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Abstract. This paper summarizes - as a working paper- basic facts in both finite and infinite dimensional
optimization in view of optimality conditions and stability of solutions to perturbed problems. Begining
with section 4, partially new and unpublished results are included, elaborated in joint work with D. Klatte,
Univ. Zuerich.
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1 Some basic notions and statements

Given M C X (usually at least a Banach space) and f : M — IR the main problem of optimization
consists in finding the value

v=inf f(z) (1.1)

ceEM
and, if it exists, in finding some minimizer & € M.
This requires to know necessary and sufficient optimality conditions like D f(x) = 0 and D? f(x)
positive (semi-)definite for free minima onto X = R"™ and f € C?.
In many situations, they attain the form
(i) Df(z) € Ny (&) where Ny (&) denotes some "normal cone” to M at Z.
(i) D?f(#) positive (semi-) definite on some “tangent cone” to M at #.

Local solutions # are solutions to (1.1) with new M = M N Q where  is a nbhd of &. Solutions
in the original sense solutions are global solutions.

Nobody can solve (1.1) without supposing some analytical description of the feasible domain M
which makes it more or less difficult to determine the ”right” normal or tangent cones. Moreover, if
f is not differentiable then something else has to replace the Frechet derivatives D f(x) or D? f(z) if
f is not twice differentiable. These objects are often called generalized derivatives and do (usually)
not represent linear functions and bilinear forms, respectively.

We shall write f € C* if f is k-times continuously differentiable (in some nbhd of the points
of interest) and f € C*! if f € C* and D*f is locally a Lipschitz function (loc. Lipsch.). In
particular, C%! denotes loc. Lipsch. functions.

Particular classes of problems:

1. Linear programming

f(x) ={(c,z); M:={z e R"|Az <b}; A= (m,n) matrix, b € R™. (1.2)

Here, Az < b stands for m constraints. M is a (convez) polyhedron.
2. Mixed integer Linear programming: As above but

A is a rational matrix and some 1, ..., z, are required to be integer. (1.3)

3. Mixed integer quadratic programming: As above but

f(x) ={c,z) + (x,Qz); Q is a rational matrix. (1.4)

In these cases, it holds the existence theorem: v finite = some & € M realizes the infimum.
(quadratic without integer variables: Evans and Gould, quadratic with integer variables: Hansel).
This statement still holds if f is an n-dimensional polynom of degree 3 with rational coefficients
(Belousov); it fails to hold for polynoms of degree 4 on convex polyhedrons M. In what follows,
we do not deal with integer variables.

4. Classical nonlinear problems in finite dimension

M:={zeX=R"|g(z) <0Vi=1,...,m; and h,(z) =0 Vv =1....mo}. (1.5)
5. Classical convex problems in finite dimension: As above with f,g; convex [ i.e. for f :
FAz+ (1 =Ny) <Af(x) + (1 =X f(y) Vz,y € X, A € (0,1) ] and h, affine-linear.
6. Classical nonlinear problems in Banach spaces

X,Y,Z are B-spaces, g: X =Y, h: X = Z
M :={z € X | g(z) € K and h(z) = 0}; (1.6)
K is a closed, convex cone in Y

7. Classical convex problems in Banach spaces
as above with f convex, h affine-linear, int K # 0 and g convex w.r. to K; i.e.,

g Az + (1 —=Ny) —[Mg(x)+ (1—-Ng(y)] € K Vz,ye X, A€ (0,1). (1.7)



Here, K replaces the non-positive orthant, appearing under 4 and 5.

Examples of nonsmooth (read: not enough differentiable) problems:

Example 1 Tschebyschev- approximation: Given a continuous function ¢ = ¢(¢) on a real intervall
[a,b], find a real polynom of degree n

pe(t) =z + 21t + .o + 28"
that makes f(z) = ||ps — ¢|lmax := max o<¢<p [Po(t) — ¢(t)| minimal. )

Example 2 Nash-equilibrium: Suppose that z; € Xy, ..., z, € X,, are strategies of n players und
that player ¢ obtains payoff g;(z) = g;(x1, ..., x,) if each player k applies the related z;. Assume
that player ¢ has no influence on the choices of the remaining players (no cooperation). Then, he
must be satisfied with a strategy-vector z if his own choice x; satisfies

max {gi(mla --7$i717£7$i+17 ,.’En) | 5 € Xl} = gl(m)

The left side is never smaller than the right one. Hence all players must be satisfied with a strategy-
vector & (then % is called a Nash-equilibrium) provided that the non-differentiable function

fl@) =" [max {gi(w1, ., i1, & @ip1, s w) | € € Xi} = gi(w) ]

%

attains its minimum at & and f(£) = 0. This is one of the basic models in the game theory (a first
existence theorem for such games - under strong hypotheses- has been shown by J. v. Neumann;
solutions of matrix games). <

1.1 Basic optimality conditions; general interrelations

For the linear problem (1.2), it holds the
Duality theorem:
# solves (1.2) < 2@ € M and 3§ € R™ such that (j, A2 —b) =0, § >0 and c+ AT§ = 0.
The latter is equivalent to the fact that ¢ solves the
Dual problem max {(b,y) | ATy = —c, y >0} and (b,9) = (¢, %), & € M.
This statement can be understood or reformulated in various languages - in nearly all which
appeared when the tower of Babel has been build.
The main reason for this multiplicity lies in the close relation between duality, subdifferentials
and stability which will be explained next.

Subgradient, subdifferential, conjugate function: Given a function
f:X - RU{+ — o} (X is a B-space), put dom f = {z | f(z) € R}. Given any z° € dom f,
some z* € X* is said to be a subgradient of f at 2" if (with the canonical bilinear form (.,.)),

f(@)> f(2°) + (z*,2 —2°) VzelX. (1.8)
The convex set df(z%) of all subgradients at zV is called the (classical, convex) subdifferential of
fat 2V,
Evidently, 8 f(2°) = 0 is possible and 8 f(z°) # @ implies that f is lower semi-continuous at z°.
Trivial but important:

z* € 0f(z°) <« 2°is a global minimizer of f(z) — (z*,z) + (z*,z°).

The (improper) concave function f*(z*) := inf,cx f(z) — (z*,z) is called the conjugate of f.
Often, one defines f* with opposite sign as sup,cx(z*,z) — f(x).

Duality and subgradient: Next define, for problem 6, the (perturbation) function

6(y,2) = inf {(2) | g(x) €y + K and hiz) =z}, yeV,z€Z (L9)



with possibly improper values + — co. Suppose (0,0) € dom ¢ (then ¢(0,0) =v =inf,ep f(x) €
R), define the Lagrangian

L(z,y",2") = f(2) + (y", 9(x)) + (7, h(x)) (1.10)
and
H(y*,z") = zlg( L(z,y*,z") (e RU{—o0}). (1.11)
Then, it holds (basically shown already by Ioffe and Tichomirov) the key relation
—(y*,2%) € 0¢(0,0) & H(y*,z*) = ¢(0,0) and (y*,k) <0 VEk € K. (1.12)

Notice that nowhere continuity or convexity has been supposed in this context. After defining the
polar cone K* = {y* € Y* | (y*, k) <0 Vk € K} and the dual problem

H(y*, 2* 1.13
el (y*,2") (1.13)

one can equivalently say that —(y*, 2*) € 9¢(0,0) iff (y*,2*) solves the dual problem with optimal
value ¢(0,0).

Strong duality: In the second situation, one says that strong duality holds true for the related
problems. Using the definitions only, (1.12) implies

86(0,0 & ax _ inf L(z,y",2%) = inf s L(z,y",2"). (114
d0.0#0 & | max i L@yt = if o swp L@yt (114

Finally, denoting a solution of (1.13) by (¢*, 2*) and assuming that & solves the original problem,
the right-hand side of (1.14) becomes the saddle point condition

L(#,y*,2") < L(&,§%,2%) < L(z,9%,%") Yz € X, y* € K*, 2* € Z*. (1.15)
and yields L(z,§*, 3*) = f(&).

Normal cone: The left-hand inequality yields, with § = ¢g(Z) € K, that
(9", k—9) <0Vke K

and means (by definition) that §* belongs to the normal cone (in the sense of convex analysis)
Nk (@) of K at j € K.
Next let f,g,h € C'. Then the right-hand inequality yields the necessary (Lagrange) condition

D,L(#,§",2") =0 € X~

i.e., all together in terms of adjoint operators: If strong duality holds true then every solution & of
the original problem satisfies

Df(2) + Dg(2)*§* + Dh(£)*2* = 0 for some §* € Nk (g(Z) and 2* € Z*. (1.16)

Corresponding elements g*, 2* are called Lagrange multipliers to Z.

For linear problems (1.2), put K = R™ := {y € R™ | y; < 0 Vi} whereafter K* = R™"
and show that 0¢(0) # 0 since ¢ is piecewise linear (= both continuous and affine on polyhedrons
which define a finite partition of R™).

In the theory of optimal control, (1.16) leads to the adjugate (and Hamilton) system, 2* is
assigned to the differential equation for the trajectories, §* corresponds to ”"phase constraints, e.g.
g(z(t),t) <0” and both have to satisfy the adjoint equation (along with an optimal trajectory).

Karush-Kuhn-Tucker points: For problems 4 in R", (1.16) is the key part of the Karush-Kuhn-
Tucker (KKT-) conditions, imposed on a triple (z,y, z) € R""™+m2;

Df(x)+ 32 viDgi(x) + 32, 2y Dhy(x)

g(x) <0, h(z) =0, y>0and y;g;(x) (1.17)

=0
=0 Vi.

Conditions like y;g;(z) = 0 or u;(x)v;(y) = 0 are called complementarity conditions.



Example 3 The problem min {z € R | 2° = 0} shows: Even if the involved functions are convex
and arbitrarily smooth, the statements in (1.12) as well as the necessary optimality conditions
(1.16) or (1.17) may fail to hold. O

Hence, to derive necessary optimality conditions of the mentioned type, additional hypotheses are
required either for the whole problem or the particular minimizer & under consideration. Such
hypotheses, cf. (iii),(iv) below, are usually called regularity conditions or constraint qualifications.

1.2 Basic optimality conditions; convexity and linearizations

Strong duality: Suppose for the ”convex” problem 7

(i) o finite, f, g, h continuous, the affine function h maps onto Z,

(ii) there is some x € M such that g(x) € int K.

Then 0¢(0,0) # 0 (strong duality holds true).

For problems 5, the point in (ii) is said to be a Slater point: g;(x) < 0 Vi.

Linear approximations

For the more general problem 6 and f,g,h € C!, assume that # is a (local) minimizer and put
fr(z) = f(&) + Df(&)(x — &) as well as gz (z) and hz(z). The linearizations define a particular
convex problem Py, of type 7 (by using (iv) below).

Necessary optimality condition for problem 6: If

(iii) Dh(z) maps onto Z and

(iv) some z fulfills gz (z) € int K and hz(z) =0,

then Py, satisfies the hypotheses (i), (ii) for strong duality and & solves Pj. Hence the (necessary
optimality) condition (1.16) is satisfied.

MFCQ [56] for problem {:

For problem 4, condition (iii) means rank Dh(Z) = mo, and (iv) attains the form:

Some u € R™ (namely v = x — &) fulfills Dh(z)u = 0 and Dg;(Z)u < 0 whenever g;(Z) = 0.
All together, this is the Mangasarian-Fromovitz constraint qualification (MFCQ).

