,

for Tf(x)(u) : vk = t−1
k [f(xk + tkuk)− f(xk)] with uk → u, xk → x.

(2.10)

These limit sets are written as Limsup in [14]. Cf and C̃f correspond to definition (2.1) for
multivalued F .

To introduce ∂Bf(x), we recall Clarke’s [5, 6] definition of ∂f(x) for f ∈ C0,1. Since
N := {y ∈ IRn | Df(y) does not exist} has Lebesgue measure zero (Rademacher), the set
M := {A | A = limDf(xk) where xk ∈ IRn \ N and xk → x} is compact and not empty.
The set ∂f(x) = convM (convex hull) is Clarke’s generalized Jacobian, andM itself is often
called the B-differential ∂Bf(x) of f at x. One easily shows ∂Bf(x)(u) ⊂ Tf(x)(u).

Using ∂f or ∂Bf in NM (2.3) means to put M(x) = ∂f(x) or M(x) = ∂Bf in (2.7).

Injectivity and kerGf(x): As in [20], we call Gf(x) injective if

v ∈ Gf(x)(u) implies ‖v‖ ≥ c ‖u‖ with some constant c > 0. (2.11)

Since all mappings Gf(x) (2.7), (2.9) - and D∗f(x), too - are positively homogeneous with
empty or non-empty images, this is just 0 /∈ Gf(x)(u) ∀u ∈ IRn \ {0} or, in other words,

kerGf(x) = {0}. (2.12)

Hence ker ∂f(x̄) = {0} ⇔ all A ∈ ∂f(x̄) are non-singular; while e.g. [20, formula (3.5)] says

Tf(x̄) is injective ⇔ ∃c > 0 such that ‖f(y)− f(x)‖ ≥ c ‖y − x‖ ∀x, y near x̄. (2.13)
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Inclusions: Let f ∈ C0,1. Then, setting uk = u in (2.10), one obtains, for x near x̄, the
same sets Cf(x)(u) and Tf(x)(u). These sets are non-empty, satisfy (2.8) as well as

C̃f(x)(u) = Cf(x)(u) ⊂ Tf(x)(u) ⊂ ∂f(x)(u) ⊂ L‖u‖B, (2.14)

if L is bigger than some Lipschitz rank for f near x̄. The inclusion Tf(x)(u) ⊂ ∂f(x)(u) is
non-trivial and needs the mean-value theorem for ∂f in [6]. The others follow immediately
from (2.10) like

C̃f(x)(u) ⊂ Cf(x)(u) ⊂ Tf(x)(u) for arbitrary f.

If f is C1 near x (not only differentiable), all Gf (2.9) fulfill Gf(x)(u) = {Df(x)u} by the
usual mean-value theorem. Then the Newton steps (2.3) coincide with the usual ones at all
“C1-points” (which can form the empty set).

In [14], mainly C̃f and Cf are used. In [20], all settings (2.7) and (2.9) were studied,
but mostly by supposing f ∈ C0,1. A strange situation for f ∈ D indicates

Example 2.2. For the real (strongly regular) function f(x) =
{

+
√
x if x > 0
x if x ≤ 0

the usual NM finds the zero after at most two steps. But (2.4) and (2.26) are violated for all
mappings Gf in (2.9) since x′ = −x for x > 0.

2.2 The needed tools of variational analysis
2.2.1 Known properties of the inverse

Locally Lipschitz properties of f−1(y) = {x | f(x) = y} are helpful to ensure solvability
of the auxiliary problems (2.3) and to understand the imposed conditions below. For f ∈
C1(IRn, IRn), they simply require detDf(x̄) 6= 0.

A (continuous) function f : IRn → IRn is called metrically regular (MR) near x̄ ∈ IRn if,
for some µ > 0 and neighborhoods U , V of x̄ and f(x̄), respectively, it holds

( x ∈ U, y′ ∈ V ) ⇒ ∃x′ : f(x′) = y′ and ‖x′ − x‖ ≤ µ ‖y′ − f(x)‖. (2.15)

With contingent derivatives and the unit-ball-notation in IRn, it holds

f is (MR) near x̄ ⇔ ∃µ > 0 : B ⊂ Cf(x)(µB) ∀x near x̄, (2.16)

see, e.g. the openness conditions in [1], [7], [9], [15], [34] or, in view of “more regularities”,
[20, Thm. 5.1]. By (2.2), this is in terms of the multifunction f−1,

f is (MR) near x̄ ⇔ ∃µ > 0 : µ‖v‖B ∩ Cf−1(f(x), x)(v) 6= ∅ ∀v ∀x near x̄. (2.17)

Proof. Indeed, (2.16) means ∀v ∈ B ∃u ∈ µB : v ∈ Cf(x)(u). This can be written as
∀v ∃u ∈ µ‖v‖B : v ∈ Cf(x)(u), i.e., ∀v ∃u ∈ µ‖v‖B : u ∈ Cf−1(f(x), x)(v).

