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1 Some basic notions and statements
GivenM � X (usually at least a Banach space) and f :M ! IR the main problem of optimizationconsists in �nding the value v = infx2M f(x) (1.1)
and, if it exists, in �nding some minimizer x̂ 2M .This requires to know necessary and su�cient optimality conditions like Df(x) = 0 and D2f(x)positive (semi-)de�nite for free minima onto X = IRn and f 2 C2.In many situations, they attain the form(i) Df(x̂) 2 NM (x̂) where NM (x̂) denotes some "normal cone" to M at x̂.(ii) D2f(x̂) positive (semi-) de�nite on some "tangent cone" to M at x̂.
Local solutions x̂ are solutions to (1.1) with new M̂ = M \ 
 where 
 is a nbhd of x̂. Solutionsin the original sense solutions are global solutions.
Nobody can solve (1.1) without supposing some analytical description of the feasible domain Mwhich makes it more or less di�cult to determine the "right" normal or tangent cones. Moreover, iff is not di�erentiable then something else has to replace the Frechet derivatives Df(x) or D2f(x) iff is not twice di�erentiable. These objects are often called generalized derivatives and do (usually)not represent linear functions and bilinear forms, respectively.We shall write f 2 Ck if f is k-times continuously di�erentiable (in some nbhd of the pointsof interest) and f 2 Ck;1 if f 2 Ck and Dkf is locally a Lipschitz function (loc. Lipsch.). Inparticular, C0;1 denotes loc. Lipsch. functions.Particular classes of problems:1. Linear programming

f(x) = hc; xi; M := fx 2 IRnjAx � bg; A = (m;n) matrix ; b 2 IRm: (1.2)
Here, Ax � b stands for m constraints. M is a (convex) polyhedron.
2. Mixed integer Linear programming: As above but

A is a rational matrix and some x1; :::; xp are required to be integer. (1.3)
3. Mixed integer quadratic programming: As above but

f(x) = hc; xi + hx;Qxi; Q is a rational matrix. (1.4)
In these cases, it holds the existence theorem: v �nite ) some x̂ 2 M realizes the in�mum.(quadratic without integer variables: Evans and Gould, quadratic with integer variables: Hansel).This statement still holds if f is an n-dimensional polynom of degree 3 with rational coe�cients(Belousov); it fails to hold for polynoms of degree 4 on convex polyhedrons M . In what follows,we do not deal with integer variables.
4. Classical nonlinear problems in �nite dimension

M := fx 2 X = IRn j gi(x) � 0 8i = 1; ::::;m1 and h�(x) = 0 8� = 1:::;m2g: (1.5)
5. Classical convex problems in �nite dimension: As above with f; gi convex [ i.e. for f :f(�x+ (1� �)y) � �f(x) + (1� �)f(y) 8x; y 2 X;� 2 (0; 1) ] and h� a�ne-linear.
6. Classical nonlinear problems in Banach spaces

X;Y; Z are B-spaces, g : X ! Y; h : X ! ZM := fx 2 X j g(x) 2 K and h(x) = 0g;K is a closed, convex cone in Y (1.6)
7. Classical convex problems in Banach spacesas above with f convex, h a�ne-linear, intK 6= ; and g convex w.r. to K; i.e.,

g(�x+ (1� �)y)� [�g(x) + (1� �)g(y)] 2 K 8x; y 2 X; � 2 (0; 1): (1.7)
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Here, K replaces the non-positive orthant, appearing under 4 and 5.
Examples of nonsmooth (read: not enough di�erentiable) problems:
Example 1 Tschebyschev- approximation: Given a continuous function q = q(t) on a real intervall[a; b], �nd a real polynom of degree n

px(t) = x0 + x1t+ :::+ xntn
that makes f(x) = kpx � qkmax := max a�t�b jpx(t)� q(t)j minimal. 3
Example 2 Nash-equilibrium: Suppose that x1 2 X1; :::; xn 2 Xn are strategies of n players undthat player i obtains payo� gi(x) = gi(x1; :::; xn) if each player k applies the related xk. Assumethat player i has no in
uence on the choices of the remaining players (no cooperation). Then, hemust be satis�ed with a strategy-vector x if his own choice xi satis�es

max fgi(x1; ::; xi�1; �; xi+1; :::; xn) j � 2 Xig = gi(x):
The left side is never smaller than the right one. Hence all players must be satis�ed with a strategy-vector x̂ (then x̂ is called a Nash-equilibrium) provided that the non-di�erentiable function

f(x) =Xi [ max fgi(x1; ::; xi�1; �; xi+1; :::; xn) j � 2 Xig � gi(x) ]
attains its minimum at x̂ and f(x̂) = 0. This is one of the basic models in the game theory (a �rstexistence theorem for such games - under strong hypotheses- has been shown by J. v. Neumann;solutions of matrix games). 3
1.1 Basic optimality conditions; general interrelations

For the linear problem (1.2), it holds theDuality theorem:x̂ solves (1.2) , x̂ 2M and 9ŷ 2 IRm such that hŷ; Ax̂� bi = 0; ŷ � 0 and c+AT ŷ = 0.The latter is equivalent to the fact that ŷ solves theDual problem max fhb; yi j AT y = �c; y � 0g and hb; ŷi = hc; x̂i, x̂ 2M .This statement can be understood or reformulated in various languages - in nearly all whichappeared when the tower of Babel has been build.The main reason for this multiplicity lies in the close relation between duality, subdi�erentialsand stability which will be explained next.
Subgradient, subdi�erential, conjugate function: Given a functionf : X ! IR [ f+ �1g (X is a B-space), put dom f = fx j f(x) 2 IRg. Given any x0 2 dom f ,some x� 2 X� is said to be a subgradient of f at x0 if (with the canonical bilinear form h:; :i),

f(x) � f(x0) + hx�; x� x0i 8 x 2 X: (1.8)
The convex set @f(x0) of all subgradients at x0 is called the (classical, convex) subdi�erential off at x0.Evidently, @f(x0) = ; is possible and @f(x0) 6= ; implies that f is lower semi-continuous at x0.Trivial but important:

x� 2 @f(x0) , x0 is a global minimizer of f(x)� hx�; xi+ hx�; x0i:
The (improper) concave function f�(x�) := infx2X f(x) � hx�; xi is called the conjugate of f .Often, one de�nes f� with opposite sign as supx2Xhx�; xi � f(x).
Duality and subgradient: Next de�ne, for problem 6, the (perturbation) function

�(y; z) = inf ff(x) j g(x) 2 y +K and h(x) = zg; y 2 Y; z 2 Z (1.9)
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with possibly improper values +�1. Suppose (0; 0) 2 dom� (then �(0; 0) = v = infx2M f(x) 2IR), de�ne the Lagrangian
L(x; y�; z�) = f(x) + hy�; g(x)i+ hz�; h(x)i (1.10)

and H(y�; z�) = infx2X L(x; y�; z�) (2 IR [ f�1g): (1.11)
Then, it holds (basically shown already by Io�e and Tichomirov) the key relation

�(y�; z�) 2 @�(0; 0) , H(y�; z�) = �(0; 0) and hy�; ki � 0 8k 2 K: (1.12)
Notice that nowhere continuity or convexity has been supposed in this context. After de�ning thepolar cone K� = fy� 2 Y � j hy�; ki � 0 8k 2 Kg and the dual problem

maxy�2K�;z�2Z�
H(y�; z�) (1.13)

one can equivalently say that �(y�; z�) 2 @�(0; 0) i� (y�; z�) solves the dual problem with optimalvalue �(0; 0).
Strong duality: In the second situation, one says that strong duality holds true for the relatedproblems. Using the de�nitions only, (1.12) implies

@�(0; 0) 6= ; , maxy�2K�;z�2Z�
infx2X L(x; y�; z�) = infx2X supy�2K�;z�2Z�

L(x; y�; z�): (1.14)
Finally, denoting a solution of (1.13) by (ŷ�; ẑ�) and assuming that x̂ solves the original problem,the right-hand side of (1.14) becomes the saddle point condition

L(x̂; y�; z�) � L(x̂; ŷ�; ẑ�) � L(x; ŷ�; ẑ�) 8x 2 X; y� 2 K�; z� 2 Z�: (1.15)
and yields L(x̂; ŷ�; ẑ�) = f(x̂).
Normal cone: The left-hand inequality yields, with ŷ = g(x̂) 2 K, that

hŷ�; k � ŷi � 0 8k 2 K
and means (by de�nition) that ŷ� belongs to the normal cone (in the sense of convex analysis)NK(ŷ) of K at ŷ 2 K.Next let f; g; h 2 C1. Then the right-hand inequality yields the necessary (Lagrange) condition

DxL(x̂; ŷ�; ẑ�) = 0 2 X�;
i.e., all together in terms of adjoint operators: If strong duality holds true then every solution x̂ ofthe original problem satis�es