Hence, provided MFCQ is satisfied at a local minimizer & of a C* problem 4, there are y,z (La-
grange multipliers) such that (&,y,z) is a KKT point.

Weaker conditions for £ € M
Lagrange multipliers exist under weaker conditions at optimal Z. Really, one only needs:

If, for some @ € IR", ¢ > 0 and certain ¢t | 0, k = 1,2,... it holds

f@@ +tya) < f(2) = tee, ||h(@ + tea)|| < olty) and max g;(# + i) < o(t)

(0 exists - by linear-progr. duality - iff Lagrange multipliers do not exist for &),
then
there are 2% € M satisying f(z*) < f(&) and z* — & (1.18)

i.e., ¢ is not locally minimal.

Under MFCQ, the implicit function theorem applied to h ensures, with small § > 0, that (1.18)
holds for certain points

o =&+ t,(0 + 0u) + o(ty)  (with new o).

The same conclusion, even directly with 6 = 0, is possible under so-called calmness (cf. 3.5) at
(0,0, %) of the constraint map

M(y,2) = {z | g(x) <y, h(z) = 2}. (1.19)

(1) Thus MFCQ can be cancelled for affine functions h and g; put ¥ = & + t4.



(2) If h is affine, then replace R"™ by h~1(0) to weaken MFCQ (no rank condition) or put z* =
T+ 15 (0 + ou).

(3) If h is only piecewise linear then h~'(0) becomes a union of a finite number of polyhedrons
P, (described by affine systems A,2 < b,). The problems/values

v, =inf { f(z) |z € P,, g(z) <0}

fulfill v = min, v, and allow again a reduction to simpler problems with simpler optimality
conditions since:
Z is optimal for (1.1) iff & is optimal for each p with v, =v and & € P,.
So it suffices to study these simpler problems separately.
(4) Similarly, subsystems of piecewise linear g; and h, can be handled by studying

v, =inf { f(z) |z € P,, hy(xz) =0V, gi(z) <OVi'} (1.20)
where v' and 7’ denote the functions which are not piecewise linear.

MFCQ and Aubin property
Condition M FC() ensures that the topological behavior of the map M (1.19) near (0,0,2) is
locally the same as for (proper) hyperplanes H(r) := {z | {¢,z) = r}:

Given © € M(y,z) and (y',2") (close to & and (0,0) respectively) there exists

' € M(y',2'") satisfying a Lipschitz condition ||z' —z|| < L ||(3',2") — (y,2)].
MFCQ is even equivalent (for g,h € C!) to this property (called Aubin property of M, cf. 3.4). In
addition, MFCQ at a (local) minimizer & is equivalent to the fact that the set of assigned Lagrange
multipliers is nonempty and bounded.

For Banach space problems 6 with involved functions g,h € C%!, the Aubin property of M can
be written in terms of a MFCQ- like condition, too. In this case, however, the fixed direction u
becomes a family of directions (which are functions) u, = u,(t) € X, t > 0, where z denotes
feasible points near £ [49]. Having g, h € C' then (iii) and (iv) form the analogy to MFCQ.

1.3 The standard second order condition

For the finite-dimensional C? problem 4, let (Z,7,2) be a KKT point. Define the index sets
I°={i| gi(&) =0}, IT = {i € I° | §; > 0} and the tangent cone

U={u€cR"| Df(i)u=0, Dgi(#)u <O0Vi € I°, Dg;(&#)u=0Vi € I'", Dh(z)u=0}. (1.21)

Suppose that
(u, D2L(%,9,2)u) > ¢ Yu €U, |ju|| = 1. (1.22)

Then, it holds for sufficiently small § > 0
f(z) > f(&) + 3cllz — 2||° Vz € M N B(%,6). (1.23)

For problems in Banach spaces, the situation is less obvious, we refer to [3]. Notice, that the
question of second order conditions for classical problems of variational calculus

b
win J()i= [ J.0'\5)de. yla) = 4, y0) = B
leads to the Legendre- Jacobi conditions in terms of second-order differential equations.

1.4 Modifications for vector- optimization

In all considered problems 1, ... , 7, one can ask for Pareto-optimal (also called efficient) points Z.
This means that a finite number of objectives f; is given, and € M has to satisfy:

there is no € M such that f;(z) < f;(#) Vj and f;(z) < f;(2) for some j. (1.24)



Let E be the set of efficient points. To generate such points one can use (in the local and global
sense) that every minimizer Z of fy on M satisfies (1.24), provided that

fa(@) =" Ajfj(x) and X; > 0 Vj. (1.25)
J

Hence the union of all minimizer to fy, A > 0 is a subset E' C E. This set can be characterized
as follows (we consider only points in M): & € E' iff there is some £ > 0 such that

if f;(z) < f;j(¢) for some j, then f,.(z) > f.(2) +e(f;(&) — f;(x)) for some r # j. (1.26)

Such points are also called properly efficient. They are similarly reasonable for defining a ”coop-
erative” solution and exclude efficient points like

fi(x) < f; (@) Vj #r and fr(z) — f(2) = O(Z(fj(:i') — fi(z)) > 0. (1.27)
J#r

For the ”smooth” finite-dimensional vector optimization problem 4 one can also show:
To every & € E which satisfies MFCQ), there is a nontrivial A > 0 such that the KKT conditions
can be satified with f = f,.

Main tools for proving the listed statements:
Separation of convex sets; implicit function theorem in B-spaces, in particular the Lyusternik (also
called Lyusternik/Graves-) theorem.

2 Other descriptions of KKT points

For analyzing points (z,y,2) which satisfy the first-oder conditions for a classical NLP in finite
dimension

min f(z) st. reM:={zecR"|g(z) <0e€R™ andh(z) =0 € R™*}, (2.1)
several reformulations of the related KKT- conditions (1.17),

Df(x)+ > ,yiDgi(x) + >, 2z, Dh,(x) =0; h(z)=0, g(z) <0, y >0, (y,9(x)) =0

are possible. The common idea consists in appropriate descriptions of the involved complementarity
conditions

9(xz) <0, y>0, (y,9(x)) =0 (2.2)

in form of equations or generalized equations.

2.1 NCP- functions

One well-known equivalent description of (2.2) consists in requiring
o(yi, —gi(x)) := min{y;, —g;(x)} = 0 Vi
or more general
o(yi, —gi(x)) =0 Vi

where o : R* — IR is any function satisfying o(u,v) =0 < u > 0,v > 0,uv = 0; a so-called NCP
function which should be sufficiently simple. An often used and in many respects useful example
is the so-called Fischer-Burmeister function o(u,v) = u + v — vu? + v2. Setting

©1 = Df(z)+>,yiDgi(x)+ >, z,.Dh,(x),
Oy = o(yi, —gi()) (2.3)
@3 = h(iL"),



the conditions (1.17) and ©(z,y,2z) = 0 (where © : R* — R, u = n + my + m2) are equivalent.
The equation O(z,y, z) = (a,b,c)” is connected with the canonically perturbed problem

P(a,b,c) : Iergi(lbl’c) f(z) = (a,z) where G(b,c) = {z | g(z) <b, h(z)=c} (2.4)

but the transformations of the related solutions are more complicated than for the subsequent
reformulations. Also a similar product representation as below is not true for ©. This shrinks the
value of © for stability investigations, but not in view of solution methods. For more details we
refer to [14, 15, 36, 78].

2.2 Kojima’s function

Similarly, system (1.17) can be written in terms of Kojima’s [39] function ® : R* — R* which has
the components

¢ = Df(iL”) + Zz y;ngi(x) +Zu ZVDhV(:E)v y:r = max{07yi}7
@y = gi(z) - Yi y; =min{0,y;}, (2.5)

Then the zeros of ® are related to the KKT- points via the transformations

(z,y.2) € 371(0) =  (z,u,2) = (z,y + g(x), 2) is a KKT-point (2.6)
(z,u,2) is a KKT-point = (z,y,2) = (z,u+ g(z),2) € d71(0) '
and @ is, for smooth f, g, h, one of the simplest nonsmooth function. Moreover, ® can be written
as a (separable) product ®(z,y,2) = M(z)N(y,z) where

- - T 1+2
N = (la yfra---,y;,rﬂ, Y1 5 Ym1s Z) cR'T m1+m2’

Df(x) Dgi(z)... Dgmi(z) 0.. 0.. 0 Dhy(x)... Dhpa(z)
M@)=| g 0 . 0 0.. —1.. 0 0 0 (2.7)
h(z) 0 .. 0 0.. 0.. 0 O 0

with i = 1,...,m; and -1 at position 7 in the related block.

Writing, e.g., (y7), (y?)~ at the place of y; and y;, KKT-points are even zeros of a smooth
function. However, now y; = 0 leads to a zero-column in the Jacobian of this modified function ®.
So the standard tools for computing a zero or analyzing critical points via implicit functions fail
again and the assignment (2.6) is no longer loc. Lipsch. in both directions for g € C*.

Using ® (2.5), the points of interest are zeros of a (continuous, piecewise smooth) R* — RH
function, and the equation

®(z,y,2) = (a,b,¢)" (2.8)

permits a canonical interpretation: It describes by (2.6) the KKT-points of the elementary (canon-
ically) perturbed problem

P(a,b,c) : inf { f(z) — (a,z) | g(z) < band h(z) =c }. (2.9)

For fixed a, this corresponds to the problems which already appeared for defining ¢ (1.9).

Due to the product structure of ® and the simple type of non-differentiability, several generalized
derivatives (see below) can be really determined for f,g,h € Ctt.

For f,g,h € C*, nonsmoothness is only implied by the components

w(y) = i, vi) =l vi—vi) =3 i+ vl v — lvil), (2.10)

of N. So, discussions on generalized derivatives can be reduced to defining a ”derivative” of the
absolute value at the origin.



2.3 Generalized equations

There is another, quite popular possibility of describing KKT-points, namely as solutions of inclu-
sions. The simplest one is the system

Df(x) + > ,yiDgi(x) + >, 2,Dh, () =0
g9(z) € Nk(y), (2.11)
h(z) =0,

where N (y) denotes, for K = R™* and y € K, the normal cone of K at y. Then
Ni(y) ={v"[(y" k—y) <OVEke K} ={y"| y; =0ify; > 0; y7 <0if y; = 0}, (2.12)

If y ¢ K put Ng(y) = 0. Defining K = R" x K x R™ and similarly N (z,y,2), system (2.11)
can be written, with left-hand side H and s = (z,y, z), as a generalized equation

H(s) € Ng(s), (2.13)

where H is a function and Ny a multivalued mapping (multifunction). Such systems have been
introduced by S. Robinson who noticed (during the 70th) that the relations between system (2.13)
and its linearization

H(8)+ DH(5)(s — 8) € Ng(s), (2.14)

are (locally, and in view of inverse and implicit functions) the same as for usual equations. This was
the starting point for various investigation of generalized equations (2.13) in different spaces and
with arbitrary multifunctions N (based on the same story). Again, the solutions of the perturbed
system

H(s) € (a,b,e)" + Ny (s) (2.15)

describe the KKT points of problem (2.9), the same perturbation in (2.14) describe the KKT
points of a related quadratic problem. In general, the standard hypothesis of the inverse function
theorem, ” D H (§) is regular” now attains the form: ” The solutions of the perturbed linearized prob-
lem are locally unique and Lipschitz”.