With the coderivative D∗f in [30, 31], based on the behavior of the functions fy∗(x) =
〈 y∗, f(x) 〉 near x̄, there is a second condition,

f is (MR) near x̄ ⇔ kerD∗f(x̄) = {0}. (2.18)

In (2.16) and (2.18), implication (⇒) holds due to finite dimension, implication (⇐) due to
Ekeland’s variational principle or an equivalent statement. Applying, e.g., [20, Thm. 5.3], the
pointwise characterization (2.18) means explicitly

kerD∗f(x̄) = {0} ⇔ ∀y∗ ∈ IRn \ {0} ∀xk → x̄ : lim sup
k→∞

sup
ζ ∈ Cf(xk)(B)

〈y∗, ζ〉 > 0 (2.19)
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and is as “pointwise” as condition (2.16). The stronger requirement that, for certain U, V , x′

is even unique in (2.15), claims equivalently that f has a locally single-valued Lipschitzian
inverse f−1 sending V into U , and is often called strong regularity as in [37]. Thus metric
and strong regularity coincide if f is 1-to-1 near x̄. For f ∈ C0,1, it holds

f is strongly regular near x̄ if ker ∂f(x̄) = {0} , cf. [5] (2.20)

f is strongly regular near x̄ ⇔ kerTf(x̄) = {0}, cf. [27] or [20, Thm. 5.14]. (2.21)

In (2.21), (⇒) holds again due to finite dimension, (⇐) needs Brouwer’s principle on invariance
of domains. For f ∈ D, (2.21) remains true; use (2.13) and the ∆-set in [27], but - in contrast
to f ∈ C0,1 - there are no tools to handle the condition effectively. Finally, also the condition

kerCf(x̄) = {0} (2.22)

characterizes some stability, the local upper Lipschitz property of f−1 at x̄ which requires:
There are µ > 0 and neighborhoods U , V of x̄ and f(x̄), respectively, such that

f−1(y) ∩ U ⊂ x̄ + µ ‖y − f(x̄)‖B ∀y ∈ V, (2.23)

cf. [20, Lemma 3.2] or earlier [19]. In this situation, x̄ is isolated in f−1(f(x̄)).
Needless to say, these definitions and statements are extended to f : X → Y and to

multifunctions in the literature, e.g. [20], [31], [39]. They are well-known, correctly verified
and do not need remakes as given at several places in terms in [14] or trivial “weakenings” like
[14, Thm. 4.1].

However, even if f ∈ C0,1, computing Tf, ∂f , D∗f or Cf is a hard problem which calls
for exact chain rules (not only trivial ones of inclusion-type). To study primal-dual solutions
of variational conditions, the product rule [20, Thm. 7.5] is helpful for Tf and Cf . The
difficulties to find Tf or D∗f for the stationary point map f of parametric C2- optimization
or variational inequalities, can be seen in [21], the difficulties for Cf concerning similar models
in [28].

2.2.2 Supplements concerning Cf and C̃f

The following properties of Cf and C̃f are useful for analyzing f ∈ D.

Lemma 2.3. Let f : IRn → IRn and x, u ∈ IRn.
(i) If t−1

k ‖f(x + tku) − f(x)‖ → ∞ for certain tk ↓ 0 then it holds Cf(x)(0) 6= {0} or
C̃f(x)(u) 6= ∅.
(ii) If Cf(x)(0) = {0} then C̃f(x)(u) 6= ∅ for all u.

Proof. (i) By continuity, certain sk ∈ (0, 1) satisfy t−1
k ‖f(x + tksku) − f(x)‖ = 1. If

sk → 0 (for some subsequence), then some y ∈ bdB fulfills y ∈ Cf(x)(0) by definition. If
sk → σ > 0 (for some subsequence), we obtain by s−1

k = (tksk)−1‖f(x + (tksk) u) − f(x)‖
that some y ∈ bdB fulfills yσ−1 ∈ C̃f(x)(u). (ii) If, in contrary, C̃f(x)(u) = ∅ for some u,
then t−1

k ‖f(x+ tku)− f(x)‖ → ∞ holds for all tk ↓ 0. So (i) yields the assertion.

Lemma 2.4. If f : IRn → IR and f(x+u) < f(x)+c then ∃t ∈ (0, 1): sup C̃f(x+tu)(u) < c.

Proof. We verify the equivalent statement: If sup C̃f(x+tu)(u) ≥ c ∀t ∈ (0, 1) then f(x+u) ≥
f(x) + c. For this reason, pick q < c and put Tq = {t ∈ [0, 1] | f(x + tu) ≥ f(x) + q t}. Tq
is closed and 0 ∈ Tq. Hence s = maxTq exists. We show s = 1 by contradiction. Otherwise,
there is some ζ ∈ C̃f(x+ su)(u) with ζ > q. Accordingly there are εν ↓ 0 such that

ζν := ε−1
ν [ f( (x+ su) + ενu )− f(x+ su) ] fulfill ζ = lim ζν .

The latter implies ζν > q and the contradiction εν + s ∈ Tq for large ν since
f(x+ su+ ενu) = ενζν + f(x+ su) > ενq + f(x+ su) ≥ ενq + f(x) + q s.

Now s = 1 implies f(x+ u) ≥ f(x) + q, and the assertion follows via q → c.
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Lemma 2.5. For f : IR→ IR, it holds: C̃f(x)(u) = Cf(x)(u) ∀u 6= 0,
kerCf(x̄) = {0} ⇔ ∃ µ > 0 such that |f(x)− f(x̄)| ≥ µ−1 |x− x̄| for x near x̄, and

(MR) ⇔ strong regularity ⇔ ∃µ > 0 such that
either f(y)− f(x) ≥ µ−1 (y − x) ∀y > x : x, y near x̄
or f(y)− f(x) ≤ −µ−1 (y − x) ∀y > x : x, y near x̄.