Df(x̂) +Dg(x̂)�ŷ� +Dh(x̂)�ẑ� = 0 for some ŷ� 2 NK(g(x̂) and ẑ� 2 Z�: (1.16)
Corresponding elements ŷ�; ẑ� are called Lagrange multipliers to x̂.For linear problems (1.2), put K = IRm� := fy 2 IRm j yi � 0 8ig whereafter K� = IRm+
and show that @�(0) 6= ; since � is piecewise linear (= both continuous and a�ne on polyhedronswhich de�ne a �nite partition of IRm).In the theory of optimal control, (1.16) leads to the adjugate (and Hamilton) system, ẑ� isassigned to the di�erential equation for the trajectories, ŷ� corresponds to "phase constraints, e.g.g(x(t); t) � 0" and both have to satisfy the adjoint equation (along with an optimal trajectory).
Karush-Kuhn-Tucker points: For problems 4 in IRn, (1.16) is the key part of the Karush-Kuhn-Tucker (KKT-) conditions, imposed on a triple (x; y; z) 2 IRn+m1+m2:

Df(x) +Pi yiDgi(x) +P� z�Dh�(x) = 0g(x) � 0; h(x) = 0; y � 0 and yigi(x) = 0 8i: (1.17)
Conditions like yigi(x) = 0 or ui(x)vi(y) = 0 are called complementarity conditions.
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Example 3 The problem min fx 2 IR j x2 = 0g shows: Even if the involved functions are convexand arbitrarily smooth, the statements in (1.12) as well as the necessary optimality conditions(1.16) or (1.17) may fail to hold. 3
Hence, to derive necessary optimality conditions of the mentioned type, additional hypotheses arerequired either for the whole problem or the particular minimizer x̂ under consideration. Suchhypotheses, cf. (iii),(iv) below, are usually called regularity conditions or constraint quali�cations.
1.2 Basic optimality conditions; convexity and linearizations

Strong duality: Suppose for the "convex" problem 7(i) v �nite, f; g; h continuous, the a�ne function h maps onto Z,(ii) there is some x 2M such that g(x) 2 intK.Then @�(0; 0) 6= ; (strong duality holds true).For problems 5, the point in (ii) is said to be a Slater point: gi(x) < 0 8i.
Linear approximationsFor the more general problem 6 and f; g; h 2 C1, assume that x̂ is a (local) minimizer and putfL(x) = f(x̂) + Df(x̂)(x � x̂) as well as gL(x) and hL(x). The linearizations de�ne a particularconvex problem PL of type 7 (by using (iv) below).
Necessary optimality condition for problem 6: If(iii) Dh(x̂) maps onto Z and(iv) some x ful�lls gL(x) 2 intK and hL(x) = 0,then PL satis�es the hypotheses (i), (ii) for strong duality and x̂ solves PL. Hence the (necessaryoptimality) condition (1.16) is satis�ed.
MFCQ [56] for problem 4:For problem 4, condition (iii) means rank Dh(x̂) = m2, and (iv) attains the form:Some u 2 IRn (namely u = x� x̂) ful�lls Dh(x̂)u = 0 and Dgi(x̂)u < 0 whenever gi(x̂) = 0.All together, this is the Mangasarian-Fromovitz constraint quali�cation (MFCQ).
Hence, provided MFCQ is satis�ed at a local minimizer x̂ of a C1 problem 4, there are y; z (La-grange multipliers) such that (x̂; y; z) is a KKT point.
Weaker conditions for x̂ 2MLagrange multipliers exist under weaker conditions at optimal x̂. Really, one only needs:

If, for some û 2 IRn; " > 0 and certain tk # 0; k = 1; 2; ::: it holds
f(x̂+ tkû) < f(x̂)� tk"; kh(x̂+ tkû)k � o(tk) and maxi gi(x̂+ tkû) � o(tk)

(û exists - by linear-progr. duality - i� Lagrange multipliers do not exist for x̂),then there are xk 2M satisying f(xk) < f(x̂) and xk ! x̂ (1.18)
i.e., x̂ is not locally minimal.

Under MFCQ, the implicit function theorem applied to h ensures, with small � > 0, that (1.18)holds for certain points
xk = x̂+ tk(û+ �u) + o(tk) (with new o):

The same conclusion, even directly with � = 0, is possible under so-called calmness (cf. 3.5) at(0; 0; x̂) of the constraint map
M(y; z) = fx j g(x) � y; h(x) = zg: (1.19)

(1) Thus MFCQ can be cancelled for a�ne functions h and g; put xk = x̂+ tkû.
5



(2) If h is a�ne, then replace IRn by h�1(0) to weaken MFCQ (no rank condition) or put xk =x̂+ tk(û+ �u).(3) If h is only piecewise linear then h�1(0) becomes a union of a �nite number of polyhedronsP� (described by a�ne systems A�x � b�). The problems/values
v� = inf f f(x) j x 2 P�; g(x) � 0 g

ful�ll v = min� v� and allow again a reduction to simpler problems with simpler optimalityconditions since:x̂ is optimal for (1.1) i� x̂ is optimal for each � with v� = v and x̂ 2 P�.So it su�ces to study these simpler problems separately.(4) Similarly, subsystems of piecewise linear gi and h� can be handled by studying
v� = inf f f(x) j x 2 P�; h�0(x) = 0 8�0; gi0(x) � 0 8i0 g (1.20)

where �0 and i0 denote the functions which are not piecewise linear.
MFCQ and Aubin propertyCondition MFCQ ensures that the topological behavior of the map M (1.19) near (0; 0; x̂) islocally the same as for (proper) hyperplanes H(r) := fx j hc; xi = rg:Given x 2M(y; z) and (y0; z0) (close to x̂ and (0; 0) respectively) there existsx0 2M(y0; z0) satisfying a Lipschitz condition kx0 � xk � L k(y0; z0)� (y; z)k.MFCQ is even equivalent (for g; h 2 C1) to this property (called Aubin property of M , cf. 3.4). Inaddition, MFCQ at a (local) minimizer x̂ is equivalent to the fact that the set of assigned Lagrangemultipliers is nonempty and bounded.
For Banach space problems 6 with involved functions g; h 2 C0;1, the Aubin property of M canbe written in terms of a MFCQ- like condition, too. In this case, however, the �xed direction ubecomes a family of directions (which are functions) ux = ux(t) 2 X; t > 0, where x denotesfeasible points near x̂ [49]. Having g; h 2 C1 then (iii) and (iv) form the analogy to MFCQ.
1.3 The standard second order condition

For the �nite-dimensional C2 problem 4, let (x̂; ŷ; ẑ) be a KKT point. De�ne the index setsI0 = fi j gi(x̂) = 0g, I+ = fi 2 I0 j ŷi > 0g and the tangent cone
U = fu 2 IRn j Df(x̂)u = 0; Dgi(x̂)u � 08i 2 I0; Dgi(x̂)u = 08i 2 I+; Dh(x̂)u = 0g: (1.21)

Suppose that hu; D2xL(x̂; ŷ; ẑ)ui > c 8u 2 U; kuk = 1: (1.22)
Then, it holds for su�ciently small � > 0

f(x) � f(x̂) + 12ckx� x̂k2 8x 2M \B(x̂; �): (1.23)
For problems in Banach spaces, the situation is less obvious, we refer to [3]. Notice, that thequestion of second order conditions for classical problems of variational calculus

min J(y) := Z b
a f(y; y0; x)dx; y(a) = A; y(b) = B

leads to the Legendre- Jacobi conditions in terms of second-order di�erential equations.
1.4 Modi�cations for vector- optimization

In all considered problems 1, ... , 7, one can ask for Pareto-optimal (also called e�cient) points x̂.This means that a �nite number of objectives fj is given, and x̂ 2M has to satisfy:
there is no x 2M such that fj(x) � fj(x̂) 8j and fj(x) < fj(x̂) for some j: (1.24)
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Let E be the set of e�cient points. To generate such points one can use (in the local and globalsense) that every minimizer x̂ of f� on M satis�es (1.24), provided that
f�(x) =Xj �jfj(x) and �j > 0 8j: (1.25)

Hence the union of all minimizer to f�; � > 0 is a subset E0 � E. This set can be characterizedas follows (we consider only points in M): x̂ 2 E0 i� there is some " > 0 such that
if fj(x) < fj(x̂) for some j, then fr(x) � fr(x̂) + "(fj(x̂)� fj(x)) for some r 6= j: (1.26)

Such points are also called properly e�cient. They are similarly reasonable for de�ning a "coop-erative" solution and exclude e�cient points like
fj(x) < fj(x̂) 8j 6= r and fr(x)� fr(x̂) = o(Xj 6=r(fj(x̂)� fj(x)) > 0: (1.27)

For the "smooth" �nite-dimensional vector optimization problem 4 one can also show:To every x̂ 2 E which satis�es MFCQ, there is a nontrivial � � 0 such that the KKT conditionscan be sati�ed with f = f�.
Main tools for proving the listed statements:Separation of convex sets; implicit function theorem in B-spaces, in particular the Lyusternik (alsocalled Lyusternik/Graves-) theorem.
2 Other descriptions of KKT points
For analyzing points (x; y; z) which satisfy the �rst-oder conditions for a classical NLP in �nitedimension

min f(x) s:t: x 2M := fx 2 IRn j g(x) � 0 2 IRm1 and h(x) = 0 2 IRm2g; (2.1)
several reformulations of the related KKT- conditions (1.17),