In terms of Kojima’s function ®, system (2.14) corresponds to linearization of M while N remains
unchanged
[M(&) + DM(&)(z — &)]N(y,z) = 0. (2.16)

Additional approximations of N (being less obvious in model (2.13)) can be applied for solution
methods. Needless to say that neither the stability theory of Kojima functions nor the one of
generalized equations makes explicitly use of the particular structure of M(z) or H(s).

3 Multiphase problems and stability

A deeper analysis of critical points in optimization problems is mainly required for hierarchic
optimization models which arise as ”multiphase problems” if solutions of some or several problems,
say of P(a,b,c) in (2.9), are involved in a next one, e.g.,

aibncfz F(a,b,c,z) where z = z(a,b,c) is a (local) solution to P(a,b,c). (3.1)
Here, also further conditions can be required for a, b, ¢, x or for some other involved parameter p in
P(a,b,c). For various more concrete models and related solution methods we refer to [13] and [62].
Continuity results for optimal values and related solutions (along with instructive counterexamples)
in view of R"- problems can be found in [2].

Even if £ = z(.) is unique and continuous then, as a rule, the solution map has kinks (and the
optimal value v = f(z(.)) is not C?) whenever z changes the ”faces” of the parametric feasible set.
In terms of the Kojima equation ®(z,vy,2) = (a,b,c)”, then certain y; change the sign.

Obviously, these difficulties are less hard if local solutions move on smooth manifolds defined
by a regular (rank Dh = dim ¢) system h(z) = ¢ only, though minimizer may be transformed into



saddle points or maximizer, depending on the Hessian on the tangent space. Hence inequality
constraints or non-regular equations are the main reason for various difficulties.

The behavior of stationary solutions in IR™ has been already precisely described by charac-
terizing the possible singularities if the involved functions are of type C* and the whole problem
belongs to some generic class, cf. [27, 28]. Here, we study less smooth problems, in general.

The assumption f,g € C! with loc. Lipsch. derivatives (i.e. f,g € C11), but f,g ¢ C? is typ-
ical for problems which involve optimal-value functions of other (sufficiently regular) optimization
models like in design- or semi-infinite optimization or for multi-level problems.

Stability: In order to analyze and solve problems like (3.1), one is mostly interested in some
kinds of Lipschitz-continuity (summarized as stability) of the solution map S, assigned to (2.9) or
more general problems. Here, ”solution” may be taken in the local and global sense, and often it
also denotes the couple of points satisfying the first order necessary conditions.

To have a sufficiently general model that covers all these variants in view of optimization and
related fields, let us consider an inclusion of the form (2.11)

p € F(z) := h(z) + N(x); h:X - P, N: X = P; (B- spaces) (3.2)

with a multifunction N, element-wise sum for A + A" and the solution set S(p) = F~!(p). In this
form, hierarchic or multilevel problems may be equations, variational inequalities (i.e. N (z) is
some normal cone of a given set M at a point z € M), games, control problems et cet., too. In the
sequel, suppose that gph S := {(p,z) | z € S(p)} is a closed set. The set dom S = {p | S(p) # 0}
is the (effective) domain of S.

Notions of (local) Lipschitz stability.

Let S : P = X be a (closed) multifunction and 2° = (p°,2°) € gphS. We write ¢° in place of
(2°,p°) and say that some property holds near z if it holds for all points in some neighborhood of
z. Further, let B denote the closed unit ball in the related space and

Se(p) = S(p) N (a° + eB) := S(p) N {z] ||z — 2°|| < e}.

The following definitions generalize typical properties of the multivalued inverse S = f~1 or of

level sets S(p) = {z|f(z) < p} for functions f: M C X — R at the origin. After each definition,
we add an example such that S obeys the claimed property, but (if possible) not the remaining
ones.

Definitions:
S is said to be strongly Lipschitz at 2° if

Je,d, L (> 0) such that d(z',z) < L||p" — p|| for all (3.3)
p,p € (p° +6B)Ndom S., z' € S.(p') and z € S-(p),

i.e., S. is locally single-valued and Lipschitz on dom S.(p) near 2%; S.(p) = 0 is allowed. (M =
R, X =R, f(z)=2,5=f").

If also p° € int dom S, is required then S. is locally a Lipschitz function, and we call S strongly
Lipschitz stable (s.L.s.) at 2°. (M = X =R, f(z) =2z — |z|,S = f1).

S is said to be pseudo—Lipschitz at 2° if Je,d,L (> 0)
such that S.(p) C S(p') + L||p' — p||B Vp,p' € p° + 6B.

(M =X :]Rz,f(;lt,y) =z+y,S= f_l)'
Other notations (or equivalent notions) for the same fact are: S~
pseudo-regular or S has the Aubin property [76].

Setting p = p in (3.4), one obtains S(p') # 0 due to z° € S.(p). Thus p° € int dom S. is always
ensured under (3.4).

(3.4)

Lis metrically regular resp.

S is said to be calm at 2° if (3.4) holds for p' = p°, i.e.,

Je, 8, L (> 0) such that S.(p) C S(p°) + L||p — p°||B Vp € p° + §B. (3.5)
(M=X=R, f(z)=0,S= f_l).
S is said to be upper Lipschitz at 2° if 32,4, L (> 0) (3.6)

such that S.(p) C 2° + L|jp — p°||B Vp € p° + 6B.
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(M=X= ]R,f(w) = |z[,S = f~1).
If, in addition, p° € int dom S. we call S upper Lipschitz stable (u.L.s.) at z2°. (M = X = R, f
constant on [2k+1, 5],k > 0 integer, and D f(z) = 1 otherwise; S = f~!). Finally,

S is said to be lower Lipschitz at 2° if 35, L (> 0) (3.7)
such that S(p) N (z° + L||p — p°||B) # 0 Vp € p° + 6B. '

(M=X=R, f(z)=zifz <0, f(z) =2 ifz >0, S(p) = {z|f(z) < p}.

Comments.

In some of these definitions, one may put ¢ = §. We used different constants for different spaces.
If S = f!is the inverse of a C* function f : R” — R"™ with S(p°) = {z"}, all these properties
coincide with det D f(x°) # 0. If f is only loc. Lipsch., they are quite different.

The constant L is called a rank of the related stability. The requirement p° € int dom S. means
that solutions to p € F'(x) are (locally) persistent, and the lower Lipschitz property quantifies this
persistence in a Lipschitzian manner.

The notions concerning stability or regularity differ in the literature. So ”s.L.s.” and ”strongly
regular” mean often the same, and our "upper Lipschitz” is ”locally upper Lipschitz” in [8] while
“u.L.s.” is "upper regular” in [36]. Further, "regularity” of multifunctions has been also defined in
an alternative manner via local linearizations in [69].

)

Remark 1 For fixed 2° € gph S, one easily sees by the definitions:
(i) Sisu.L.s. iff S is both upper and lower Lipschitz.
i) S is calm if S is upper Lipschitz.

iii) S is upper Lipschitz iff S is calm and z° is isolated in S(pY).

iv) Siss.L.s. iff S is pseudo-Lipschitz and card S.(p) < 1 for p near p°.

v) S is pseudo-Lipschitz iff S is lower Lipschitz at all points z € gph S near 2
with fixed constants €, and L.

(vi) S is pseudo-Lipschitz iff S is both calm at all z € gph S near z
with fixed constants ¢, d, L and lower Lipschitz at 2°. o

0

(i
(
(
(

Composed mappings and intersections

(i) Often, S(p) = U(V(p)) is a composed map where V : P = Y and U : Y = X. In many
situations, then the related Lipschitz properties at z°, where now y° € V(p°) and z° € U(y), are
consequences of the related properties for V' and U at the corresponding points. One has, however,
to shrink the image of V to the e— nbhds of y° which appear in the related definitions, i.e., one
has to study composed maps of the form

Sp)=U(V(p) N’ +eB)).

Further, local solvability plays an important role in this context; for details we refer to [35], Lemma
1.2.

(i) If S = 't with I'(z) := G(F(z)) where F : X =2 Y, G:Y = Pthenz € S(p) & p € G(F(z))
& z € F7Y(G7Y(p)). This is situation (i) with U = F~! and V = G~ 1.

(iii) The map S under (ii) can be written by intersections and projections: Define ¢ : (X,Y) =
Pasg(z,y) =Gy) and f: (X, V)= Yasy € f(a',y) iff y=9' € F(a’) (otherwise f(z',y') =
0). This yields g~'(p) = (X, G~} (p)), f~(y) = (F~'(y), {y}) and

' €S(p) & (2'.y') € f(y')Ng " (p) for some y'.

(iv) Intersections S(pi,p2) = F(p1) N G(p2) where F : P, = X, G : P, = X. This is the
typical situation for studying solutions z of (in)equality systems: F(p;) = {z|f(z) = p1} and
G(p2) = {z|g(z) € p2+ K}, K C P».

If f and g are loc. Lipsch. then calmness of F' and G at (p?,2°) and (p3,2°), respectively,
ensures calmness of S at (p{,pJ,z°), provided that one of the mappings

Si(p1) = {z|f(z) = p1, g(z) € p3 + K},
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Sa(p2) = {a|f(z) =p, g(x) € po + K}

is calm at the corresponding point, cf. [35], Thm. 3.6. The statement is helpful, e.g., for discussing
calmness in case 4, section 1.2, MFCQ.

For calmness, the upper Lipschitz and the Aubin property of such intersections and their
interrelations we refer to [35] and [49]. For upper Lipschitz properties of composed maps we refer
to [53], [54], [52], [64], [65] and [36]. In what follows we do not exploit special structures as above.

In the current literature on generalized equations, variational conditions and related fields, it
seems to be standard to reformulate the listed stabilities in terms of certain generalized deriva-
tives. The results are statements which look, after replacing the notion of the derivative, similar
to corresponding inverse and implicit function theorems for smooth functions. However, unlike
the smooth case, methods of computing these derivatives in terms of original data do often not
exist. This motivates why other characterizations are desirable, in particular characterizations via
(slightly simpler) Lipschitz functions or directly via the main applications of stability statements,
the behavior of solutions methods.

4 Stability in terms of Lipschitz functions

Next we show that, though we are speaking on multifunctions, the required stability properties are
classical properties of non-expansive, real-valued functions only.

In many publication, the (improper) function ¢(z,p) = dist (z,S(p)) has been used to describe
Lipschitz behavior of S. There is, however, a second function important for studying S, namely

Y(z,p) = dist ((p,z),gph S) (< é(z,p)).

Unlike ¢, the function 1 is well-defined and non-expansive whenever gph S # {).

Calmness: In terms of ¢, calmness of S at (p',z') € gph S means that
Je > 0,A > 0 such that ¢(z,p’) > X dist (z, S(p')) Vzr € X! :=2' +¢eB. (4.1)

Details, direct applications of 1) for penalty approaches and duality, estimates of v for particular
systems and other consequences can be found in [35]. Condition (4.1) requires that ¢(.,p’) in-
creases in a Lipschitzian way if £ moves away from S(p').