Proof. For u 6= 0, the set Cf(x)(u) consists of the limits of quotients

vk =
f(x+ tkuk)− f(x)

tk
= |uk|

f(x+ tkuk)− f(x)
tk|uk|

as uk → u and tk ↓ 0. (2.24)

They coincide with the limits of wk := |u| f(x+εk sgn(u))−f(x)
εk

as εk ↓ 0. Discussing u > 0 and
u < 0 separately yields

Cf(x)(u) = |u| C̃f(x)(sgn(u)) = C̃f(x)(u) if u 6= 0. (2.25)

Equivalences: For x1 < x2 near x̄ and f(x1) = f(x2), there is a local maximizer or minimizer
x ∈ (x1, x2). There, (2.15) cannot hold with y′ > f(x) and y′ < f(x), respectively. Hence
(MR) implies (local) monotonicity. The rest is left to the reader.

Example 2.6. Let f : IR → IR satisfy x̄ = f(x̄) = 0 and limx→0, x6=0
|f(x)|
|x| = ∞. Then

Cf(0)(0) 6= {0} and Cf(0)(u) = C̃f(0)(u) = ∅ ∀u 6= 0. Hence both conditions in (2.8) [and
(H1) below since C̃f(0)(u) = ∅] are violated for Gf = Cf .

Proof. Assume, with no loss of generality, that f(x)/x → ∞ if x ↓ 0. Then there are wk ↓ 0
such that pk := f(wk)/wk → ∞ for k → ∞. To show that already the latter implies 1 ∈
Cf(0)(0), we put tk = f(wk) and uk = p−1

k → 0. Continuity ensures tk = f(wk) = pkwk ↓ 0.
By tkuk = tk/pk = wk we thus obtain f(tkuk)

tk
= f(wk)

tk
= 1. In consequence, 1 ∈ Cf(0)(0).

For u 6= 0, Cf(0)(u) consists of the limits of vk = f(tkuk)
tk

= uk
f(tkuk)
tkuk

as uk → u and tk ↓
0. Since |vk| → ∞, it follows ∅ = Cf(0)(u) ⊃ C̃f(0)(u).

2.2.3 Existence of xk+1 and convergence in terms of f−1 for Gf = Cf

Proving (2.4): Usually, one shows first, without requiring solvability of (2.3), that

∀x near x̄ and any x′ satisfying (2.3), it holds x′−x̄
‖x−x̄‖ → 0 as x→ x̄, x 6= x̄. (2.26)

The solvability of the auxiliary problem

−f(x) ∈ Gf(x)(u) with x′ = x+ u (2.27)

is obviously ensured (and (2.26) implies (2.4)) if Gf(x) is surjective for x near x̄, i.e., IRn =
Gf(x)(IRn). At the zero x̄, the algorithm stops with u = 0, hence condition

IRn = Gf(x)(IRn) ∀x near x̄, x 6= x̄ (2.28)

is also sufficient to guarantee superlinear local convergence along with (2.26). Property (2.16)
tells us that (MR) yields surjectivity for Gf = Cf . But (MR), throughout supposed in [14],
is stronger than (2.28) - consider f(x) = |x| - and could be replaced by (2.28) in [14, Thm.
3.3] without any problem. Nevertheless, solvability is based on an extra statement in [14].
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Proposition 2.7. [14, Prop. 3.2] Let f be (MR) near x̄. Then, for all x near x̄, the inclusion

−f(x) ∈ Cf(x)(u) (2.29)

admits a solution u. Furthermore, the set S(x) of solutions is computed by

S(x) = Limsup t↓0, h→ −f(x) t
−1 [f−1(f(x) + th)− x].

Proof. Again, (2.16) yields solvability. The formula is (2.2) for f , f−1 and v = −f(x):
v ∈ Cf(x)(u) ⇔ u ∈ Cf−1(f(x), x)(v) = Limsup t↓0, h→v t

−1 [f−1(f(x)+ th)−x], and holds
without supposing (MR).

Remark 2.8. We already know that, for Gf = Cf , the iterations (2.5) ( or (2.6) ) are

xk+1 ∈ xk + Cf−1(f(xk), xk) (−f(xk)); k = 0, 1, 2, ... (2.30)

Using (2.17), (MR) ensures that some xk+1 (but not necessarily all) satisfies

‖xk+1 − xk‖ ≤ µ ‖f(xk)‖. (2.31)

When proving [14, Thm.3.4] (= Prop. 3.17 below), the authors used (2.31) for all xk+1 and
overlooked that f−1(f(x) + th)− x may contain elements with much bigger norm than µt‖h‖.
In other words, their proof works only under strong regularity.

3 Conditions for local and global convergence
Recall that f : IRn → IRn is continuous. Regularity of f means always regularity near the
reference point x̄. All our conditions have to hold for x near x̄, (x 6= x̄) only.

3.1 Local conditions in [20]
In this section, we suppose f ∈ C0,1 (locally Lipschitz) if nothing else is said.

3.1.1 The conditions (CI), (CA), (CA)*

To ensure (2.4) or (2.26), the following conditions are used in [20].

(CI) ∃c > 0 : ‖v‖ ≥ c‖u‖ ∀v ∈ Gf(x)(u), u ∈ IRn, x near x̄,
(CA) f(x)− f(x̄) +Gf(x)(u) ⊂ Gf(x)(u+ x− x̄) + o(x− x̄)B ∀u ∈ IRn,
(CA)∗ f(x)− f(x̄) +Gf(x)(x̄− x) ⊂ o(x− x̄)B .