Df(x) +Pi yiDgi(x) +P� z�Dh�(x) = 0; h(x) = 0; g(x) � 0; y � 0; hy; g(x)i = 0
are possible. The common idea consists in appropriate descriptions of the involved complementarityconditions g(x) � 0; y � 0; hy; g(x)i = 0 (2.2)
in form of equations or generalized equations.
2.1 NCP- functions

One well-known equivalent description of (2.2) consists in requiring
�(yi;�gi(x)) := minfyi;�gi(x)g = 0 8i

or more general �(yi;�gi(x)) = 0 8i
where � : IR2 ! IR is any function satisfying �(u; v) = 0 , u � 0; v � 0; uv = 0; a so-called NCPfunction which should be su�ciently simple. An often used and in many respects useful exampleis the so-called Fischer-Burmeister function �(u; v) = u+ v �pu2 + v2. Setting

�1 = Df(x) +Pi yiDgi(x) +P� z�Dh�(x);�2i = �(yi;�gi(x))�3 = h(x); (2.3)
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the conditions (1.17) and �(x; y; z) = 0 (where � : IR� ! IR�; � = n+m1 +m2) are equivalent.The equation �(x; y; z) = (a; b; c)T is connected with the canonically perturbed problem
P (a; b; c) : minx2G(b;c) f(x)� ha; xi where G(b; c) = fx j g(x) � b; h(x) = cg (2.4)

but the transformations of the related solutions are more complicated than for the subsequentreformulations. Also a similar product representation as below is not true for �. This shrinks thevalue of � for stability investigations, but not in view of solution methods. For more details werefer to [14, 15, 36, 78].
2.2 Kojima's function

Similarly, system (1.17) can be written in terms of Kojima's [39] function � : IR� ! IR� which hasthe components
�1 = Df(x) + Pi y+i Dgi(x) +P� z�Dh�(x); y+i = maxf0; yig;�2i = gi(x) � y�i ; y�i = minf0; yig;�3 = h(x): (2.5)

Then the zeros of � are related to the KKT- points via the transformations
(x; y:z) 2 ��1(0) ) (x; u; z) = (x; y + g(x); z) is a KKT-point(x; u; z) is a KKT-point ) (x; y; z) = (x; u+ g(x); z) 2 ��1(0) (2.6)

and � is, for smooth f; g; h, one of the simplest nonsmooth function. Moreover, � can be writtenas a (separable) product �(x; y; z) =M(x)N(y; z) where
N = (1; y+1 ; :::; y+m1; y�1 ; :::; y�m1; z)T 2 IR1+2m1+m2 ;

M(x) =
0
@ Df(x) Dg1(x)::: Dgm1(x) 0::: 0::: 0 Dh1(x)::: Dhm2(x)gi(x) 0 ::: 0 0::: �1::: 0 0 ::: 0h(x) 0 ::: 0 0::: 0::: 0 0 ::: 0

1
A (2.7)

with i = 1; :::;m1 and -1 at position i in the related block.Writing, e.g., (y3i )+; (y3i )� at the place of y+i and y�i , KKT-points are even zeros of a smoothfunction. However, now yi = 0 leads to a zero-column in the Jacobian of this modi�ed function �.So the standard tools for computing a zero or analyzing critical points via implicit functions failagain and the assignment (2.6) is no longer loc. Lipsch. in both directions for g 2 C1.Using � (2.5), the points of interest are zeros of a (continuous, piecewise smooth) IR� ! IR�
function, and the equation �(x; y; z) = (a; b; c)T (2.8)
permits a canonical interpretation: It describes by (2.6) the KKT-points of the elementary (canon-ically) perturbed problem

P (a; b; c) : inf f f(x)� ha; xi j g(x) � b and h(x) = c g: (2.9)
For �xed a, this corresponds to the problems which already appeared for de�ning � (1.9).Due to the product structure of � and the simple type of non-di�erentiability, several generalizedderivatives (see below) can be really determined for f; g; h 2 C1;1.For f; g; h 2 C2, nonsmoothness is only implied by the components

�(yi) = (y+i ; y�i ) = (y+i ; yi � y+i ) = 12 (yi + jyij; yi � jyij); (2.10)
of N . So, discussions on generalized derivatives can be reduced to de�ning a "derivative" of theabsolute value at the origin.
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2.3 Generalized equations

There is another, quite popular possibility of describing KKT-points, namely as solutions of inclu-sions. The simplest one is the system
Df(x) +Pi yiDgi(x) +P� z�Dh�(x) = 0g(x) 2 NK(y);h(x) = 0; (2.11)

where NK(y) denotes, for K = IRm+ and y 2 K, the normal cone of K at y. Then
NK(y) = fy�jhy�; k � yi � 0 8k 2 Kg = fy�j y�i = 0 if yi > 0 ; y�i � 0 if yi = 0g: (2.12)

If y =2 K put NK(y) = ;. De�ning K̂ = IRn �K � IRm2 and similarly NK̂(x; y; z), system (2.11)can be written, with left-hand side H and s = (x; y; z), as a generalized equation
H(s) 2 NK̂(s); (2.13)

where H is a function and NK̂ a multivalued mapping (multifunction). Such systems have beenintroduced by S. Robinson who noticed (during the 70th) that the relations between system (2.13)and its linearization H(ŝ) +DH(ŝ)(s� ŝ) 2 NK̂(s); (2.14)
are (locally, and in view of inverse and implicit functions) the same as for usual equations. This wasthe starting point for various investigation of generalized equations (2.13) in di�erent spaces andwith arbitrary multifunctions N (based on the same story). Again, the solutions of the perturbedsystem H(s) 2 (a; b; c)T +NK̂(s) (2.15)
describe the KKT points of problem (2.9), the same perturbation in (2.14) describe the KKTpoints of a related quadratic problem. In general, the standard hypothesis of the inverse functiontheorem, "DH(ŝ) is regular" now attains the form: "The solutions of the perturbed linearized prob-lem are locally unique and Lipschitz".
In terms of Kojima's function �, system (2.14) corresponds to linearization ofM while N remainsunchanged [M(x̂) +DM(x̂)(x� x̂)]N(y; z) = 0: (2.16)
Additional approximations of N (being less obvious in model (2.13)) can be applied for solutionmethods. Needless to say that neither the stability theory of Kojima functions nor the one ofgeneralized equations makes explicitly use of the particular structure of M(x) or H(s).
3 Multiphase problems and stability
A deeper analysis of critical points in optimization problems is mainly required for hierarchicoptimization models which arise as "multiphase problems" if solutions of some or several problems,say of P (a; b; c) in (2.9), are involved in a next one, e.g.,

infa;b;c;x F (a; b; c; x) where x = x(a; b; c) is a (local) solution to P (a; b; c): (3.1)
Here, also further conditions can be required for a; b; c; x or for some other involved parameter p inP (a; b; c). For various more concrete models and related solution methods we refer to [13] and [62].Continuity results for optimal values and related solutions (along with instructive counterexamples)in view of IRn- problems can be found in [2].Even if x = x(:) is unique and continuous then, as a rule, the solution map has kinks (and theoptimal value v = f(x(:)) is not C2) whenever x changes the "faces" of the parametric feasible set.In terms of the Kojima equation �(x; y; z) = (a; b; c)T , then certain yi change the sign.Obviously, these di�culties are less hard if local solutions move on smooth manifolds de�nedby a regular (rank Dh = dim c) system h(x) = c only, though minimizer may be transformed into
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saddle points or maximizer, depending on the Hessian on the tangent space. Hence inequalityconstraints or non-regular equations are the main reason for various di�culties.The behavior of stationary solutions in IRn has been already precisely described by charac-terizing the possible singularities if the involved functions are of type C3 and the whole problembelongs to some generic class, cf. [27, 28]. Here, we study less smooth problems, in general.The assumption f; g 2 C1 with loc. Lipsch. derivatives (i.e. f; g 2 C1;1), but f; g =2 C2 is typ-ical for problems which involve optimal-value functions of other (su�ciently regular) optimizationmodels like in design- or semi-in�nite optimization or for multi-level problems.
Stability: In order to analyze and solve problems like (3.1), one is mostly interested in somekinds of Lipschitz-continuity (summarized as stability) of the solution map S, assigned to (2.9) ormore general problems. Here, "solution" may be taken in the local and global sense, and often italso denotes the couple of points satisfying the �rst order necessary conditions.To have a su�ciently general model that covers all these variants in view of optimization andrelated �elds, let us consider an inclusion of the form (2.11)

p 2 F (x) := h(x) +N (x); h : X ! P; N : X � P ; (B- spaces) (3.2)
with a multifunction N , element-wise sum for h+N and the solution set S(p) = F�1(p). In thisform, hierarchic or multilevel problems may be equations, variational inequalities (i.e. N (x) issome normal cone of a given set M at a point x 2M), games, control problems et cet., too. In thesequel, suppose that gphS := f(p; x) j x 2 S(p)g is a closed set. The set domS = fp j S(p) 6= ;gis the (e�ective) domain of S.
Notions of (local) Lipschitz stability.Let S : P � X be a (closed) multifunction and z0 = (p0; x0) 2 gphS. We write �0 in place of(x0; p0) and say that some property holds near x if it holds for all points in some neighborhood ofx. Further, let B denote the closed unit ball in the related space and