Aubin property at z°: From (4.1) and Remark 1(vi), one obtains

S is pseudo-Lipschitz at 20 iff it is lower Lipschitz at 2° and (4.1)

holds true for all (p',z') € gph S near 2° with the same ¢ and \. (4.2)

Remark 2 Hence calmness is a monotonicy property with respect to two canonically assigned
Lipschitz functions. The first one is the distance to gph S, the second one is the distance to the
image set at the crucial point. The same for points near z° combined with the lower Lipschitz
property at 20 characterizes the Aubin property. &

Strong Lipschitz stability of S at z° is the Aubin property along with card S.(p) = 1. The
latter means that (., p) is locally injective on 1 ~1(0):

Y(z,p) =0=19(z',p) = =2 Vr,z' € 2° +eB and p near p’. (4.3)

The upper Lipschitz property at z° requires equivalently that S is calm and z° is isolated in
S(p®). This can be summarized by

Je > 0,) > 0 such that 9 (z,p°) > X d(z,2°) Vz € 2° +¢B. (4.4)

In other words, z° has to be a minimizer of order 1 for (., p°).
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Solutions of penalty problems.
The function ¥ can be applied for both characterizing optimality and computing solutions in op-
timization models via penalization. In fact, let S be calm at (p',z') and X! := 2’ + ¢B. Further,
suppose:

f is a Lipschitz function with rank L; on some nbhd of

S(p')N X! and z' is a minimizer of f on S(p’) N X!. (4.5)

Then, 2’ is a (free) local minimizer of f(x) + k ¢ (z,p’) for large k (this is well-known and can be
immmediately seen). To find z' or some z* € S(p') N X! with f(z*) = f(2') by means of a penalty
method, several techniques can be applied. In particular, one may replace ¥ by %?* (s > 0), in
order to solve

minimize Q(z):= f(z) + k ¢(x,p')¥ on X! (k — 00). (4.6)

In this respect, it is important that, if dim P +dim X < oo, the function 9?2 is semismooth, a useful
property for various solution methods based on Newton techniques, cf. [57] or [36], chapter 6. We
give a short proof for the convergence of the minimizers to (4.6) in order to discuss the role of s
and the possibility of removing the constraint d(z,z') < e.

Convergence of minimizers z* for given p':

Let z* € argmin Q) and u* € S(p') satisfy d(z*,u*) = dist (z*, S(p')). Then

)
f@) > f(@*) + ky(at, p')?
> f(u*) — Lyd(a®, u*) + kp(a*, p')? (4.7)
> f(a') — Lyd(a*,u*) + kp(a*,p')*.
Hence Lyd(z*,u*) > ki (z*,p')*. Now calmness (4.1) permits to continue
Led(z*, uk) > kX3d(zk, uk)s. (4.8)

For s > 1, this ensures

Ly
5%

Next let 0 < s < 1. Now 0 < d(z*,u*) < 1 implies d(z*,u*) < d(z*,u*)®. Thus kA* > Ly ensures
z* = u*. On the other hand, if d(z*,u*) > 1 then & > ||z* — u*|| > ||z¥ — u*||* > 1. Hence this
case cannot appear whenever k is large enough such that eLy < kA®. In consequence, z* = uF
holds again for sufficiently large k. Summarizing, so every cluster point z* of z* is feasible and
satisfies f(z*) = f(2'), independent of the choice of s > 0.

Local and global minimizers:

If 2" was even the unique global minimizer of f on S(p’) N X! (such points are called strict local
minimizers) then (4.9) and f(z*) = f(2') imply 2* = 2’ and z* — z'. Hence z* € int X, holds for
large k, and implies, as typical for penalty methods, that the related z* are free local minimizer

of Qi (). U

dist (z*,S(p"))* ! = d(z*, u*)*7 < -0 and w(zF,p') = 0. (4.9)

Deleting calmness:
Looking once more at the above estimates, one sees that calmness of S at p’ can be immediately
replaced, in the present penalty context, by the weaker (Hoelder) property

Je > 0,A > 0,7 > 0 such that ¢(z,p") > X dist (z,S(p'))" Ve € X! :=2'+¢eB. (4.10)

Then only the critical value s* = 1 from above changes: s* = 1/r. Of course, now @y, (4.6)
is not differentiable (like under calmness for s = 1) and even more, existing derivatives may be
unbounded. So they must be made bounded artificially if they are ”too large”. However, this
is standard in every numerical program, it can be avoided by several smoothing techniques and
becomes necessary only if z* is already ”almost” feasible.

5 Calmness and Aubin property for strongly closed maps

We proceed with negating the Aubin property of a (closed) map S = F~! : P = X. The map S
is not pseudo-Lipschitz with rank L at 20 = (p°, 20) iff
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3 (p*,2%) — 2° and 7, — p° such that (p*,2*) € gph S

and dist (¢, S(m4)) > Ll|ms — pl| > 0 (VE > 0, — o). (5.1)

The inequality in (5.1) allows S (m) = () and involves interesting particular cases.
case 1: With (p* ,xk) (p°, x%) (5.1) is the negation of S to be lower Lipschitz with rank L.
case 2: With m = p°, (5. 1) is the negation of S to be calm with rank L.

Below, we shall need a further distance function, namely ¢p(z) = dist (7, F(z)) for given 7 € P.
We call S strongly closed if ¢ is l.s.c. and some p € F(x) realizes dist (7, F(x)) whenever F(z) #
() and 7 € P.

Since gph F' is closed by assumption, also F'(z) is closed. Hence S is strongly closed if F' is
locally compact or dim P < co. Further, by the projection theorem, S is strongly closed if P is
a Hilbert space and all F(z) are closed and convex. For B-spaces P, our requirement is clearly a
strong restriction to F', but notice that even for continuous F' : X — P (then S is trivially strongly
closed) the Lipschitz behavior of F~! is nowhere completely characterized.

5.1 Refinements via Ekeland’s principle for strongly closed maps

Let f: X — RU{+oo}. We say that z € X is a (local) e— Ekeland point of f if f(z) is finite
and f(z) +¢e d(z,z) > f(2) Vz e X (Vz near z). Recall

Ekeland’s variational principle [11]: Let X be a complete metric space, f : X - R U {+o0}
be lower semi-continuous and v := infx f > —oo. Then, given £ with f(Z) < v+¢ and a > 0,
there is an £— Ekeland point z of f such that f(z) < f(2) and d(z,2) < a. &

For strongly closed S, all (p*,z*) in (5.1) can be replaced by "better” pairs (pk, z%) via Ekeland’s
principle. This was a basic tool in [1] and in various other papers dealing with the Aubin property.
The following particular replacement has been used in [36, 49] and is our key for deriving all
subsequent conditions in an intrinsic manner. The proof is added since it demonstrates a typical
application of Ekeland’s principle.

Lemma 1 Let S be strongly closed.
(i) Condition (5.1) implies, with A = L and new points (p*,z*) = (pk, a%):

3 (p*,2%) = 20 in gphS and 7, — p° such that p* # m, (Vk > 0)

1 L 5.2
and (p*, z*) minimizes Hy(p,z) := ||p — k|| + +d(z,2*) on gph S. (5.2)
(ii) Condition (5.2) implies (5.1) for each L € (0,)).
(iii) In the same way, only with w;, = p° Vk > 0, calmness can be characterized.
(iv) For all t € (0,1] and p; = p' + t(mp — %), it holds dist (z%, S(p;) > A|pe — Pl o

Notes: By (iv), even continuous parameter changes on a fixed line show that every lower Lipschitz
rank L of S at (ph, z%) fulfills L > X\. With v* = p* — 7 (3 0), the minimum condition in (5.2)
means

1
||vk +n| — ||vk|| > _XHEH whenever (pk +n,zF + &) € gph S. (5.3)

Proof. (i) Let (5.1) be true. The current part of the proof is the same for fixed 7, = p" and
7, — p°, respectively. It remains also valid for (p¥,z*) = (p°,2°) in (5.1), which corresponds to
the negation of being lower Lipschitz with rank L.
For fixed k, define the 1.s.c. function ¢(z) = dist (7, F(z)), put e = || — p¥|| and note that
pF € F(z* yields
0< irg}f d(z) < () = dist (7, F(2")) < &.

Setting oy = Leg, we have 2—’; = %, and by Ekeland’s principle some z%, fulfills

8(e) + (e, ak) > 6(k) Vo € X, d(eh,o*) <o and k) <oH).  (54)

Explicitly, the main condition requires

1
dist (7, F'(z)) + Zd(m,m’ﬁ;) > dist (g, F(z%)) vV € X. (5.5)
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Since F(x%) # () and S is strongly closed, some pk, € F(zk ) fulfills dist (g, F(z%,)) = ||me — &
Obviously, (p&,z%) — 20 as k — .
If p% = m), then a contradiction follows from z% € S(p%) and (5.1):

ap > d(z®, zh%) > dist («F, S(ph)) = dist (2%, S(mr)) > Llmy, — p"|| = Ley.

Hence we have p¥, # 7 whereafter (5.5) yields (5.2 with the new points (p*, z%) = (p%, z%).

(ii) Conversely, (5.2) implies, after setting there p = 7y, ,

1
T, a®) 2 |Ip* = ml| Vo € S(m),

hence dist (2%, S(m)) > A||p* — mil| > 0. So (5.2) yields (5.1) for every positive L < .

(iv) For = € S(py), it follows ||p; — mi|| + $d(z,2%;) > |Ip} — m4ll. Due to the special choice of p,
this is §d(z,2) > [[ph — mell = llpe — 7ell = llpe — Pl O

Condition (5.2) permits a characterization of calmness and the Aubin property by the simpler
lower Lipschitz property. It also permits a formulation of Lemma 1 in terms of (3.4), where now
(p,x) takes the place of (pf, z%).
Theorem 1 For strongly closed S, the following statements are equivalent:

(i) S is pseudo-Lipschitz at 2° = (p°, z°)

(i1) 3L > 0 and € > 0 such that

for allx € S.(p) and =w,p € p® +¢eB, 7 # p, it holds

L|p’ — x| + dist (z, S(")) < Ll|lp — 7|| for some p' € P. (5.6)
(iii) S is lower Lipschitz at all (p,z) € gph S near 2° with uniform rank \.
In addition, S is calm at 2° iff (5.6) holds for == p°. <&

Proof. (i) & (ii) Clearly, S is pseudo-Lipschitz iff (5.2) cannot hold for some (large) A. The
latter is (by formal negation) equivalent to condition (5.6). With respect to calmness, the same
remains true after setting = = p°.

(iii) = (i) We prove that (ii) is valid if (iii) holds with some A < L. Indeed, setting p' = p+t(7 —p),
there exists, for small ¢ > 0, some 2’ € S(p') satisfying d(z',z) < A||p' — pl| = M(7m — p). So we
obtain

dist (z, S(p")) + Lllp" — 7l| < tllw — pl|A+ L(1 = t)[|p — 7|
<A+ LA =1)) [lp— =l < Lflw — pl|.

(i) = (iii) Since this is evident, nothing remains to prove. O
Note that the size of ¢, included in the lower Lipschitz definition, may depend on the point (p, x)

now, and that the original definitions (3.4) and (3.5) claim (5.6) stronger with p’ = 7 and p’ = p°,
respectively (up to arbitrarily small changes of the rank L).

5.2 The Aubin property via weakly stationary points

Let f: X - RU{+o0o} be any function and f(z) be finite. We call z stationary if there are g | 0
such that x is a local e, — Ekeland point of f. Clearly, for differentiable f, this means D f(z) = 0.
Further, we call 2 weakly stationary if there are €, | 0 and ¥ — z such that 2* is a local g5 —
Ekeland point of f.