(3.1)

Condition (CI) requires uniform injectivity (2.11) of Gf(x).
(CA)* requires (CA) for u = x̄− x only ( if Gf(x)(0) = {0} ) and stands for the usual type
of approximation if f ∈ C1. Condition (CA) is useful due to

Lemma 3.1. The conditions (CI) and (CA) together imply (2.26) for any Gf in (2.3).

Proof. . Having 0 ∈ f(x)+Gf(x)(u) where u = x′−x, (CA) yields 0 ∈ Gf(x)(u+x−x̄) + v
for some v ∈ o(x−x̄)B. So (CI) implies (2.26): c‖x′−x̄‖ = c‖u+x−x̄‖ ≤ ‖−v‖ ≤ o(x−x̄).

Because (CA)* looks simpler than (CA), the next statements are useful.

Remark 3.2. If Gf has the form (2.7), condition (CI) means regularity of A and uniform
boundedness of A−1 for all matrices A ∈M(x), x near x̄. This yields Gf(x)(0) = {0}, after
which (CA)* ensures (CA).
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Proof. Indeed, having f(x)− f(x̄) +A(x̄− x) = o(x− x̄) from (CA)*, it follows
f(x)− f(x̄) +Au = A(x− x̄) + o(x− x̄) +Au = A(u+ x− x̄) + o(x− x̄).

Theorem 3.3. [20, Thm. 10.8]. It holds (CA)* ⇔ (CA) if Gf is given by (2.7) or
coincides with Cf, Tf or ∂f .

The proof is more involved only if Gf = Cf . In view of NM (2.3) for f ∈ C0,1, Lemma 3.1
and Thm. 3.3 ensure

Corollary 3.4. Suppose (CI), (CA)* and surjectivity (2.28). Then (2.4) holds true.

If Gf has the simpler form (2.7), already (CI) implies (2.28). Thus already Lemma 3.1 and
Rem. 3.2 show that (CI) and (CA)* ensure (2.4). This statement can be sharpened by saying
that (CA)* is even necessary for (2.4).

Lemma 3.5. [20, Lemma10.1]. For Gf (2.7), suppose that all A ∈M(x) as well as A−1 are
uniformly bounded for x near x̄. Then, method (2.3) is locally superlinear convergent ⇔ Gf
satisfies (CA)*. In this case, the o−functions in (CA)* and (2.4) differ by a constant only.

Hence quadratic approximation in (CA)* , |o(x − x̄)| ≤ K‖x − x̄‖2, yields quadratic order
of convergence as well. For the other settings of Gf , the role of (CI) under the viewpoint of
regularity and the necessity of (CA)* for superlinear convergence (2.4) was characterized by

Theorem 3.6. [20, Thm. 10.9].
(a) Let Gf = Tf . Then (CI) holds true ⇔ f is strogly regular near x̄. Having (CI),
condition (CA)* is necessary and sufficient for (2.4).
(b) Let Gf = ∂f . Then (CI) holds true ⇔ all A ∈ ∂f(x̄) are non-singular. This might be
stronger than strong regularity.
(c) Let Gf = Cf . Then (CI) holds at x = x̄ ⇔ f−1 is locally upper Lipschitz at x̄.
(d) Let Gf(x)(u) = f ′(x;u) provided that f ′(x;u) exists near x̄. Then, under strong regu-
larity, (CA)* is necessary and sufficient for (2.4). Under (MR), condition (CI) is satisfied.

The proofs of (b) and (c) need only the conditions of section 2.2.1 while (a) and (d) require
more effort. In particular (d), (MR) ⇒ (CI) is deep and applies the powerful result of [10],
which is included in [20] as Thm. 5.12. The formulation of Thm. 3.6 in [20] is a bit more in-
volved since local convergence of the following algorithm, where α > 0 is some error-constant,
has been also taken into account:

ALG(α): Find xk+1 such that ∅ 6= α‖f(xk)‖B ∩ [f(xk) +Gf(xk)(xk+1 − xk)]. (3.2)

For α = 0, this is algorithm (2.5), and (2.4) yields solvability for any α ≥ 0. Solution estimates
and solvability of (3.2) are collected in [20, Thm. 10.7] and [24]. The “Inexact Nonsmooth
Newton Method” 7.2.6 in [8] is exactly algorithm ALG(α), specified to Gf (2.7).

Having any function f : IRn → IRn, Rem. 3.2 and the Lemmas 3.1, 3.5 remain true
without changing any proof. The restriction to f ∈ C0,1 was motivated after [20, Lemma
10.1] (= Lemma 3.5) by the following

Remark 3.7. “In the current context, the function f may be arbitrary (even for normed
spaces) as long as M(x) consists of linear bijections. Nevertheless, we will suppose that f is
locally Lipschitz near x̄: This is justified by two reasons:

(i) If f is only continuous, we cannot suggest any practically relevant definition for M(x).
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(ii) Having uniformly bounded (by K) matrices, the convergence condition (2.4) implies that
f satisfies a pointwise Lipschitz condition at x̄, namely

‖f(x)− f(x̄)‖ ≤ 2K‖x− x̄‖ for small ‖x− x̄‖. (3.3)

Since the solution x̄ is unknown, our assumptions should hold for all x̄ near the solution.
Then, f ∈ C0,1 (near the solution) follows necessarily from (3.3).”

Requiring (CA)* for all x̄ near the solution leads to the slantly differentiable functions in [12].