S"(p) := S(p) \ (x0 + "B) := S(p) \ fxj kx� x0k � "g:
The following de�nitions generalize typical properties of the multivalued inverse S = f�1 or oflevel sets S(p) = fxjf(x) � pg for functions f : M � X ! IR at the origin. After each de�nition,we add an example such that S obeys the claimed property, but (if possible) not the remainingones.De�nitions: S is said to be strongly Lipschitz at z0 if9"; �; L (> 0) such that d(x0; x) � Lkp0 � pk for allp; p0 2 (p0 + �B) \ domS"; x0 2 S"(p0) and x 2 S"(p); (3.3)
i.e., S" is locally single-valued and Lipschitz on domS"(p) near z0; S"(p) = ; is allowed. (M =IR+; X = IR; f(x) = x; S = f�1).If also p0 2 int domS" is required then S" is locally a Lipschitz function, and we call S stronglyLipschitz stable (s.L.s.) at z0. (M = X = IR; f(x) = 2x� jxj; S = f�1).

S is said to be pseudo{Lipschitz at z0 if 9"; �; L (> 0)such that S"(p) � S(p0) + Lkp0 � pkB 8p; p0 2 p0 + �B: (3.4)
(M = X = IR2; f(x; y) = x+ y; S = f�1).Other notations (or equivalent notions) for the same fact are: S�1 is metrically regular resp.pseudo{regular or S has the Aubin property [76].Setting p = p0 in (3.4), one obtains S(p0) 6= ; due to x0 2 S"(p). Thus p0 2 int domS" is alwaysensured under (3.4).

S is said to be calm at z0 if (3.4) holds for p0 = p0; i.e.,9"; �; L (> 0) such that S"(p) � S(p0) + Lkp� p0kB 8p 2 p0 + �B: (3.5)
(M = X = IR; f(x) � 0; S = f�1).

S is said to be upper Lipschitz at z0 if 9"; �; L (> 0)such that S"(p) � x0 + Lkp� p0kB 8p 2 p0 + �B: (3.6)
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(M = X = IR; f(x) = jxj; S = f�1).If, in addition, p0 2 int domS" we call S upper Lipschitz stable (u.L.s.) at z0. (M = X = IR; fconstant on [ 12k+1 ; 12k ]; k > 0 integer, and Df(x) � 1 otherwise; S = f�1). Finally,
S is said to be lower Lipschitz at z0 if 9�; L (> 0)such that S(p) \ (x0 + Lkp� p0kB) 6= ; 8p 2 p0 + �B: (3.7)

(M = X = IR; f(x) = x if x � 0, f(x) = x2 if x � 0; S(p) = fxjf(x) � pg.
Comments.In some of these de�nitions, one may put " = �. We used di�erent constants for di�erent spaces.If S = f�1 is the inverse of a C1 function f : IRn ! IRn with S(p0) = fx0g, all these propertiescoincide with detDf(x0) 6= 0. If f is only loc. Lipsch., they are quite di�erent.The constant L is called a rank of the related stability. The requirement p0 2 int domS" meansthat solutions to p 2 F (x) are (locally) persistent, and the lower Lipschitz property quanti�es thispersistence in a Lipschitzian manner.The notions concerning stability or regularity di�er in the literature. So "s.L.s." and "stronglyregular" mean often the same, and our "upper Lipschitz" is "locally upper Lipschitz" in [8] while"u.L.s." is "upper regular" in [36]. Further, "regularity" of multifunctions has been also de�ned inan alternative manner via local linearizations in [69].
Remark 1 For �xed z0 2 gphS, one easily sees by the de�nitions:(i) S is u.L.s. i� S is both upper and lower Lipschitz.(ii) S is calm if S is upper Lipschitz.(iii) S is upper Lipschitz i� S is calm and x0 is isolated in S(p0).(iv) S is s.L.s. i� S is pseudo-Lipschitz and cardS"(p) � 1 for p near p0.(v) S is pseudo-Lipschitz i� S is lower Lipschitz at all points z 2 gphS near z0with �xed constants "; � and L.(vi) S is pseudo-Lipschitz i� S is both calm at all z 2 gphS near z0with �xed constants "; �; L and lower Lipschitz at z0. 3
Composed mappings and intersections(i) Often, S(p) = U(V (p)) is a composed map where V : P � Y and U : Y � X. In manysituations, then the related Lipschitz properties at z0, where now y0 2 V (p0) and x0 2 U(y0), areconsequences of the related properties for V and U at the corresponding points. One has, however,to shrink the image of V to the "� nbhds of y0 which appear in the related de�nitions, i.e., onehas to study composed maps of the form

S(p) = U( V (p) \ (y0 + "B) ):
Further, local solvability plays an important role in this context; for details we refer to [35], Lemma1.2.
(ii) If S = ��1 with �(x) := G(F (x)) where F : X � Y; G : Y � P then x 2 S(p) , p 2 G(F (x)), x 2 F�1(G�1(p)). This is situation (i) with U = F�1 and V = G�1.
(iii) The map S under (ii) can be written by intersections and projections: De�ne g : (X;Y ) �P as g(x; y) = G(y) and f : (X;Y ) � Y as y 2 f(x0; y0) i� y = y0 2 F (x0) (otherwise f(x0; y0) =;). This yields g�1(p) = (X;G�1(p)), f�1(y) = (F�1(y); fyg) and

x0 2 S(p) , (x0; y0) 2 f�1(y0) \ g�1(p) for some y0:
(iv) Intersections S(p1; p2) = F (p1) \ G(p2) where F : P1 � X; G : P2 � X. This is thetypical situation for studying solutions x of (in)equality systems: F (p1) = fxjf(x) = p1g andG(p2) = fxjg(x) 2 p2 +Kg; K � P2.If f and g are loc. Lipsch. then calmness of F and G at (p01; x0) and (p02; x0), respectively,ensures calmness of S at (p01; p02; x0), provided that one of the mappings

S1(p1) = fxjf(x) = p1; g(x) 2 p02 +Kg;
11



S2(p2) = fxjf(x) = p01; g(x) 2 p2 +Kg
is calm at the corresponding point, cf. [35], Thm. 3.6. The statement is helpful, e.g., for discussingcalmness in case 4, section 1.2, MFCQ.

For calmness, the upper Lipschitz and the Aubin property of such intersections and theirinterrelations we refer to [35] and [49]. For upper Lipschitz properties of composed maps we referto [53], [54], [52], [64], [65] and [36]. In what follows we do not exploit special structures as above.In the current literature on generalized equations, variational conditions and related �elds, itseems to be standard to reformulate the listed stabilities in terms of certain generalized deriva-tives. The results are statements which look, after replacing the notion of the derivative, similarto corresponding inverse and implicit function theorems for smooth functions. However, unlikethe smooth case, methods of computing these derivatives in terms of original data do often notexist. This motivates why other characterizations are desirable, in particular characterizations via(slightly simpler) Lipschitz functions or directly via the main applications of stability statements,the behavior of solutions methods.
4 Stability in terms of Lipschitz functions
Next we show that, though we are speaking on multifunctions, the required stability properties areclassical properties of non-expansive, real-valued functions only.In many publication, the (improper) function �(x; p) = dist (x; S(p)) has been used to describeLipschitz behavior of S. There is, however, a second function important for studying S, namely

 (x; p) = dist ((p; x); gphS) (� �(x; p)):
Unlike �, the function  is well-de�ned and non-expansive whenever gphS 6= ;.
Calmness: In terms of  , calmness of S at (p0; x0) 2 gphS means that

9" > 0; � > 0 such that  (x; p0) � � dist (x; S(p0)) 8x 2 X 0" := x0 + "B: (4.1)
Details, direct applications of  for penalty approaches and duality, estimates of  for particularsystems and other consequences can be found in [35]. Condition (4.1) requires that  (:; p0) in-creases in a Lipschitzian way if x moves away from S(p0).
Aubin property at z0: From (4.1) and Remark 1(vi), one obtains

S is pseudo-Lipschitz at z0 i� it is lower Lipschitz at z0 and (4.1)holds true for all (p0; x0) 2 gphS near z0 with the same " and �: (4.2)
Remark 2 Hence calmness is a monotonicy property with respect to two canonically assignedLipschitz functions. The �rst one is the distance to gphS, the second one is the distance to theimage set at the crucial point. The same for points near z0 combined with the lower Lipschitzproperty at z0 characterizes the Aubin property. 3
Strong Lipschitz stability of S at z0 is the Aubin property along with cardS"(p) � 1. Thelatter means that  (:; p) is locally injective on  �1(0):