Theorem 2 Let dimX +dimP < oo and F — P be a loc. Lipsch. function. Then S = F~!
is pseudo Lipschitz at (p°,z°) iff there is no y* # 0 such that 2° is weakly stationary for f as
fla) =y, F(x))- <

Proof. Let S be not pseudo Lipschitz at (p°, z°). We first verify formula (5.8) by supposing only
that F'is a closed multifunction.
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With every fixed A and v* = p* — 7y, condition (5.3) holds true. Setting y; = v*/||v¥|| and
using Euclidean norms, (5.3) implies

Lo .
[[oF +nll* > ("] = Sliell* S 1€l < Ao and (p* +n, 2" + &) € gph S

and after division by 2||v*||,

lInll* . €117 lI€]] 1<l
o0 s I
2k W Z a3 TR 2 T
Thus, given any ay, J 0, one finds small d; > 0 such that
N a 1 .
(Wi, m + ykllnll > = lIEll i [[(€m)ll < 0 and (" +&p" +n) € gph F. (5.7)

Since S is not pseudo-Lipschitz, (5.7) hold for A = A, — co. We select, to v > 1, some sufficiently
large index k = k(v) > k(v — 1) and the related points in (5.7). Then Yy = ¥* # 0 may be
assumed (otherwise pass to a related subsequence), and (5.7) tells us that, with vanishing ¢, = )\l—y,
By =15y — ¥l + arpy/Av and 6, = 6i(0),

W m+ Bullnll > —eullgll S 1€ mIl <&, and () + &) +n) € gph . (5.8)
Using that F is loc. Lipsch. with rank Lz near 2°, we have
PP = F*)), pP) = F@*) +€) and |n|| < Lell¢]).

Thus 2**) is a local (¢, + B, Lr)— Ekeland point for (y*, F(z)).

On the other hand, if 2° is weakly stationary for y* # 0 and f(z) = (y*, F(x)) then, considering
the equation F(z* + ¢) = F(a*) — ty* for small ¢t > 0 at e;,— Ekeland points z* of f, it follows
that S cannot be pseudo-Lipschitz. O

6 Stability and algorithms

Again we consider (in B-spaces) strongly closed maps S only. Given some (p,z) € gph S close to
(p°,2°) and 7 close to p°, we want to determine some z, € S(w) with d(z,,z) < L|j7 — p|| by
algorithms. Evidently, it suffices to solve

min d(z,,z) s.t. z, € S(n), (6.1)

but we are interested in an iterative procedure for this (generally) nonlinear problem. By Thm. 1,
the Aubin property of S at (p°, z°) is equivalent to condition (5.6):

3L > 0, € > 0 such that Vo € S.(p) and 7 # p € p° + £B it holds
dist (z, S(p')) + L||p’ — 7|| < L||p — «|| for some p'.

Therefore, if z,p and 7 belong to the related neighborhoods, (5.6) can be satisfied even with the
particular point p’ = . This p’ satisfies, for each given 6 € (0,1),

Ip" = =l < 6llp — |- (6.2)

6.1 The general scheme

Next we require (6.2) for a sequence of parameters p¥. For the subsequent algorithm, which
should be seen as being a framework for several more concrete procedures, we suppose that some
A>0and 6§ € (0,1) are given.

ALG1

Put (p',2') = (p,z) € gph S and choose (p**1,z%+1) € gph S in such a way that
(i) A7Md(*h b)) 4+ |lp*t =7l < flp* —7ll and (6.3)
(i) [lp**' — =l < @ [p*— 7.
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Lemma 2 If related points (p*+1, 2*t1) exist in each step then convergence follows.
o =z, pP 7w, where € S(m) and d(z,,x) < N7 - p)|. & (6.4)

Proof. Beginning with n = 1, the estimate

n
2™t =) <Y d@* T 2h) <A (pt =l = lp"t = =) (6.5)
k=1

follows from (6.3)(i) by complete induction. So, a Cauchy sequence {z*} will be generated; let
o = limz®. Then (6.5) ensures d(z,,z) < |7 — p||. Finally, (6.3)(ii) yields p* — 7 whereafter
x, € S(m) holds due to closeness of S. O

We call the algorithm applicable if related (p*+!,z¥+1) exist in each step. Under calmness, we

apply the same algorithm with fixed = = p°.

Theorem 3 Let S be strongly closed.

(i) The Aubin property of S holds at 2° iff ALG1 is applicable, for some pair of § € (0,1) and
A > 0, whenever || — p°|| + d((p, z), 2°) is small enough.

(ii) The same statement, with = = p®, holds in view of calmness of S at 2°. <

Proof.

(i) Let the Aubin property be satisfied. Then (5.6) holds for all sufficiently large L = X and
ensures via Thm. 1 (as explained above) and (6.5) the existence of the next iterates whenever
l|lm — p°|| + d((p, ), 2°) was small enough, e.g., if

Mlp =2l + llm = p°ll) < e and d(z,2°) < 3¢

with € from (5.6).

Conversely, if the Aubin property is violated then, for each A > 0, one finds points (p, z) € gph S
arbitrarily close to z°, and related 7, namely (p*,z*) and 7, from (5.2), (if (5.2) is applied to some
A" > ) such that already the first step of the procedure does not work.

(ii) In view of calmness, the same arguments can be applied with 7 = pY since Thm. 1 holds
in the same manner. a

Remark 3 Property (6.3)(ii) follows from both (6.3)(i) and the stepsize rule
(@, 2%) > 7= A1 - 0) |Ip* — ), (6.6)

since (6.3)(i) and (6.6) yield (1—8)||p* —=||+||p**! —=|| < ||p¥ —7]||. Further, the theorem still holds
after replacing (6.3)(ii) by any other condition which ensures p* — 7 and ||p**! — =|| < ||p* — 7|
if p* # . <

The formally similar statements concerning calmness and the Aubin property do not imply that
algorithm (6.3) runs in the same way under these conditions.

Aubin property: If (6.3) is applicable for all inititial points near 2% in gph S then we can first
fix any p**! with ||[p**! — || < 8||p* — 7|| and next find, since S is pseudo-Lipschitz at z° and the
points under consideration are close to z°, some z**! € S(pF*1) satisfying the required inequality.
Accordingly, related 2**! exist for each sequence p* — 7 satisfying ||[pF*! — 7| < 8|]p* — =]

Calmness: Though every feasible sequence in (6.3) leads us to some z, € S(mw) we are only
sure that some feasible z#+1 exists if p**! = 7 = p°. In other words, the sequence (p*,z*) could
be trivial, (p*, z%) = (7, 2,) Vk > ko. The most simple example: F(z) = {0}, S = F~L.

6.2 Particular realizations
6.2.1 Descent method

For minimizing f = f(z), f € C*(IR",IR) suppose that m = min f exists and f has compact level
sets. Given any x! the gradient is uniformly continuous and bounded on M = {z|f(x) < f(z!)+1}.
So, for each § > 0 there exists #(§) > 0 such that, if |t| < #(6) and f(2*) < f(2'), the conditions
)

¥ —tDf(z*) € M and |Df(z* —tDf(2*)) — Df(z")| < 3
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are satisfied.
We consider a descent method with start at z': 2%+ = 2% — #, Df(2*), p* = f(2*), where
ty € (1, t(d)), 7 > 0, and verify that

IIDf(2z*)|| < 6 holds for some k. (6.7)
Writing (as usual) pF*t — pb = —t,(Df(¢%), Df(2*)) by the mean value theorem, and replacing
Df(&") by Df(a*) — (Df(z*) — Df(€)) yields
(DF(EF), Df(*)) > | Df(®)|P - gllDf(Ik)ll = IDF )N (IDF (")l - g)-
This gives the standard estimate
PP —pb <t [IDFEM)) (IDF () = §) < = (IDFEM)] = §) [la* Tt —2*|). (6.8)
Now let (6.7) be violated. Then (6.8) yields (6.3)(i) for A = % as well as (6.6) for each § > 0
satisfying 1 — 6 < ﬁ, due to
d(z"* a*) > 61 > N1 - 6) |l —7ll > A1 - 6) [Ip* — 7. (6.9)

Lemma 2 would yield ¥ — x, € argmin f and ||Df(z,)|| > & by continuity of Df. The latter
fails to hold at a minimizer. Hence (6.7) holds indeed.

6.2.2 Generalized (non-smooth) Newton methods

The algorithm is known if S is the inverse of a loc. Lipsch. function f: X — P, X, P (B-spaces).
To show this we simplify:

m=p'=0.
Then (6.3) requires with p* = f(z¥),
k+1y — k 1
e ol < =5 and 1401 < 617 (6.10)

These are key properties for convergence of (generalized) Newton methods

Tt =k — AT f(ab), Ay = Rf(zY), k> 1
to solve f(x) = 0 with z! close to #°, under the standard hypotheses at a zero x°, namely:

(1) For x near x°, let uniformly bounded linear operators Rf(z) fulfill the approzimation condition

f(@) = f(z°) = Rf(z)(z - 2°) = o(z — 2°)

(2) and have uniformly bounded inverses Rf(x)~! (injectivity condition).
Then (cf. [36] for details and related references and [20] for Broyden-type modifications) there is
some < > 0 such that

(@) >y d(z*,2°). (6.11)

Further, given o > 0 then, taking d(x!,z°) small enough, it holds
d(zF 1 2% < a d(z*,2%) and ||f(z"h)] < a d(z*, ).
With 0 < a < min{~, 1}, this yields
d(z*, ") < d(a*,2%) + d(2°,2) < (1+ @) d(2*,2°) < 2d(a*,2°)
and ensures the first inequality of (6.10)
LG = I > 7 dat,a0) > Ly d(at, ++), (6.12)
while the second one follows from (6.11): [|f(z*")|| < a d(a*,2°) < 2||f(z")|l- |

In the general version of algorithm (6.3), the conditions (6.10) are required for appropriate selec-
tions f(z*) € F(z*) only.
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6.2.3 The projection method

If dist ((p, z), gph S) will be attained for all (p, z), Thm. 3 can be written by means of the following
projection method which presents a particular possibility for realizing the steps in ALG1.
ALG2

Put (p',z') = (p,x) € gph S and choose (p**!,z**+1) € gph S in such a way that

(p+T, 25+1) minimizes ||z — 2% || + Allp' — 7| s.t. (#',2") € gph . (6.13)

Theorem 4 Assume the minimum exist in each step. Then
(i) The Aubin property of S holds at 2° iff ALG2 generates, for sufficiently large \ and small
d((p,),2°) + || — p°||, a sequence satisfying

AHIE =2+ It =l < 6l -l (6.14)

with some constant 0 < 1.
(ii) The same statement, with = = p°, holds in view of calmness of S at 2°. <

Note that (6.14) ensures again convergence zF — x, € S(m) with ||z, — z|| < A||7 — p|

Proof. (i) Suppose the Aubin property with rank L, and fix A > L. Considering again points
near (p°,2°) one may apply the existence of # € S(m) with ||# — 2*|| < L|jw — p*||. This yields for
the minimizer in (6.13)

2"+ — 2Bl + AP = 7l < NlE = 2| + Alw = 7| < Llp* — | (6.15)
L <1 fulfills (6.14).