3.1.2 Two types of semismoothness for f ∈ C0,1

With Gf = ∂f , condition (CA)* defines Mifflin’s [29] semismoothness (original for f(x) ∈ IR
and analogue for f(x) ∈ IRn) which is supposed in many papers, e.g., in [32], [33], [35], [36]
or [8], where the reader finds more references. Because the existence of directional derivatives
f ′(x̄, u) at x̄ follows easily from (CA)*, this existence is sometimes already supposed in order
to define semismoothness at x̄ equivalently via Au− f ′(x̄;u) = o(u) ∀A ∈ ∂f(x̄+ u)(u).

In other papers, e.g. in [8] and [14], semismoothness at x̄ requires per definition direc-
tional differentiability also for x near x̄, which makes sense from the practical point of view
since the zero x̄ is unknown. However, directional differentiability near x̄ is not important
for the convergence (2.4) with Gf = ∂f as the (necessary and sufficient) conditions (CI) and
(CA)* show.

The example [14, Ex. 4.11] is a strongly regular C0,1 function satisfying (CI) and (CA)*
without being directionally differentiable near x̄. So it is semismooth in the first (Mifflin’s)
sense or in the sense of [36] and not semismooth in the stronger sense of [14] due to an
unnecessary (for convergence (2.4)) requirement in the definition. Hence it is far from an
example the (more general) semismoothness-theory cannot be applied to.

In view of methods which use ∂f, ∂Bf , Cf or f ′(x;u) as Gf , a further remark is useful.

3.1.3 Variation of the generalized derivatives

Remark 3.8. (cf. [20, § 10.1.1]
(i) If Gf (2.7) satisfies (CI) and (CA)* for a mapping M = M(x) then also for each
mapping M ′ satisfying (for the unit ball of (n, n) matrices)

∅ 6= M ′(x) ⊂M(x) +O(x− x̄)Bn,n , where O(x− x̄)→ 0 as x→ x̄. (3.4)

(ii) Methods with different mappings G1f and G2f can be directly compared whenever
∅ 6= G1f(x)(u) ⊂ G2f(x)(u). (CI) and (CA)* for G2f imply (CI) and (CA)* for G1f .

(iii) Again evident for Gf (2.7): (CA)* for M implies (CA)* for M ′ = convM .

Consequently, the method based on G1f in (ii) inherits the convergence (2.26) from G2f
whenever G2f satisfies (CI) and (CA)*. The same holds, in particular, for Gf (2.7) if ∅ 6=
M ′ ⊂M .

These observations explain completely the relation between NM based on M ′(x) =
∂Bf(x) and M(x) = ∂f(x) = conv ∂Bf(x), in particular the trivial statement [14, Thm.
5.1] where strong regularity of f ∈ C0,1 is hidden under (MR) and 1-to-1.

They also show the relation between methods based on G1f(x)(u) = {f ′(x;u)} (if di-
rectional derivatives exist) or G1f(x)(u) = Cf(x)(u) on the one hand and Clarke’s Jacobians
G2f(x)(u) = ∂f(x)(u) or G2f(x)(u) = Tf(x)(u) on the other hand. For these particular set-
tings of G1 and G2, the method assigned to G1f also inherits the stronger convergence (2.4)
since solvability follow via (CI) ⇒ kerTf(x̄) = {0} ⇒ strong regularity ⇒ (MR) ⇒ surjec-
tivity for Cf . For G1f(x)(u) = {f ′(x;u)}, solvability is implied by {f ′(x;u)} = Cf(x)(u) if
f ∈ C0,1. More details presents Thm. 3.6 (d).
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Remark 3.9. For Gf (2.7), the conditions (CI) and (CA)* have been used in [8, Sect. 7.2]
to define so-called (regular) Newton approximation schemes.

Mappings M = M(x) such that Gf (2.7) satisfies (CA)* are called Newton maps in [20,
§ 6.4.2]. They satisfy usual chain rules for composed functions, exist for “locPC1 functions”,
do not necessarily coincide with Tf or ∂f , but can replace these mappings for studying methods
which use directional derivatives or Cf by “inheritance”.

Condition (3.4) describes possible approximations or, e.g. if M ′(x) = M(x) + ‖f(x)‖E,
some “regularization”.

3.2 Local and global conditions in [14]
Now we suppose throughout that Gf = Cf . Thus (2.29) is the crucial Newton inclusion.
Again, regularity of f means always regularity near the reference point x̄.

3.2.1 Convergence under (H1) and (H2)

In [14], the following conditions have been imposed (we write u for d and f for H).
(H1) Exist c > 0 and neighborhoods Ω, V of x̄ and 0n, respectively, satisfying:

If x ∈ Ω and − f(x) ∈ Cf(x)(u), then
∀z ∈ V ∃w ∈ C̃f(x)(z) with c‖u− z‖ ≤ ‖w + f(x)‖+ o(x− x̄)

and, improving a typing error in [14],

(H2) ‖f(x)− f(x̄) + w‖ ≤ o(x− x̄) ∀w ∈ C̃f(x)(x̄− x).

If f ∈ C0,1, (H2) is (CA)*. Again, it holds, like Lemma 3.1,

Lemma 3.10. (H1) and (H2) together imply (2.26).

Proof. Assume (as in [14]) for x near x̄, that (2.29) holds true, x′ = x+u, and put z = x̄−x.
By (H1), some w ∈ C̃f(x)(x̄ − x) fulfills c ‖x′ − x̄‖ = c ‖u − z‖ ≤ ‖w + f(x)‖ + o(x − x̄).
(H2) tells us ‖f(x) + w‖ ≤ o(x− x̄). Hence c ‖x′ − x̄‖ ≤ 2 o(x− x̄) implies (2.26).