 (x; p) = 0 =  (x0; p) ) x = x0 8x; x0 2 x0 + "B and p near p0: (4.3)
The upper Lipschitz property at z0 requires equivalently that S is calm and x0 is isolated inS(p0). This can be summarized by

9" > 0; � > 0 such that  (x; p0) � � d(x; x0) 8x 2 x0 + "B: (4.4)
In other words, x0 has to be a minimizer of order 1 for  (:; p0).
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Solutions of penalty problems.The function  can be applied for both characterizing optimality and computing solutions in op-timization models via penalization. In fact, let S be calm at (p0; x0) and X 0" := x0 + "B. Further,suppose: f is a Lipschitz function with rank Lf on some nbhd ofS(p0) \X 0" and x0 is a minimizer of f on S(p0) \X 0": (4.5)
Then, x0 is a (free) local minimizer of f(x) + k  (x; p0) for large k (this is well-known and can beimmmediately seen). To �nd x0 or some x� 2 S(p0)\X 0" with f(x�) = f(x0) by means of a penaltymethod, several techniques can be applied. In particular, one may replace  by  s (s > 0), inorder to solve minimize Qk(x) := f(x) + k  (x; p0)s on X 0" (k !1): (4.6)
In this respect, it is important that, if dimP +dimX <1, the function  2 is semismooth, a usefulproperty for various solution methods based on Newton techniques, cf. [57] or [36], chapter 6. Wegive a short proof for the convergence of the minimizers to (4.6) in order to discuss the role of sand the possibility of removing the constraint d(x; x0) � ".Convergence of minimizers xk for given p0:Let xk 2 argminQk and uk 2 S(p0) satisfy d(xk; uk) = dist (xk; S(p0)). Then

f(x0) � f(xk) + k (xk; p0)s� f(uk)� Lfd(xk; uk) + k (xk; p0)s� f(x0) � Lfd(xk; uk) + k (xk; p0)s: (4.7)
Hence Lfd(xk; uk) � k (xk; p0)s. Now calmness (4.1) permits to continue

Lfd(xk; uk) � k�sd(xk; uk)s: (4.8)
For s > 1, this ensures

dist (xk; S(p0))s�1 = d(xk; uk)s�1 � Lfk�s ! 0 and  (xk; p0)! 0: (4.9)
Next let 0 < s � 1. Now 0 < d(xk; uk) � 1 implies d(xk; uk) � d(xk; uk)s. Thus k�s > Lf ensuresxk = uk. On the other hand, if d(xk; uk) � 1 then " � kxk � ukk � kxk � ukks � 1. Hence thiscase cannot appear whenever k is large enough such that "Lf < k�s. In consequence, xk = ukholds again for su�ciently large k. Summarizing, so every cluster point x� of xk is feasible andsatis�es f(x�) = f(x0), independent of the choice of s > 0.Local and global minimizers:If x0 was even the unique global minimizer of f on S(p0) \X 0" (such points are called strict localminimizers) then (4.9) and f(x�) = f(x0) imply x� = x0 and xk ! x0. Hence xk 2 intX" holds forlarge k, and implies, as typical for penalty methods, that the related xk are free local minimizerof Qk(x). 2
Deleting calmness:Looking once more at the above estimates, one sees that calmness of S at p0 can be immediatelyreplaced, in the present penalty context, by the weaker (Hoelder) property

9" > 0; � > 0; r > 0 such that  (x; p0) � � dist (x; S(p0))r 8x 2 X 0" := x0 + "B: (4.10)
Then only the critical value s� = 1 from above changes: s� = 1=r. Of course, now Qk (4.6)is not di�erentiable (like under calmness for s = 1) and even more, existing derivatives may beunbounded. So they must be made bounded arti�cially if they are "too large". However, thisis standard in every numerical program, it can be avoided by several smoothing techniques andbecomes necessary only if xk is already "almost" feasible.
5 Calmness and Aubin property for strongly closed maps
We proceed with negating the Aubin property of a (closed) map S = F�1 : P � X. The map Sis not pseudo-Lipschitz with rank L at z0 = (p0; x0) i�
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9 (pk; xk)! z0 and �k ! p0 such that (pk; xk) 2 gphSand dist (xk; S(�k)) > Lk�k � pkk > 0 (8k > 0; k !1): (5.1)
The inequality in (5.1) allows S(�k) = ; and involves interesting particular cases.case 1: With (pk; xk) � (p0; x0) (5.1) is the negation of S to be lower Lipschitz with rank L.case 2: With �k � p0, (5.1) is the negation of S to be calm with rank L.
Below, we shall need a further distance function, namely �F (x) = dist (�; F (x)) for given � 2 P .We call S strongly closed if �F is l.s.c. and some p 2 F (x) realizes dist (�; F (x)) whenever F (x) 6=; and � 2 P .Since gphF is closed by assumption, also F (x) is closed. Hence S is strongly closed if F islocally compact or dimP < 1. Further, by the projection theorem, S is strongly closed if P isa Hilbert space and all F (x) are closed and convex. For B-spaces P , our requirement is clearly astrong restriction to F , but notice that even for continuous F : X ! P (then S is trivially stronglyclosed) the Lipschitz behavior of F�1 is nowhere completely characterized.
5.1 Re�nements via Ekeland's principle for strongly closed maps

Let f : X ! IR [ f+1g. We say that z 2 X is a (local) "� Ekeland point of f if f(z) is �niteand f(x) + " d(x; z) � f(z) 8x 2 X (8x near z): RecallEkeland's variational principle [11]: Let X be a complete metric space, f : X ! IR [ f+1gbe lower semi-continuous and v := infX f > �1. Then, given x̂ with f(x̂) � v + " and � > 0,there is an "�� Ekeland point z of f such that f(z) � f(x̂) and d(z; x̂) � �. 3
For strongly closed S, all (pk; xk) in (5.1) can be replaced by "better" pairs (pkE ; xkE) via Ekeland'sprinciple. This was a basic tool in [1] and in various other papers dealing with the Aubin property.The following particular replacement has been used in [36, 49] and is our key for deriving allsubsequent conditions in an intrinsic manner. The proof is added since it demonstrates a typicalapplication of Ekeland's principle.
Lemma 1 Let S be strongly closed.(i) Condition (5.1) implies, with � = L and new points (pk; xk) = (pkE ; xkE):9 (pk; xk)! z0 in gphS and �k ! p0 such that pk 6= �k (8k > 0)and (pk; xk) minimizes H�(p; x) := kp� �kk+ 1�d(x; xk) on gphS: (5.2)
(ii) Condition (5.2) implies (5.1) for each L 2 (0; �).(iii) In the same way, only with �k � p0 8k > 0, calmness can be characterized.(iv) For all t 2 (0; 1] and pt = pkE + t(�k � pkE), it holds dist (xkE ; S(pt) � �kpt � pkEk. 3
Notes: By (iv), even continuous parameter changes on a �xed line show that every lower Lipschitzrank L of S at (pkE ; xkE) ful�lls L � �. With vk = pk � �k ( 6= 0), the minimum condition in (5.2)means kvk + �k � kvkk � � 1�k�k whenever (pk + �; xk + �) 2 gphS: (5.3)
Proof. (i) Let (5.1) be true. The current part of the proof is the same for �xed �k � p0 and�k ! p0, respectively. It remains also valid for (pk; xk) � (p0; x0) in (5.1), which corresponds tothe negation of being lower Lipschitz with rank L.For �xed k, de�ne the l.s.c. function �(x) = dist (�k; F (x)), put "k = k�k � pkk and note thatpk 2 F (xk yields 0 � infx �(x) � �(xk) = dist (�k; F (xk)) � "k:
Setting �k = L"k, we have "k�k = 1L , and by Ekeland's principle some xkE ful�lls

�(x) + 1Ld(x; xkE) � �(xkE) 8x 2 X; d(xkE ; xk) � �k and �(xkE) � �(xk): (5.4)
Explicitly, the main condition requires

dist (�k; F (x)) + 1Ld(x; xkE) � dist (�k; F (xkE)) 8x 2 X: (5.5)
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Since F (xkE) 6= ; and S is strongly closed, some pkE 2 F (xkE) ful�lls dist (�k; F (xkE)) = k�k � pkEk.Obviously, (pkE ; xkE)! z0 as k !1.If pkE = �k then a contradiction follows from xkE 2 S(pkE) and (5.1):
�k � d(xk; xkE) � dist (xk; S(pkE)) = dist (xk; S(�k)) > Lk�k � pkk = L"k:

Hence we have pkE 6= �k whereafter (5.5) yields (5.2 with the new points (pk; xk) = (pkE ; xkE).(ii) Conversely, (5.2) implies, after setting there p = �k ,
1�d(x; xk) � kpk � �kk 8x 2 S(�k);

hence dist (xk; S(�k)) � �kpk � �kk > 0: So (5.2) yields (5.1) for every positive L < �.
(iv) For x 2 S(pt), it follows kpt � �kk+ 1�d(x; xkE) � kpkE � �kk. Due to the special choice of pt,this is 1�d(x; xkE) � kpkE � �kk � kpt � �kk = kpt � pkEk. 2
Condition (5.2) permits a characterization of calmness and the Aubin property by the simplerlower Lipschitz property. It also permits a formulation of Lemma 1 in terms of (3.4), where now(p; x) takes the place of (pkE ; xkE).
Theorem 1 For strongly closed S, the following statements are equivalent:(i) S is pseudo-Lipschitz at z0 = (p0; x0)(ii) 9L > 0 and " > 0 such that

for all x 2 S"(p) and �; p 2 p0 + "B; � 6= p; it holdsLkp0 � �k+ dist (x; S(p0)) < Lkp� �k for some p0 2 P: (5.6)
(iii) S is lower Lipschitz at all (p; x) 2 gphS near z0 with uniform rank �.In addition, S is calm at z0 i� (5.6) holds for � � p0. 3
Proof. (i) , (ii) Clearly, S is pseudo-Lipschitz i� (5.2) cannot hold for some (large) �. Thelatter is (by formal negation) equivalent to condition (5.6). With respect to calmness, the sameremains true after setting � = p0.(iii)) (i) We prove that (ii) is valid if (iii) holds with some � < L. Indeed, setting p0 = p+t(��p);there exists, for small t > 0, some x0 2 S(p0) satisfying d(x0; x) � �kp0 � pk = �t(� � p). So weobtain dist (x; S(p0)) + Lkp0 � �k � tk� � pk�+ L(1� t)kp� �k� ( t�+ L(1� t) ) kp� �k < Lk� � pk:
(i) ) (iii) Since this is evident, nothing remains to prove. 2
Note that the size of �, included in the lower Lipschitz de�nition, may depend on the point (p; x)now, and that the original de�nitions (3.4) and (3.5) claim (5.6) stronger with p0 = � and p0 = p0,respectively (up to arbitrarily small changes of the rank L).
5.2 The Aubin property via weakly stationary points

Let f : X ! IR[f+1g be any function and f(x) be �nite. We call x stationary if there are "k # 0such that x is a local "k� Ekeland point of f . Clearly, for di�erentiable f , this means Df(x) = 0.Further, we call x weakly stationary if there are "k # 0 and xk ! x such that xk is a local "k�Ekeland point of f .
Theorem 2 Let dimX + dimP < 1 and F ! P be a loc. Lipsch. function. Then S = F�1is pseudo Lipschitz at (p0; x0) i� there is no y� 6= 0 such that x0 is weakly stationary for f asf(x) = hy�; F (x)i. 3
Proof. Let S be not pseudo Lipschitz at (p0; x0). We �rst verify formula (5.8) by supposing onlythat F is a closed multifunction.
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With every �xed � and vk = pk � �k, condition (5.3) holds true. Setting y�k = vk=kvkk andusing Euclidean norms, (5.3) implies
kvk + �k2 � (kvkk � 1�k�k)2 if k�k < �kvkk and (pk + �; xk + �) 2 gphS

and after division by 2kvkk,
k�k22kvkk + hy�k; �i � k�k22�2kvkk � k�k� � �k�k� :

Thus, given any �k # 0, one �nds small �k > 0 such that
hy�k; �i+ �k� k�k � � 1�k�k if k(�; �)k < �k and (xk + �; pk + �) 2 gphF: (5.7)

Since S is not pseudo-Lipschitz, (5.7) hold for � = �� !1. We select, to � > 1, some su�cientlylarge index k = k(�) > k(� � 1) and the related points in (5.7). Then y�k(�) ! y� 6= 0 may beassumed (otherwise pass to a related subsequence), and (5.7) tells us that, with vanishing "� = 1�� ,�� = ky�k(�) � y�k+ �k(�)=�� and �0� = �k(�),
hy�; �i+ ��k�k � �"�k�k if k(�; �)k < �0� and (xk(�) + �; pk(�) + �) 2 gphF: (5.8)

Using that F is loc. Lipsch. with rank LF near x0, we have
pk(�) = F (xk(�)); pk(�) + � = F (xk(�) + �) and k�k � LF k�k:

Thus xk(�) is a local ("� + ��LF )� Ekeland point for hy�; F (x)i.On the other hand, if x0 is weakly stationary for y� 6= 0 and f(x) = hy�; F (x)i then, consideringthe equation F (xk + �) = F (xk) � ty� for small t > 0 at "k� Ekeland points xk of f , it followsthat S cannot be pseudo-Lipschitz. 2
6 Stability and algorithms
Again we consider (in B-spaces) strongly closed maps S only. Given some (p; x) 2 gphS close to(p0; x0) and � close to p0, we want to determine some x� 2 S(�) with d(x�; x) � Lk� � pk byalgorithms. Evidently, it su�ces to solve

min d(x�; x) s.t. x� 2 S(�); (6.1)
but we are interested in an iterative procedure for this (generally) nonlinear problem. By Thm. 1,the Aubin property of S at (p0; x0) is equivalent to condition (5.6):

9L > 0; " > 0 such that 8x 2 S"(p) and � 6= p 2 p0 + "B it holdsdist (x; S(p0)) + Lkp0 � �k < Lkp� �k for some p0:
Therefore, if x; p and � belong to the related neighborhoods, (5.6) can be satis�ed even with theparticular point p0 = �. This p0 satis�es, for each given � 2 (0; 1),

kp0 � �k � �kp� �k: (6.2)
6.1 The general scheme

Next we require (6.2) for a sequence of parameters pk. For the subsequent algorithm, whichshould be seen as being a framework for several more concrete procedures, we suppose that some� > 0 and � 2 (0; 1) are given.ALG1
Put (p1; x1) = (p; x) 2 gphS and choose (pk+1; xk+1) 2 gphS in such a way that(i) ��1d(xk+1; xk) + kpk+1 � �k � kpk � �k and(ii) kpk+1 � �k � � kpk � �k: (6.3)
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Lemma 2 If related points (pk+1; xk+1) exist in each step then convergence follows.
xk ! x�; pk ! �; where x� 2 S(�) and d(x�; x) � �k� � pk: 3 (6.4)

Proof. Beginning with n = 1, the estimate
kxn+1 � xk � nX

k=1 d(x
k+1; xk) � � (kp1 � �k � kpn+1 � �k) (6.5)

follows from (6.3)(i) by complete induction. So, a Cauchy sequence fxkg will be generated; letx� = limxk. Then (6.5) ensures d(x�; x) � �k� � pk. Finally, (6.3)(ii) yields pk ! � whereafterx� 2 S(�) holds due to closeness of S. 2
We call the algorithm applicable if related (pk+1; xk+1) exist in each step. Under calmness, weapply the same algorithm with �xed � � p0.
Theorem 3 Let S be strongly closed.(i) The Aubin property of S holds at z0 i� ALG1 is applicable, for some pair of � 2 (0; 1) and� > 0, whenever k� � p0k+ d((p; x); z0) is small enough.(ii) The same statement, with � � p0, holds in view of calmness of S at z0. 3
Proof.(i) Let the Aubin property be satis�ed. Then (5.6) holds for all su�ciently large L = � andensures via Thm. 1 (as explained above) and (6.5) the existence of the next iterates wheneverk� � p0k+ d((p; x); z0) was small enough, e.g., if

�(kp� p0k+ k� � p0k) < 12" and d(x; x0) < 12"with " from (5.6).Conversely, if the Aubin property is violated then, for each � > 0, one �nds points (p; x) 2 gphSarbitrarily close to z0, and related �, namely (pk; xk) and �k from (5.2), (if (5.2) is applied to some�0 > �) such that already the �rst step of the procedure does not work.(ii) In view of calmness, the same arguments can be applied with � � p0 since Thm. 1 holdsin the same manner. 2
Remark 3 Property (6.3)(ii) follows from both (6.3)(i) and the stepsize rule

d(xk+1; xk) � �k := �(1� �) kpk � �k; (6.6)
since (6.3)(i) and (6.6) yield (1��)kpk��k+kpk+1��k � kpk��k. Further, the theorem still holdsafter replacing (6.3)(ii) by any other condition which ensures pk ! � and kpk+1� �k < kpk � �kif pk 6= �. 3
The formally similar statements concerning calmness and the Aubin property do not imply thatalgorithm (6.3) runs in the same way under these conditions.