<
) be true for certain A > 0, § € (0,1) and all related initial points. Then
i) are valid for the current sequences. By Thm. 3 so the Aubin property

and implies that § = %
Conversely, let (6.14
also (6.3)(i) and (6.3)(i
must be satisfied.
(ii) Applying the corresponding modification for calmness in the same manner, the assertion
follows. |

6.2.4 Interpretations of ALG2 as Feijer and Penalty method

ALG2 as Feijer method:
The construction of the sequence can be understood as a Feijer method w.r. to the norm ||.||x +
All-llp and the two subsets My = (w, X), My = gphS of (P X).

Given zF = (pF,z*), find first the point z(1)¥ = (7, z*) by projection of z*¥ onto M; and next
2(2)* by projection of z(1)* onto My. Write z¢*! = 2(2)k = (p**! z*+1) and repeat.

ALG2 as penalty method:
The term A||p — 7|| in the objective of ALG2 can be understood as penalization of the require-
ment p = 7. So we simply solve

min ||z — z*|| s.t. (p,2) € gphS, p=7

by partial penalization and know that p* is the current value of p, assigned to z*. Condition (6.14)
requires linear convergence.

Summarizing, this ensures (at least) for dim X + dim P < oo:

Corollary 1 Calmness and the Aubin property at 2° are equivalent to local (linear) convergence
of the penalty method for suffic. large penalization factor \ and initial points in gph S near 2°
where one has to require m = p° (calm) und © near p° (Aubin property), respectively.

6.3 Modified successive approximation and perturbed mappings

Modified successive approximation is the typical method for showing the following statement for
closed mappings F' : X = P (B-spaces) and I' = (h + F) !
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The key observation consists in the fact that, if 7 : X = X obeys the Aubin property with
rank v < 1 at (z!,2?) € gphT and d(2?,2!) is sufficiently small (compared with v and ¢,d in
definition D3), there exist, for k > 1, elements z**1 such that

#F e T(2%) and d(zF*1,2%) < 5 d(zF,zF71). (6.16)
The sequence then fulfills z¥ — # € T(2) and behaves as in Banach’s fixed point theorem:

d(z™t, 2z <d(z™L 2" + ...+ d(2?, 2t)

S (90 d(@? 1) < 115 d(a?at).

(6.17)
In more special settings, this been already applied in [6] for verifying persistence of the Aubin
property under small C' perturbations.

Theorem 5 Let S = F~ 1 obey the Aubin property with rank L at 2° = (p°,2°) and let h: X — P
be a function with

|h(z") — h(z)|| < ad(z',z) for all ',z near z° and ||h(z°)| < S.

Then, if ||m—p°||+a+ 3 is sufficiently small, the mapping T = (h+F) "' obeys the Aubin property
at (p° + h(z®), 2°) and, moreover, there exists some x, with

T € h(zy) + F(2z) and d(z.,2°) < BL + ([lr =Pl +aBL). ©

1-La

Proof. Let |7 — p°|| + a + 8 be small enough such that

(L+

1) (Im=p°ll+8) + La <min{l,¢/2}

holds with € = § in definition (3.4). Note that

zel(p) ©@pe(h+ F)(z) & p—h(z) € F(z) & z € S(p— h(z)). (6.18)
For small ||p — h(z) — p°|| + ||z — 2°|| , the mapping

Tp(z) = S(p — h(z)) (6.19)
obeys the Aubin property with rank v = La < 1. We show the Aubin property of I'. Given
(p,z) € gphT close to (p° + h(z°), ), let (p',z') = (p,z). Then we have z' € S(p' — h(z')) and
find, by the Aubin property of S at (p°, z°), some
22 € S(r — h(z')) = Tr(z') with d(=*,2') <L |7 —p'.

Next one may apply the Aubin property of T' := T, with rank v < 1 as in (6.16) and (6.17) since
the latter estimate yields

d(@"t, ") < ¢t d(e? ) < o It -l (6.20)

Denoting the fixed point & by x, we obtain

L
1y < _ ol
m € h(zy) + F(z;) and d(zr,z") < T Ia [|m —p|
Hence T = (h+ F)~! obeys the Aubin property at (p° + h(z°), 2°) with rank L .
For proving the full theorem, observe that by the Aubin property of S,
p° — h(2°) € F(xp,) holds for some z;, € z° + BL B. (6.21)

Setting pt = p® — h(z°) + h(zy), it follows p' € h(zp) + F(z;,) whereafter (6.18) yields (p',z) €
gphT'. Further we have

Ip' ="l = 1(z°) = h(zn)|l < @ d(wn,z°) < apL.

20



Thus we may start the above prescribed process with (p!, z') = (p*, z5). This ensures the existence
of z, with 7 € h(z,) + F(x,) as well as the required estimate

d(z;,z%) <d(z° z') +d(z', z,)

<BL+ = Ll —p'||

SBL+ =07 L (llm=p°ll + [Ip° — ')
<AL+ 25 (llm =l +aBL). 0

(6.22)

The Lyusternik Theorem. Let g : X — P be a C! function and Dg(z°) map X onto P (B-
spaces). Since Dg(x°)~! : P — X is pseudo-Lipschitz by Banach’s inverse mapping theorem, we
may put

F(z) = g(«°) + Dg(2°)(z — 2°) and h(z) = g(z) - F().

Then the suppositions of the Thm. 5 hold for all small positive a and /3, in particular for small
o < L/2 which yields v < 1. Due to = = h(z) + F(z) < 7 = g(z), this proves local solvability of
the latter equation with related estimates which is Lyusternik’s theorem.

Quasi-Newton method. In order to solve

g(x)=m

with initial point 2°, p® = g(z°) and 7 close to p°, the first step of finding zj in (6.21) allows to
put x5 = x° since h(z") = 0. The iterations in (6.16) stand for solving

Dg(z%)x =7 — h(z®) and d(z,z*) < v d(«*,*1). (6.23)

Thus the derivative at the initial point #° may be used in order to determine a solution of g(z) = 7
whenever |7 — p°|| is small enough. The resulting method is a (very simple since no update) quasi-
Newton method. In a Hilbert space, one could select a minimizer of d(x,z*) among the solutions
of the linear system Dg(z%)z = 7 — h(z*).

Note. For more special mappings under the Aubin property, methods like (6.3) have been inves-
tigated also in [7, 48, 36] (generalized Newton methods and successive approximation). A general
approach and its relations to proximal point methods can be found in [36], too. To verify calm-
ness for certain intersections of mappings, an algorithmic approach based on Newton’s method for
semismooth functions has been used in [23], too. To characterize the Aubin property equivalently
for intersections by MFCQ-like conditions in B-spaces, an algorithmic approach has been applied
in [49].

7 Stability and generalized derivatives

In various papers dealing with non-smooth and multivalued analysis (nowadays also called varia-
tional analysis), conditions of stability have been presented in terms of certain generalized deriva-
tives. The latter are, in any case, sets of certain limits and have a more complicated structure
than Fréchet- derivatives since, at least, double limits are involved. As already mentioned, this
has restrictive consequences for computing them and for all calculus rules. On the other hand,
these derivatives show which local properties are essential for the stability in question and which
differences now occure in comparison with the known case of continuously differentiable functions.
The most of the next statements can be found in several (quite distributed) papers. Our ap-
proach, based on Theorem 1, is self-contained, straightforward and establishs the bridge to the
above-mentioned conditions.

In this section, we suppose that X and P are Euclidean spaces since otherwise not any of the
following characterizations by generalied derivatives remains valid.

7.1 Some generalized derivatives
Let F: X =P, S=F!and (Y= (2°p°) €gphF.

Definition 1 (contingent derivative CF). Let # € X. The set of all p € P such that p° + #;,p* €
F(2° + t2*) holds for certain t; | 0 and (2%, pF) — (&, p), forms the contingent derivative, also
called Bouligand derivative CF(¢°)(%), cf. [1]. O
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Then gph CF(¢°) C (X, P) is Bouligand’s tangent cone TgphF(CO) of gph F at (°.

Definition 2 (strict graphical derivative TF). Let # € X. The set of all p € P such that p* €
F(z*) and p* +t,p* € F(z* +t,2*) hold for certain ¢;, | 0 and related sequences (z*, 2%, p*, p*) —
(2°,2,p°, p) forms the derivative TF(¢°)(z). o

Sets of this form have been called strict graphical derivative in [76]. For loc. Lipsch. F : X — P,
TF(¢Y)(2) consists just of all limits of the form

p=lm ' [F(a* +tgd) — F(2")].

trl0, ok —20

Such limits were introduced by Thibault (to define other derivatives) and called limit sets in [79, 80],
and appeared in [32, 36, 43] (to study inverse Lipschitz functions) as A— or T- derivatives. For loc.
Lipsch. f: X — IR, the value supT'f(¢%)(2) is just Clarke’s [5] directional derivative f<(z°)(2).

The general definition has been applied (up to now) only to mappings which can be (linearly)
transformed into loc. Lipsch. functions, cf. [50], [51].

Definition 3 (co-derivative D*F). The map D*F(¢°) : P* = X* is defined by z* € D*F((°)(p*)
if 3& 10, 0 |0 and points (z*,p*) — ¢ in gph F with

®*,m) + (€ n)|l > (z*,€) whenever ||(¢,n)|| < 6 and (z¥ + &, p" +n) € gph F, & (7.1)

cf. [59, 60]. The latter requires that (z*,—p*) is (locally) an approzimate normal at (z*, p*) to
gph F' with error e;. The vector (z*, —p*) is also called a limiting Fréchet- normal. In terms of
CF, (7.1) means with new g; | 0,

(p*, p) +er > (x*, &) whenever p € CF(z*,p*)(2) and ||(p,2)|| < 1. (7.2)
If (z*,p*) is isolated in gph F' then (7.1) holds trivially for sufficiently small &.
Definition 4 (Generalized Jacobian 0°f(z)). For f € C>'(R",R™), put
M ={A| A=limDf(z*), 2% = z, Df(2*) exists}.

Then M # 0 holds by Rademacher’s theorem (f is a.e. F-differentiable). The convex hull 5¢ f(x)
conv M is Clarke’s generalized Jacobian of f at z, cf. [4, 5].

S

Strict differentiability

For h : X — P, the point p° = h(z°) can be deleted from the description of the derivatives. If
Th(z°)(2) is even single-valued for all directions #, one says that h is strictly differentiable at x°.
Explicitly, this means that all difference quotients

tot (h(z® +t3%) —h(z¥) ) asa® - 2% 3% - 2 and t, L0

have the same limit. Obviously, then Th(z°)(2) = {Dh(z°)#}Vz. Every C! function is strictly
differentiable at 2°. The reverse is not true since h may have kinks at certain points z* — z°.

7.2 First motivations of the definitions

Inverse functions:

Let f:IR™ — R" be loc. Lipschitz and f(0) = 0.
(i) fis s.L.s. at (0,0) (i.e. f! is locally well-defined and Lipschitz) if all matrices in 9°f(0) are
regular, cf. Clarke, [4, 5].
(if) fiss.L.s. at (0,0) < 0 ¢ TF(0)(u)Vu € R"™\ {0}. For n = 2, there is a piecewise linear
homeomorphism f which is s.L.s. at (0,0) and 0 € 9¢f(0).