The Lemma ensures directly the analogon of Corollary 3.4.

Theorem 3.11. [14, Thm. 3.3]. Under (H1), (H2) and (MR), convergence (2.4) holds true.

Proof. Indeed, (2.26) ⇒ (2.4) follows from(MR) which could be replaced by (2.28).

The proof in [14] applies Prop. 2.7.

Remark 3.12. (i) By the proof of Lemma 3.10, C̃f(x) could be any multifunction satisfying
(H1) and (H2), and one needs (H1) for z = x̄− x only. Since (H1) is only used for showing
Thm. 3.11, there is no reason to involve other directions z. (ii) For f ∈ C0,1, Thm. 3.11 is
just Corollary 3.4 with condition (H1) in place of (CI).

3.2.2 Analysing (H1) and (H2)

The conditions (H1) and (H2) bite each other: (H1) requires that C̃f(x)(z) is big, (H2) claims
that C̃f(x)(x̄− x) is small. Thus passing to smaller mappings as in Rem. 3.8 is impossible.
Since the technical condition (H1) compares the usually different mappings C̃f ⊂ Cf , it is
hard to find any sufficient condition for (H1) if f ∈ D. In particular, (H1) fails for all f in
example 2.6 where C̃f(x̄)(z) = ∅ ∀z 6= 0.

The only sufficient condition for (H1) and f ∈ D requires directional boundedness

lim sup
t↓0

t−1 ‖f(x+ tu)− f(x)‖ <∞ ∀x near x̄ and u ∈ IRn. (3.5)
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Proposition 3.13. [14, Prop. 4.4] (H1) holds true if f satisfies (3.5) and is strongly regular.

Remark 3.14. Under these assumptions, condition (CI) holds for Cf , too. Hence, for
strongly regular f ∈ C0,1, (H1) and (H2) ensure the well-known sufficient convergence con-
ditions (CI) and (CA)*.

Proof. (3.5) ensures ∅ 6= C̃f(x)(u) ⊂ Cf(x)(u). Using v ∈ Cf(x)(u) ⇔ u ∈ (Cf−1)(f(x))(v)
and applying (2.14) to f−1 ∈ C0,1, (CI) follows from ‖u‖ ≤ L‖v‖.

Remark 3.15. For strongly regular real functions f ∈ D, both Prop. 3.13 and condition
(3.5) are completely useless in view of NM: If such f satisfies (3.5) at x = x̄, NM cannot
superlinearly converge; cf. Thm. 4.1.

Condition (H2)
In [14], there is no sufficient condition for (H2) if f ∈ D. Hence all sufficient conditions for
(H1) and (H2) concern only strongly regular f ∈ C0,1. Moreover, even semismoothness is
required, cf. [14, Prop. 4.8].

Next we turn to the only function f ∈ D in [14] which satisfies (H2). If also (H1)
and (MR) would hold, the paper had at least one justification by one example. But these
conditions cannot hold together (by Thm. 3.11) since NM does not superlinearly converge.

Example 3.16. (= Example 4.10 in [14]) The interesting two-dimensional function

f(x) =
(
x2

√
|x1|+ |x2|3
x1

)
.

belongs to D and fulfills (H2) at x̄ = 0 as shown in [14]. To check convergence of NM, let
x1 > 0, x2 > 0. The derivatives Df and (Df)−1 there exist, and

Df(x)−1 =

(
0 1

2
√
|x1|+|x2|3

2|x1|+5|x2|3 − x2
2|x1|+5|x2|3

)
.

Newton steps at x define x′ with x′ − x = −Df(x)−1

(
x2

√
|x1|+ |x2|3
x1

)
, i.e.,

x′ − x = −

 x1

2x2

√
|x1|+ |x2|3

√
|x1|+|x2|3

2|x1|+5|x2|3 − x1
x2

2|x1|+5|x2|3

 . (3.6)

Next take small positive variables, such that 2x1 = x2 − 5x3
2. This ensures with max-norm

x3
2 =

x2 − 2x1

5
, x2 > 2x1 i.e., 3x2 − x1 > 5x1 , as well as ‖x‖ ≤ 4x1 , (3.7)

and (3.6) implies

x′ =

 x1

x2

−
 x1

x1
5 + 2x2

5

 =

 0

−x1
5 + 3x2

5

 =
1
5

 0

3x2 − x1

 .

Now (3.7) yields ‖x′‖ ≥ x1 ≥ ‖x‖
4 . Thus local superlinear convergence is violated.
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3.2.3 The Kantorovich-type statement

for continuous f requires a new set of hypotheses and asserts for method (2.5) with Gf = Cf ,

Proposition 3.17. [14, Thm 3.4] Let x0 ∈ IRn and r > 0 be given, such that for all
x ∈ Ω := x0 + rB (uniformly) the following holds:
(a) f is (MR) near x with the same modulus µ.
(b) ∀ε > 0 ∃δ > 0 such that ‖w‖ ≤ ε if w ∈ Cf(x)(z) and ‖z‖ ≤ δ.
(c) For some α ∈ (0, µ−1) it holds µ ‖f(x0)‖ ≤ r(1− αµ) and

‖f(y)− f(x)− v‖ ≤ α‖x− y‖ if v ∈ Cf(x)(y − x) and x, y ∈ Ω. (3.8)

Then the sequence xk is well defined, remains in Ω and converges to some zero x̄ of f where
‖xk − x̄‖ ≤ αµ

1−αµ‖xk − xk−1‖.