Aubin property: If (6.3) is applicable for all inititial points near z0 in gphS then we can �rst�x any pk+1 with kpk+1� �k � �kpk � �k and next �nd, since S is pseudo-Lipschitz at z0 and thepoints under consideration are close to z0, some xk+1 2 S(pk+1) satisfying the required inequality.Accordingly, related xk+1 exist for each sequence pk ! � satisfying kpk+1 � �k � �kpk � �k.Calmness: Though every feasible sequence in (6.3) leads us to some x� 2 S(�) we are onlysure that some feasible xk+1 exists if pk+1 = � = p0. In other words, the sequence (pk; xk) couldbe trivial, (pk; xk) = (�; x�) 8k � k0. The most simple example: F (x) � f0g; S = F�1.
6.2 Particular realizations

6.2.1 Descent method
For minimizing f = f(x); f 2 C1(IRn; IR) suppose that � = min f exists and f has compact levelsets. Given any x1 the gradient is uniformly continuous and bounded onM = fxjf(x) � f(x1)+1g.So, for each � > 0 there exists t(�) > 0 such that, if jtj < t(�) and f(xk) � f(x1), the conditions

xk � tDf(xk) 2M and kDf(xk � tDf(xk))�Df(xk)k < �2
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are satis�ed.We consider a descent method with start at x1: xk+1 = xk � tkDf(xk); pk = f(xk), wheretk 2 (�; t(�)); � > 0, and verify that
kDf(xk)k < � holds for some k: (6.7)

Writing (as usual) pk+1 � pk = �tkhDf(�k); Df(xk)i by the mean value theorem, and replacingDf(�k) by Df(xk)� (Df(xk)�Df(�k)) yields
hDf(�k); Df(xk)i � kDf(xk)k2 � �2kDf(xk)k = kDf(xk)k (kDf(xk)k � �2):

This gives the standard estimate
pk+1 � pk � �tk kDf(xk)k (kDf(xk)k � �2 ) � � (kDf(xk)k � �2 ) kxk+1 � xkk: (6.8)

Now let (6.7) be violated. Then (6.8) yields (6.3)(i) for � = 2� as well as (6.6) for each � > 0satisfying 1� � � � �� kp1��k , due to
d(xk+1; xk) � �� � �(1� �) kp1 � �k � �(1� �) kpk � �k: (6.9)

Lemma 2 would yield xk ! x� 2 argmin f and kDf(x�)k � � by continuity of Df . The latterfails to hold at a minimizer. Hence (6.7) holds indeed.
6.2.2 Generalized (non-smooth) Newton methods
The algorithm is known if S is the inverse of a loc. Lipsch. function f : X ! P; X; P (B-spaces).To show this we simplify: � = p0 = 0:
Then (6.3) requires with pk = f(xk),

kf(xk+1)k � kf(xk)kkxk+1 � xkk < � 1� and kf(xk+1)k � �kf(xk)k: (6.10)
These are key properties for convergence of (generalized) Newton methods

xk+1 = xk �A�1k f(xk); Ak = Rf(xk); k � 1
to solve f(x) = 0 with x1 close to x0, under the standard hypotheses at a zero x0, namely:(1) For x near x0, let uniformly bounded linear operators Rf(x) ful�ll the approximation condition

f(x)� f(x0)�Rf(x)(x� x0) = o(x� x0)
(2) and have uniformly bounded inverses Rf(x)�1 (injectivity condition).Then (cf. [36] for details and related references and [20] for Broyden-type modi�cations) there issome 
 > 0 such that kf(xk)k � 
 d(xk; x0): (6.11)
Further, given � > 0 then, taking d(x1; x0) small enough, it holds

d(xk+1; x0) � � d(xk; x0) and kf(xk+1)k � � d(xk; x0):
With 0 < � < minf
; 1g, this yields

d(xk; xk+1) � d(xk; x0) + d(x0; xk+1) � (1 + �) d(xk; x0) � 2d(xk; x0)
and ensures the �rst inequality of (6.10)

kf(xk)k � kf(xk+1)k � 
 d(xk; x0) � 12 
 d(xk; xk+1); (6.12)
while the second one follows from (6.11): kf(xk+1)k � � d(xk; x0) � �
 kf(xk)k. 2In the general version of algorithm (6.3), the conditions (6.10) are required for appropriate selec-tions f(xk) 2 F (xk) only.
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6.2.3 The projection method
If dist ((p; z); gphS) will be attained for all (p; z), Thm. 3 can be written by means of the followingprojection method which presents a particular possibility for realizing the steps in ALG1.ALG2

Put (p1; x1) = (p; x) 2 gphS and choose (pk+1; xk+1) 2 gphS in such a way that(pk+1; xk+1) minimizes kx0 � xkk+ �kp0 � �k s:t: (p0; x0) 2 gphS: (6.13)
Theorem 4 Assume the minimum exist in each step. Then(i) The Aubin property of S holds at z0 i� ALG2 generates, for su�ciently large � and smalld((p; x); z0) + k� � p0k, a sequence satisfying

��1kxk+1 � xkk + kpk+1 � �k � �kpk � �k (6.14)
with some constant � < 1:(ii) The same statement, with � � p0, holds in view of calmness of S at z0. 3
Note that (6.14) ensures again convergence xk ! x� 2 S(�) with kx� � xk � �k� � pk
Proof. (i) Suppose the Aubin property with rank L, and �x � > L. Considering again pointsnear (p0; x0) one may apply the existence of x̂ 2 S(�) with kx̂� xkk � Lk� � pkk. This yields forthe minimizer in (6.13)

kxk+1 � xkk+ �kpk+1 � �k � kx̂� xkk+ �k� � �k � Lkpk � �k (6.15)
and implies that � = L� < 1 ful�lls (6.14).Conversely, let (6.14) be true for certain � > 0; � 2 (0; 1) and all related initial points. Thenalso (6.3)(i) and (6.3)(ii) are valid for the current sequences. By Thm. 3 so the Aubin propertymust be satis�ed.(ii) Applying the corresponding modi�cation for calmness in the same manner, the assertionfollows. 2
6.2.4 Interpretations of ALG2 as Feijer and Penalty method
ALG2 as Feijer method:The construction of the sequence can be understood as a Feijer method w.r. to the norm k:kX +�k:kP and the two subsets M1 = (�;X), M2 = gphS of (P;X).Given zk = (pk; xk), �nd �rst the point z(1)k = (�; xk) by projection of zk onto M1 and nextz(2)k by projection of z(1)k onto M2. Write zk+1 = z(2)k = (pk+1; xk+1) and repeat.

ALG2 as penalty method:The term �kp� �k in the objective of ALG2 can be understood as penalization of the require-ment p = �. So we simply solve
min kx� xkk s:t: (p; x) 2 gphS; p = �

by partial penalization and know that pk is the current value of p, assigned to xk. Condition (6.14)requires linear convergence.
Summarizing, this ensures (at least) for dimX + dimP <1:

Corollary 1 Calmness and the Aubin property at z0 are equivalent to local (linear) convergenceof the penalty method for su�c. large penalization factor � and initial points in gphS near z0where one has to require � = p0 (calm) und � near p0 (Aubin property), respectively.
6.3 Modi�ed successive approximation and perturbed mappings

Modi�ed successive approximation is the typical method for showing the following statement forclosed mappings F : X � P (B-spaces) and � = (h+ F )�1.
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The key observation consists in the fact that, if T : X � X obeys the Aubin property withrank 
 < 1 at (x1; x2) 2 gphT and d(x2; x1) is su�ciently small (compared with 
 and "; � inde�nition D3), there exist, for k > 1, elements xk+1 such that
xk+1 2 T (xk) and d(xk+1; xk) � 
 d(xk; xk�1): (6.16)

The sequence then ful�lls xk ! x̂ 2 T (x̂) and behaves as in Banach's �xed point theorem:
d(xn+1; x1) � d(xn+1; xn) + :::+ d(x2; x1)� (
n�1 + :::+ 
0) d(x2; x1) � 11�
 d(x2; x1): (6.17)

In more special settings, this been already applied in [6] for verifying persistence of the Aubinproperty under small C1 perturbations.
Theorem 5 Let S = F�1 obey the Aubin property with rank L at z0 = (p0; x0) and let h : X ! Pbe a function with

kh(x0)� h(x)k � �d(x0; x) for all x0; x near x0 and kh(x0)k � �:
Then, if k��p0k+�+� is su�ciently small, the mapping � = (h+F )�1 obeys the Aubin propertyat (p0 + h(x0); x0) and, moreover, there exists some x� with

� 2 h(x�) + F (x�) and d(x�; x0) � �L+ L1� L� ( k� � p0k+ ��L ): 3
Proof. Let k� � p0k+ �+ � be small enough such that

(L+ L1� L� ) ( k� � p0k+ � ) + L� < minf1; "=2g
holds with " = � in de�nition (3.4). Note that

x 2 �(p) , p 2 (h+ F )(x) , p� h(x) 2 F (x) , x 2 S(p� h(x)): (6.18)
For small kp� h(x)� p0k+ kx� x0k , the mapping

Tp(x) = S(p� h(x)) (6.19)
obeys the Aubin property with rank 
 = L� < 1. We show the Aubin property of �. Given(p; x) 2 gph� close to (p0+h(x0); x0), let (p1; x1) = (p; x). Then we have x1 2 S(p1�h(x1)) and�nd, by the Aubin property of S at (p0; x0), some

x2 2 S(� � h(x1)) = T�(x1) with d(x2; x1) � L k� � p1k:
Next one may apply the Aubin property of T := T� with rank 
 < 1 as in (6.16) and (6.17) sincethe latter estimate yields

d(xn+1; x1) � 11�
 d(x2; x1) � L1�L� kp1 � �k: (6.20)
Denoting the �xed point x̂ by x� we obtain