Hence Clarke’s condition is not necessary.
(iii) T'f(z)(u) is connected and conv T f(z)(u) = {Au | A € 0°f(z) }.
(iv) For Kojima’s function & and involved C':! functions, the derivatives T® and C® can be
determined by the usual product rule of differentiation.

Implicit functions:
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Let f:R"™ — R" be loc. Lipsch. and £(0,0) = 0.
(v) Then, the solutions x to f(z,p) = y are locally unique and Lipschitz (near the origin) < 0 ¢
T£(0,0)(u,0) Yu € R™\ {0}. For (ii) ... (v), see [43, 44].

Minimizer:

Let f: R"™ — IR be loc. Lipsch. and Z be a local minimizer. Then:
(vi) 0€0°f(&), [5].
(viil) 0 € D*F(%)(1) for gph F' = {(z,r) | r > f(x)} (this implies (vi) ), [58].
(viii) If f(z) = max; g;(z) where the g; form a finite collection of C! functions, then 9°f(x) =
conv {Dg;(x) | over ¢ with g;(x) = f(x)} [5]; similarly for f(x) = maxo<i<1g(z,t) if g and Dyg
are continuous.

Taylor expansion:

Let f : R” - R and f € C*'. Then

(ix) fl@+u) = f(z) = Df(@)u+ 5{u, q)

holds for some 6 € (0,1) and ¢ € 9°D f(x+6u)u as well as for some 6 € (0,1) and g € TD f(z+6u)u,
cf. [22] and [44], respectively.

All mentioned derivativs can be computed for Kojima’s function if f,g,h € C?. For other
motivations, see Thm. 6.

7.3 Some chain rules

One easily sees that the above generalized derivatives do not change after adding a function h with
h(z°) = 0 and Th(z°)(%) = {0}Vi. (7.3)

Even more, if F' and G : X = P are two mappings such that the Hausdorff-distance of the images
dy(F(z),G(z)) :=inf{a > 0|F(z) C G(z) + aB and G(z) C F(x) + aB} satisfies

di(F(2),G(2)) < |[(@)ll, b from (7.3) (7.4)

then the introduced derivatives of F' and G at (° = (2°,p°) remain the same (replace the elements
p*, p*,n which appear in the related derivative for F' by corresponding (nearby) elements of the
G—images and vice versa).

Similarly, if G(z) = h(z) + F(z)Vz (near x°) and if Dh(2®) exists as strict derivative, then
(by direct substitutions) it follows with ¢ = h(2°) + pY,

OG (a,¢°) =Dh(z") + CF((), TG(,¢°) = Dh(a") + TF(("), -
D*G(2°,¢°) = Dh(2°)* + D*F((°). (7.5)
In particular, this permits us to interpret the derivatives in terms of linear functions A : X — Z
and zero- derivatives only (the latter indicate some singularity, cf. Thm. 6) where ¢° = p? — Az°:

(i) p € CF(¢°)(u) & FJAsuchthat 0e C(F — A)(z°,¢°)(v) andp = Au

(ii) the same for the derivative T'

(iii) u* € D*F(¢°)(p*) & 3A such that 0 € D*(F — A)(2°, ¢°)(p*) and u* = A*p*.
By considering related A with smallest norm one can study some range of stability for the mapping
S, cf. [10].

Inverse mappings.

Due to the symmetry with respect to images and pre-images, the derivative T'S or C'S of the inverse
S = F~1is just the inverse of TF or CF, respectively. For D*S, one has p* € D*S(2°)(z*) if the
elements in (7.1) satisfy e4||(&, n)|| > (p*,n) — (z*,&). So, compared with D*F, p* and z* change
the place and the sign. Summarizing, this tells us

—z* € D*F(¢°)(-p*) & p* € D*F1(2%)(z"),
p € CF(¢°)(2) & e C(F (), (7.6)
p € TF(C)(2) & #eT(F)()®)

C, T and D* for the inverse S = (h+ F)~!.
This mapping assignes, to every p € P, the solutions of the inclusion p € h(z) + F(z). If
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Dh(z°) exists as strict derivative, the above formulas can be combined in order to obtain, for
2 € S(p°),p° = h(2°) = ¢° and ¢° € F(a°),

& e CS()(p) & p € [Dh%) + CF(2%¢")]( ),
e TSEYH) & p € [Dh®) + TF(2°q"))( &), (7.7)
pr € D*S(2")(z*) & —=z* € [D'h(z) + D"F(z",q")](-p").

Linear transformations

Regular linear transformations of the image- or pre-image space change the generalized derivatives
C,T,D* in the same manner as DF and the usual adjoint map D*F', respectively. Further, it
holds for any linear function A

p € CF(C°)(2) = Ap € C(AF) (2", Ap®)(%), similarly for T(AF). (7.8)
However, regularity plays a role for the reverse direction.

Example 4 F(z)=1/z, F(0) =0: With A =0 it holds 0 € C(AF)(0,0)(1) but CF(0,0)(1) = 0.
The same effect appears for TF'. o

The direction < in (7.8) is valid if A~! exists: apply (7.8) with A~! to the right-hand side.

The formulas ensure, under strict differentiability of h : X — P and after regular linear
transformations in X and P, that the derivatives of S = h + F and S~ are available if (and only
if 1) the related derivatives are known for F.

7.4 Conditions of stability

As before, we study closed maps S : P = X at a given point 2 = (p°,2°) € gph S, put F = S~ 1,
suppose that P, X are Euclidean spaces and write ¢ in place of (z°, p?). There is a basic device for
describing the desired Lipschitz properties by generalized derivatives: Negate the related stability.

(i) Strongly Lipschitz: The map S is not strongly Lipschitz iff

dzk € S(p*), &k € S(my) with 2%, €8 — 20 and p*, 7y, — p°

such that 2 # &% and ||mg — p||/]1€% — 2¥|| = 0 (k = 00). (7.9)

Writing, in situation (7.9), €% = 2F 4+#,2%, where ||#*|| = 1 and t; > 0, and selecting a subsequence
such that ¥ — 2, one obtains 7, = p* + #;p* with p¥ — 0 and
some % # 0 belongs to T'S(2°)(0), (7.10)

and vice versa. Hence, (7.9) and (7.10) coincide. In terms of F', the negation of (7.10) (i.e., the
strong Lipschitz property of S) is just injectivity of TF(¢°):

0€TF(() (%) =2=0. (7.11)

(ii) Upper Lipschitz: The negation of the upper Lipschitz property is just
Jz* € S(p*) with 2% — 2° and p* — p° such that

7.12
o # 2% and [|pk — p[/|le* — 2]l 0 (k - o0). (712

Writing then % = ”;Z%;E”, and selecting a subsequence such that ¥ — #, one sees that
some # # 0 belongs to C'S(2°)(0), (7.13)

and vice versa. Hence, (7.12) and (7.13) coincide, too. In terms of F', the negation of (7.13) (i.e.,
the upper Lipschitz property of S) requires exactly injectivity of C'F((°):

0€ CF(") (&)= & =0. (7.14)

(iii) Lower Lipschitz: If S is lower Lipschitz then, taking z(p) € S(p) N (z° + L||p — p°||B), it
0
holds % < L for all p # p®, p near p°. Setting p = p° + tp for fixed p € bd B and passing
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to the limit ¢ | 0, some accumulation point & of z(p)ti_mo € LB exists and belongs to CS(z%)(p).
Since gph CS(2°) is a cone, so

CS(z°)(p)NLB#0 Vpe B (7.15)

is necessary for S to be lower Lipschitz at z°. In terms of F, (7.15) means surjectivity (with
linear rate) of CF(¢Y), ie.,
B C CF(¢°)(LB). (7.16)

Though (7.16) is not sufficient for being lower Lipschitz even for F' € C'(IR?,R?), cf. Ex.9 in [36],
(7.16) plays a crucial role if it holds for all (x,p) € gph F' near (°.

(iv) Pseudo-Lipschitz: We are now going to apply Lemma 1 for deriving two equivalent
characterizations of the Aubin property of S = F~1 at 2%, namely:

IA>0: B C CF(z,p)(AB) for all (p,z) € gph S near 2°; (7.17)

and
0€ D*F(°)(p*) = p* =0. (7.18)

Our general hypothesis that X and P are Euclidean spaces, is important in this context. We refer
to [35], example BE.2, where F is given by the level sets of a Lipschitz function, X = >, P = R
and both conditions are not necessary (for dim X = oo, Def. 3 must be modified).
Necessity:
Condition (7.17) is necessary since the Aubin property implies that S is lower Lipschitz for z €
gph S near 2% with the same rank, cf. (7.16). We consider (7.18), assume that z* € D*F(¢°)(p*),
p* # 0 and verify: If 2* # 0 then the rank L of the Aubin property fulfills L > Hg\\ Ifz* =0
then S does not obey the Aubin property.

In fact, let the derivative condition hold with sequences e, & and (p¥,z*) — 2°. Then (7.1)
ensures due to |(a*, )| < [|o*|| I¢],

erll &™)+ ™l gl = ™Il ™l i 1€, n*)]l < 6k and p* + 4" € F(a" +¢). (7.19)

Choose t; = ||0¢]|*> (= 0) and put * := —t;p*. Assume that any Lipschitz estimate ||¢|| < L||n*||
holds for certain solutions £ = £(k) to

T = p* + 0" € F(a* +¢).

Since [|(&,7%)|| < 6 follows for large k, (7.19) may be applied. If z* = 0 this yields e4|(£,7%)|| >
llp*|| n*|| which contradicts p* # 0. If z* # 0 then (7.19) yields, with every f > 0, that

€11 > Hﬁ;llﬂﬁ ||n*|| for large k. This verifies L > HZ:H . O
Sufficiency:

Condition (7.17): As for Thm. 1, we verify (5.6) provided that (7.17) holds with A < L:
Given (p,x), choose some & € AB such that ﬁ € CF(xz,p)(z). Then 2’ € S(p') holds for

certain elements p' = p + t(r — p) + 01(¢t) and «' = x + t||m — p||Z + 02(t) where t = t; | 0 and
01(t)/t = 0,02(t)/t = 0. So we obtain for small ¢ = t,

dist (z, S(p')) + Lllp" ==l < tllm = pl|A +[loa (D] + L(1 = )[[p — 7| + Lilos (2)]]
S (tA+ L1 =1) ) [lp = 7l + llo@®)]| < Lllw — pl|

which finishes the proof. a
The criterion (7.17) is known from [1].

Condition (7.18): If S is not pseudo-Lipschitz at 2°, then the proof of Thm. 2 shows that

(5.8) holds for related sequences. This tells us by definition that y* # 0 and 0 € D*F(¢%)(y*).

Condition (7.18) excludes the existence of such y*, hence it implies the Aubin property. |
The criterion (7.18) is known from [58] and also from [40] where the equivalent property of

openess with linear rate has been investigated.

In consequence, the following stability conditions in terms of generalized derivatives are valid (for
closed mappings in finite dimension).
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Theorem 6 It holds for z° € gph S and F = S~1:

(i) The Aubin property of S is equivalent to each of the conditions (7.17), (7.18).

(ii) S is strongly Lipschitz iff 0 € TF(¢°)(z) = & = 0.

(i) S is wupper Lipschitz iff 0 € CF(¢°)(2) = & = 0.