Condition (3.8) in [14] begins with ‖f(x) − f(y) − v‖ which is a mistake. The proof of [14,
Thm 3.4] is wrong: our Remark 2.8 says why. Hence Prop. 3.17 is not proven. Nevertheless
we again investigate the suppositions which seem to permit that certain sets Cf(x)(y− x) in
(3.8) are empty (confusing the interested reader perfectly).

• Condition (b) requires Cf(x)(z) ⊂ K‖z‖B for some constant K (put ε = 1 and K =
1/δ). Hence Cf(x)(0) = {0}. By Lemma 2.3, so all sets C̃f(x)(z) ⊂ Cf(x)(z) are
non-empty, and elements v ∈ Cf(x)(y − x) exist in (3.8). For that reason, the triangle
inequality ‖f(y)− f(x)‖ ≤ ‖f(y)− f(x)− v‖+ ‖v‖ ≤ (α+K)‖x− y‖ yields

Remark 3.18. The conditions (b) and (3.8) imply that f is globally Lipschitz on Ω.
Thus, the proposition (true or not) says nothing for f ∈ D.

• Because Cf(x) is positively homogeneous, (3.8) requires for x 6= y in Ω∥∥∥∥f(y)− f(x)
‖y − x‖

− w

∥∥∥∥ ≤ α ∀w ∈ Cf(x)
(

y − x
‖y − x‖

)
. (3.9)

Hence, up to error α, all difference quotients f(y)−f(x)
‖y−x‖ - for ‖y − x‖ big or not - have

to coincide with arbitrary w ∈ Cf(x)( y−x
‖y−x‖). This condition is strong even for f ∈ C2

where it requires small (compared with r) second derivatives on Ω. It also claims
diam Cf(x)( y−x

‖y−x‖) ≤ 2α.

• In consequence, already for real piecewise linear homeomorphisms f , the assumptions
of Prop. 3.17 are violated whenever int Ω contains a “sufficiently big kink” of f . Put,
e.g., f(ξ) = 2ξ + |ξ| and suppose 0 ∈ int Ω in order to see (setting y = −x < 0) that
the hypotheses of Prop. 3.17 are not satisfied with α ∈ (0, µ−1) = (0, 1).

4 Newton-convergence for real functions in D
In this section, we study NM with Gf = Cf for real (MR) functions and derive necessary
conditions for convergence (2.4). By (MR) and Lemma 2.5, f is strongly monotone. We may
assume that

x̄ = f(x̄) = 0 and f(y)− f(x) ≥ µ(y − x) ∀y > x near 0, µ > 0. (4.1)

Lemma 2.5 then also ensures Cf(x)(u) = C̃f(x)(u) for u 6= 0, and

0 < µu ≤ inf C̃f(x)(u) ∀u > 0, 0 > µu ≥ sup C̃f(x)(u) ∀u < 0. (4.2)
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Here and below, all arguments of f will be taken close to 0 without saying it explicitly. The
convergence (2.4) requires, if x 6= 0 and x→ 0,

−f(x) ∈ Cf(x)(u) ⇒ x′

x
→ 0,

x′ − x
x

=
u

x
→ −1 (x′ = x+ u). (4.3)

Setting u
x = −1 + β, so (2.4) means exactly β = β(x, u)→ 0 uniformly as x→ 0. For x > 0,

we have u < 0 and Cf(x)(u) = |u|Cf(x)(−1) = (1− β) x Cf(x)(−1), thus

−f(x) ∈ Cf(x)(u) ⇔ − f(x)
x
∈ (1− β) Cf(x)(−1). (4.4)

4.1 Violation of superlinear convergence for f ∈ D
Next we show for real, (MR) functions in D: If superlinear convergence (2.4) holds true, then
directional boundedness (3.5) at x̄ is not satisfied.

Theorem 4.1. Let f ∈ D be a real (MR) function with lim supt↓0
|f(x̄+tz)−f(x̄)|

t <∞ ∀z ∈ IR.
Then local superlinear convergence (2.4) cannot hold.

Proof. We use the above preparations. Because of f ∈ D there are xk < yk which tend to
0 and satisfy Ck := f(yk)−f(xk)

yk−xk
→ ∞. Assume first xk < 0 < yk (for some subsequence).

Writing

Ck =
f(yk)− f(0)
yk − xk

+
f(0)− f(xk)
yk − xk

= Ak +Bk,

Ak or Bk has to diverge. If Ak →∞, then yk − xk > yk > 0 and Ak ≤ f(yk)−f(0)
yk

→∞.

If Bk →∞, then yk − xk > −xk > 0 and Bk ≤ f(0)−f(xk)
−xk

→∞. Both situations violate the
lim sup-condition. Thus, it holds 0 < xk < yk or xk < yk < 0. We consider the first case.
Let uk = xk − yk < 0 and ck = 1

2Ck(xk − yk).
Then f(yk + uk)− f(yk) = f(xk)− f(yk) = Ck(xk − yk) < ck < 0. By Lemma 2.4, some
tk ∈ (0, 1) fulfills sup C̃f(yk + tkuk)(uk) < ck. Put θk = yk + tkuk. Lemma 2.5 ensures
Cf(θk)(uk) = C̃f(θk)(uk) as well as

supCf(θk)(−1) = supCf(θk)(uk/|uk|) <
ck

|yk − xk|
= −1

2Ck → −∞. (4.5)

Thus there are θk ↓ 0 with supCf(θk)(−1) ≤ −Ck
2 → −∞. By our assumption, all f(θk)/θk

remain bounded. This yields a contradiction to (4.4) since all w ∈ (1−β) Cf(θk)(−1) diverge
to −∞. The situation xk < yk < 0 can be similarly handled.

4.2 Superlinear convergence for real, “almost C1-functions”
The subsequent functions are continuously differentiable near x for x 6= x̄, strongly regular
near x̄ = 0 with f(x̄) = 0 and have the limit-property of example 2.6. Thus (2.8) and (H1)
are violated. Below, f ′(x) denotes the usual derivative of f at x.

For f ′(x) 6= 0, the next Newton iterate is x′ = x − f(x)
f ′(x) if x 6= 0. To study superlinear

convergence we define

O1(x) =
x′

x
= 1− f(x)

xf ′(x)
, (4.6)

and for condition (H2), which is f(x)− f(0)− f ′(x)x = o(x), the function

O2(x) =
f(x)
x
− f ′(x). (4.7)
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Hence the crucial conditions require equivalently O1, O2 → 0 as x→ 0. Because of

−O1(x) =
f(x)
xf ′(x)

− 1 =
O2(x)
f ′(x)

(4.8)

the O(.) functions are closely connected and, if (H2) is true and |f ′(x)| → 0 is excluded, the
superlinear local convergence O1(x)→ 0 follows automatically.
First we check all imposed conditions for the simplest functions f ∈ D, which also motivate
our question (vii) of the introduction.

Example 4.2. Let f(x) = sgn(x) |x|q, 0 < q < 1. Obviously, we have
x > 0 ⇒ f = xq, f ′ = qxq−1, x′ = x− f/f ′ = x− 1

qx.
Convergence (2.4) claims for x ↓ 0: O1(x) = x′/x = 1− 1

q → 0 which is impossible. Condition

(H2) requires O2(x) := f(x)
x −f

′(x)→ 0 if x ↓ 0 and fails to hold since O2 = (1−q)xq−1 →∞.

The following strongly regular examples indicate that, nevertheless, NM may superlinear
converge for f ∈ D. The examples also show that condition (H2) which, for f ∈ C0,1, coincides
with (CA)* and is crucial due to Lemma 3.5, may hold or not, in this situation.

Example 4.3. Superlinear local convergence, though (H2) is violated.

f(x) =


x (1− lnx) if x > 0

0 if x = 0
−f(−x) if x < 0.

Evidently, f is continuous and, for x > 0, it holds f ′ = − lnx and x′ = x − x(1−lnx)
− lnx =

x+ x
lnx − x = x

lnx . This implies O1(x)→ 0 due to

O1 = 1− f(x)
xf ′(x)

= 1− x (1− lnx)
−x lnx

= 1− (− 1
lnx

+ 1) =
1

lnx
,

and (H2) fails due to O2(x) = x (1−lnx)
x + lnx ≡ 1.

Example 4.4. Superlinear local convergence and (H2) hold true.

f(x) =


x ( 1 + ln(− lnx) ) if x > 0

0 if x = 0
−f(−x) if x < 0.

Consider small x > 0 which yields f > 0 and, for x ↓ 0,

f ′ = ( 1 + ln(− lnx) ) + x (
1

− lnx
1
−x

) = 1 + ln(− lnx) +
1

lnx
→∞.

O2 =
f

x
− f ′ = ( 1 + ln(− lnx) )− ( 1 + ln(− lnx) +

1
lnx

) = − 1
lnx
→ +0.

O1 = 1− f

xf ′
= 1− 1 + ln(− lnx)

1 + ln(− lnx) + 1
lnx

=
1

lnx

1 + ln(− lnx) + 1
lnx

→ −0.

Similarly, negative x can be handled. Thus the assertion is verified.
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5 Summary
The statements and tools of [14] nowhere establish convergence of NM for f ∈ D. Though
certain functions f ∈ D allow the application of contingent derivatives in Newton’s method, it
looks hard to find any function f ∈ D which satisfies all hypotheses for statement [14, Thm.
3.3]. This is also true when (MR) is replaced by the weaker condition (2.28). Moreover,
there is no reason for optimism when searching such real f because of Thm. 4.1. For the
(possibly incorrect) Kantorovich-type statement [14, Thm. 3.4] the Lipschitz-property of f
on the crucial set Ω is always necessary in order to satisfy the hypotheses.

Additional references: Newton’s method for continuous functions is the subject in [16,
17](1998). The conditions (CI), (CA), (CA)* in (3.1), many of the mentioned statements
including ALG(α), Thm. 3.3 and parts of Thm. 3.6 appeared first in [24, 25](1992) where
also relations to point-based approximations [38] have been discussed. [25, 27] also contain
criteria for strong stability of KKT-points to optimization problems with original functions
having C0,1 derivatives. Extensions to NM for multifunctions and graph-approximations can
be found in [26](1995). For f ∈ C0,1, the convergence theory based on contingent derivatives
was recently studied (locally and globally) in [2, 3, 4]. Quasi-NM for PC1-equations are the
subject of the pioneering paper [22](1986). For C0,1- equations in Hilbert spaces (hence with-
out semismoothness), even update formulas are examined in [11](1987). Nonsmooth Newton
methods in function spaces have been studied in [18], [40, 41] and [12, 13] (after 2000).
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