(iv) For S to be lower Lipschitz, condition (7.16) is necessary, but not sufficient, in general. <

We emphasize once again that these facts were observed in many papers, e.g., [4, 43, 30, 76, 50, 36,
40, 58], and the statements have been modified for more general spaces, e.g., in [1, 61, 25, 41, 36].
Notice however that, under (ii) and (iii), local solvability is not ensured.

8 Fixed points and persistence of solvability
In finite dimension, the Aubin property of S = F~! at 2° along with the identity
D,G((%) = DyF((°) (5.1)
for D, = D* ensures, by Thm. 6, local solvability of
p € G(z). (8.2)

We would like to show that upper and strong Lipschitz stability are similarly invariable if CF = CG
or TF = TG coincide at (°. But this is not true:

Example 5 Let F be the real, linear function F(z) = z, and define G(z) = {z} if (|z| = 1/k, k =
1,2,...or x = 0), and G(z) = () otherwise. For both mappings at (0,0), the C— and T'—derivative
is just the identity, but F~! = F obeys the related stability property in contrast to G~ = G. The
related co-derivatives are:

D*F(0,0)(p*) = {p*}, D*G(0,0)(p*) = R. <

Hence solvability of (8.2) does not only depend on CG or TG at the reference point and needs
extra assumptions. In addition, solvability may disappear if DyF and D,G slightly differ at the
reference point. On the other hand, solvability can be handled by the help of Thm. 5 and via
standard fixed point techniques. The latter will be investigated now.

Suppose that the variation of F' is given by a small loc. Lipsch. perturbation h as in Thm. 5

G=h+F

with small a and . The inclusion (8.2), i.e., p € h+ F, leads us to fixed points after the setting
(6.19), i.e.,
Tp(x) == S(p — h(z))

since

peEh(zx)+F(z) & x¢€Ty(x). (8.3)

The inner function v,(z) = p — h(z) has Lipschitz rank o on X; = 2° + 6B for small § > 0.
Moreover, if S is upper Lipschitz (or strongly Lipschitz) with rank A\ then the estimate

Ty, o(x) = (p° +eB)NTy(z) Cz°+ A(|lp - p°l| + |h(z) — h(z®)|)) B
C 2’ +X(llp - p°ll + ad)B

ensures for p near p° and small a, namely (e.g.) if
lp—p°|| < 1A' min{e,d} and aXé < $min{e,d}, (8.4)

that T}, . maps the ball X; into itself.
Hence fixed point Theorems can be applied to verify solvability. We mention here only those
approaches which are closely related to the stability notions of this paper.

(i) Studying the fixed points of (8.3) was the key idea in [68]: Apply Kakutani’s
Theorem to T}, . if S is upper Lipschitz stable and has convex ranges.
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(i) If S is strongly Lipschitz stable, Banach’s principle can be directly applied
since T}, . is contractive for « < A~!. This was a crucial observation in [69].

(iii) Finally, under the Aubin property of S at z°, solvability of (8.2) follows
again from Thm. 5

In [36], Thm. 4.5 and Thm. 4.2, also perturbations by multifunctions h are allowed in view of
(iii). In [6], [69], [48] and [36] the underlying spaces were Banach spaces. Recall that Thm. 5
then remains valid. In some of the mentioned papers, only the case of small C' functions h has
been taken into account, but the proofs for small loc. Lipsch. functions use basically the same
principles.

Persistence of upper Lipschitzian stability for more general variations G in (8.1) (where Dy =
C), has been shown in [42] (S upper Lipschitz stable, S and G closed and convex-valed, z° €
dom G). So one may summarize.

Theorem 7 The Aubin property of S at 2° as well as strong Lipschitz stability are persistent (at
least) with respect to small perturbations h as in Thm. 5. The same holds true, in finite dimension,
for upper Lipschitz stability, provided that S = F~' is closed and convez-valued. <

Implicit mappings and invariances
Invariance w.r. to first-order approximation of involved functions:
In Thm. 7, one can put F(z) = u(z) + N(z) and h(z) = pr(z) — p(z) where pr(z) = u(z®) +
Du(z°)(x — z) is a linearization of a C! function p at a zero x° € F~1(0). Then p € h(x) + F(x)
means

p € up(z) +N(x) (8.5)

and h becomes an arbitrarily small Lipschitz function in the sense of Thm. 5. This is a basic
situation Thm. 7 can be applied to. Strong Lipschitz stability (which includes local solvability),
the Aubin property as well as upper Lipschitz stability (which includes local solvability again), for
convex-valued S is invariant with respect to replacing p by its linearization. Moreover, derivative
formulas for solution mappings then follow from the fixed point representation

v € S(p— h(z)) = F~'(p — h(z))

and can be computed, by the chain rules above, if (and only if) related derivatives for A" are known.
The validity of this equivalence between

p € p(x) + N(z) and p € pg(z) + N (x)

in view of being s.L.s. was shown by Robinson [69], 1980. In his paper, N had a particular (normal
cone) structure, but the main proofs hold for any closed N, too. Concerning the same principle
for other stability notions, we refer to [68, 42, 9, 48, 35, 76, 36]. Notice however, that replacing
p by pr does not work in view of calmness: With A" = {0} and p = 2?, calmness is violated at
the origin though it holds true for py = 0. This is a consequence of the possible ”discontinuous
change” of S(p°) when passing from p to py.

The invariance principle simplifies stability conditions only up to a certain level. If one cannot
translate some condition including N or some ”derivative” of A in original terms, nothing is known
about stability of (8.5) as well. So the structure and description of A/ become important.
Invariance w.r. to second-order approximations inside N
If NV has a concrete structure, defined by some function ¢ and related systems of equations and
inequalities or their polar cones, a similar invariance principle can be observed. In many stability
conditions, 1) may be replaced by its quadratic approzimation at the reference point, cf. e.g.,
[70, 64, 8, 76, 9, 36, 73]. This means for the original problem that the related stability is invariant
w.r. to quadratic approximation of all involved functions near the reference point. Of course, this
invariance principle fails if g or ¢ are not sufficiently smooth. Then also the stability results in
[53, 54, 76, 50, 51] for solutions of optimization problems cannot be applied since second derivatives
are decisive used.

However, depending on the stability we are aiming at, this principle may fail even if all involved
functions are convex polynomials. A typical example will be presented now.
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9 The form of concrete known stability conditions

To simplify we consider C? problems in finite dimension without equations (they make the state-
ments only longer, not more difficult).

P(a,b) : min f(z) — (a,z), s.t. € R", g;(x) <b Vi=1,....m. (9.1)

Consider first the map S(a, b) deﬁned by the KKT points in Kojima’s form (2.6). The upper
Lipschitz property at ((0,0), (z°,y°)) can be checked by solving the system

DAL, ") + Dyl a —o,
Dy u o~ —0, 92)
a; =0 if ¥ <0, Bi=0 if ¢ >0,

with variables u € R™ and (o, 8) € R*™ which have, in addition, to satisfy
aifi = 0, o >02>p if y)=0. (9.3)

Similarly, strong Lipschitz stability s.L.s. can be checked by solving (9.2) where (a, 3) has, instead
of (9.3), to satisfy the weaker condition

In both cases, the related stability just means, that only the trivial solution exists.

Due to the C? hypothesis, here the Aubin property and s.L.s. coincide [8]. This fails to holds for
f € O [48]. These and the following statemens remain true for variational inequalities (replace
Df in Kojima’s function by any function of related dimension and smootheness).

Next let S denote the map of stationary points, i.e.,
S(a,b) ={z | Jy: (z,y) is a KKT point for P(a,b)}, and let z° € S(0,0) be the crucial point.

If LICQ is satisfied at z° (the active constraint- gradients form a linear independent system)
then there is exactly one Lagrange multiplier y(z,a,b) and the function y(.) is loc. Lipsch.. So S
and the map of KKT points are locally ”lipeomorph”; the above characterizations remain true.

Hence let only M FCQ be satisfied (without MFCQ or related conditions in section 1, nearly
nothing is known).

Now, the upper Lipschitz property can be checked by solving a finite number of quadratic
systems, each defined by first and second derivativs of f,g at the reference point. Such systems
are not known for the Aubin property and strong stability. Recently, it has been shown that they
do not exist (even for convex, polynomial problems), cf. [37]. Let (without loss of generality)

9(z%) =0.
Theorem 8 The stationary point map S is not strongly Lipschitz at (0,0, z°) iff

There exist u € R™ \ {0} and a Lagrange vector y to (x°,0,0) such that
yiDgi(x°)u = 0 Vi, and with certain =¥ — 2° and o* € R™, one has (9.5)
af Dg;(z°)u>0Vi and limp e >, af Dgi(a¥) = —D2L(2°,y)u. <

Examples demonstrate that the limit condition cannot be replaced by a condition in terms of
derivatives (for f,g at z°) up to a fixed order.

By similar limits, the T-derivative of S can be ”determined” and the Aubin property at (0,0, z°)
can be characterized: The Aubin property is violated iff there is a nontrivial pair (u*,a*) € R™*™
such that, for some sequence

(»*,2*) = (0,2°) , (p*,2*) € gph S, (9.6)

the following conditions hold true (with p = (a,b) and Y (p, z) = set of Kojima- Lagr. multipliers,
cf. (2.6) ):

Dg;(x*)u* =0 ifi € J*, ie. if y; > 0 for some y € Y (p*,z*),
af <0and Dg;(zF)u* <0 ifie J° ie. if y; =0 for some y € Y (p*, z*), (9.7)
af =0 ifi € J=, ie. if y; <0 for some y € Y (p*,z*)
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and
ID2L(2°, yP)u* + Dg(z°) a*|| < e L 0 Vy € Y (pF,2"). (9.8)

A proof and specializations can be found in [36], Thm. 8.42. After choosing an appropriate
subsequence the index sets in (9.7) are fix. However, replacing the points (p*,z*) by (0,2°)
violates the equivalence for nonlinear g.

10 Future research

(1) All these characterizations of stability do nothing say about the topological properties of the
solution sets, in particular (and important due to possible characterizations via Kojima functions)
if F:R"™ — IR" is a loc. Lipsch. function. Up to now, only the following is known:

If F~! obeys the Aubin property at the origin without being strongly Lipschitz then there
is no continuous function s = s(p) such that s(p) € F~1(p) for all p in some nbhd of 0. Hence
bifurcation is necessary. Such F' exists: identify z € R? with a complex number and put F (0)=0
and F(z) = 2%/|z| for z # 0.

If F~! obeys the Aubin property at the origin and has directional derivatives (i.e. card CF(z,u) =
1), then z = 0 is necessarily an isolated solution of F'(z) = 0, cf. [16]. After deleting the hypothesis
card CF(z,u) =1, the same statement or counterexamples are unknown.

(2) For stability of B- space problems, the direct approach via algorithms seems to be most
appropriate to decrease the gap between stability theory and practical aspects of applications (ba-
sically) by refinements of the algorithms for particular classes of problems. The most relevant (and
simplest) classes are those where the graph of the mapping is a union of finitely many smooth
manifolds. Nevertheless, algorithmic approaches can be used quite general, [49].

(3) Already for R™ problems, it would be a big step ahead to characterize subclasses of problems
which permit more convenient conditions in Thm. 8. Up to now, this has been done (without
requiring LICQ) only for problems having linear constraints with at most one quadratic exception,
cf. [37].
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