� 2 h(x�) + F (x�) and d(x�; x1) � L1� L� k� � p1k:
Hence � = (h+ F )�1 obeys the Aubin property at (p0 + h(x0); x0) with rank L1�L� .For proving the full theorem, observe that by the Aubin property of S,

p0 � h(x0) 2 F (xh) holds for some xh 2 x0 + �L B: (6.21)
Setting p1 = p0 � h(x0) + h(xh), it follows p1 2 h(xh) + F (xh) whereafter (6.18) yields (p1; xh) 2gph�. Further we have

kp1 � p0k = kh(x0)� h(xh)k � � d(xh; x0) � ��L:
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Thus we may start the above prescribed process with (p1; x1) = (p1; xh). This ensures the existenceof x� with � 2 h(x�) + F (x�) as well as the required estimate
d(x�; x0) � d(x0; x1) + d(x1; x�)� �L+ 11�L� L k� � p1k� �L+ 11�L� L ( k� � p0k+ kp0 � p1k )� �L+ L1�L� ( k� � p0k+ ��L ): 2

(6.22)

The Lyusternik Theorem. Let g : X ! P be a C1 function and Dg(x0) map X onto P (B-spaces). Since Dg(x0)�1 : P ! X is pseudo-Lipschitz by Banach's inverse mapping theorem, wemay put F (x) = g(x0) +Dg(x0)(x� x0) and h(x) = g(x)� F (x):
Then the suppositions of the Thm. 5 hold for all small positive � and �, in particular for small� < L=2 which yields 
 < 12 . Due to � = h(x) + F (x) , � = g(x), this proves local solvability ofthe latter equation with related estimates which is Lyusternik's theorem.Quasi-Newton method. In order to solve

g(x) = �
with initial point x0; p0 = g(x0) and � close to p0, the �rst step of �nding xh in (6.21) allows toput xh = x0 since h(x0) = 0. The iterations in (6.16) stand for solving

Dg(x0)x = � � h(xk) and d(x; xk) � 
 d(xk; xk�1): (6.23)
Thus the derivative at the initial point x0 may be used in order to determine a solution of g(x) = �whenever k��p0k is small enough. The resulting method is a (very simple since no update) quasi-Newton method. In a Hilbert space, one could select a minimizer of d(x; xk) among the solutionsof the linear system Dg(x0)x = � � h(xk).Note. For more special mappings under the Aubin property, methods like (6.3) have been inves-tigated also in [7, 48, 36] (generalized Newton methods and successive approximation). A generalapproach and its relations to proximal point methods can be found in [36], too. To verify calm-ness for certain intersections of mappings, an algorithmic approach based on Newton's method forsemismooth functions has been used in [23], too. To characterize the Aubin property equivalentlyfor intersections by MFCQ-like conditions in B-spaces, an algorithmic approach has been appliedin [49].
7 Stability and generalized derivatives
In various papers dealing with non-smooth and multivalued analysis (nowadays also called varia-tional analysis), conditions of stability have been presented in terms of certain generalized deriva-tives. The latter are, in any case, sets of certain limits and have a more complicated structurethan Fr�echet- derivatives since, at least, double limits are involved. As already mentioned, thishas restrictive consequences for computing them and for all calculus rules. On the other hand,these derivatives show which local properties are essential for the stability in question and whichdi�erences now occure in comparison with the known case of continuously di�erentiable functions.The most of the next statements can be found in several (quite distributed) papers. Our ap-proach, based on Theorem 1, is self-contained, straightforward and establishs the bridge to theabove-mentioned conditions.In this section, we suppose that X and P are Euclidean spaces since otherwise not any of thefollowing characterizations by generalied derivatives remains valid.
7.1 Some generalized derivatives

Let F : X � P; S = F�1 and �0 = (x0; p0) 2 gphF .
De�nition 1 (contingent derivative CF ). Let x̂ 2 X. The set of all p̂ 2 P such that p0 + tkp̂k 2F (x0 + tkx̂k) holds for certain tk # 0 and (x̂k; p̂k) ! (x̂; p̂), forms the contingent derivative, alsocalled Bouligand derivative CF (�0)(x̂), cf. [1]. 3
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Then gphCF (�0) � (X;P ) is Bouligand's tangent cone TgphF (�0) of gphF at �0.
De�nition 2 (strict graphical derivative TF ). Let x̂ 2 X. The set of all p̂ 2 P such that pk 2F (xk) and pk+ tkp̂k 2 F (xk+ tkx̂k) hold for certain tk # 0 and related sequences (xk; x̂k; pk; p̂k)!(x0; x̂; p0; p̂) forms the derivative TF (�0)(x̂). 3
Sets of this form have been called strict graphical derivative in [76]. For loc. Lipsch. F : X ! P ,TF (�0)(x̂) consists just of all limits of the form

p̂ = limtk#0; xk!x0 t�1k [F (xk + tkx̂)� F (xk)]:
Such limits were introduced by Thibault (to de�ne other derivatives) and called limit sets in [79, 80],and appeared in [32, 36, 43] (to study inverse Lipschitz functions) as �� or T- derivatives. For loc.Lipsch. f : X ! IR, the value supTf(�0)(x̂) is just Clarke's [5] directional derivative fCl(x0)(x̂).The general de�nition has been applied (up to now) only to mappings which can be (linearly)transformed into loc. Lipsch. functions, cf. [50], [51].
De�nition 3 (co-derivative D�F ). The map D�F (�0) : P � � X� is de�ned by x� 2 D�F (�0)(p�)if 9 "k # 0; �k # 0 and points (xk; pk)! �0 in gphF with

hp�; �i+ "kk(�; �)k � hx�; �i whenever k(�; �)k � �k and (xk + �; pk + �) 2 gphF; 3 (7.1)
cf. [59, 60]. The latter requires that (x�;�p�) is (locally) an approximate normal at (xk; pk) togphF with error "k. The vector (x�;�p�) is also called a limiting Fr�echet- normal. In terms ofCF , (7.1) means with new "k # 0,

hp�; p̂i+ "k � hx�; x̂i whenever p̂ 2 CF (xk; pk)(x̂) and k(p̂; x̂)k � 1: (7.2)
If (xk; pk) is isolated in gphF then (7.1) holds trivially for su�ciently small �k.
De�nition 4 (Generalized Jacobian @cf(x)). For f 2 C0;1(IRn; IRm), put

M = fA j A = limDf(xk); xk ! x; Df(xk) existsg:
ThenM 6= ; holds by Rademacher's theorem (f is a.e. F-di�erentiable). The convex hull @cf(x) =convM is Clarke's generalized Jacobian of f at x, cf. [4, 5]. 3
Strict di�erentiabilityFor h : X ! P , the point p0 = h(x0) can be deleted from the description of the derivatives. IfTh(x0)(x̂) is even single-valued for all directions x̂, one says that h is strictly di�erentiable at x0.Explicitly, this means that all di�erence quotients

t�1k ( h(xk + tkx̂k)� h(xk) ) as xk ! x0; x̂k ! x̂ and tk # 0
have the same limit. Obviously, then Th(x0)(x̂) = fDh(x0)x̂g8x̂. Every C1 function is strictlydi�erentiable at x0. The reverse is not true since h may have kinks at certain points xk ! x0.
7.2 First motivations of the de�nitions

Inverse functions:Let f : IRn ! IRn be loc. Lipschitz and f(0) = 0.(i) f is s.L.s. at (0; 0) (i.e. f�1 is locally well-de�ned and Lipschitz) if all matrices in @cf(0) areregular, cf. Clarke, [4, 5].(ii) f is s.L.s. at (0; 0) , 0 =2 Tf(0)(u)8u 2 IRn n f0g. For n = 2, there is a piecewise linearhomeomorphism f which is s.L.s. at (0; 0) and 0 2 @cf(0).Hence Clarke's condition is not necessary.(iii) Tf(x)(u) is connected and convTf(x)(u) = fAu j A 2 @cf(x) g.(iv) For Kojima's function � and involved C1;1 functions, the derivatives T� and C� can bedetermined by the usual product rule of di�erentiation.Implicit functions:
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Let f : IRn+m ! IRn be loc. Lipsch. and f(0; 0) = 0.(v) Then, the solutions x to f(x; p) = y are locally unique and Lipschitz (near the origin) , 0 =2Tf(0; 0)(u; 0) 8u 2 IRn n f0g. For (ii) ... (v), see [43, 44].Minimizer:Let f : IRn ! IR be loc. Lipsch. and x̂ be a local minimizer. Then:(vi) 0 2 @cf(x̂), [5].(vii) 0 2 D�F (x̂)(1) for gphF = f(x; r) j r � f(x)g (this implies (vi) ), [58].(viii) If f(x) = maxi gi(x) where the gi form a �nite collection of C1 functions, then @cf(x) =conv fDgi(x) j over i with gi(x) = f(x)g [5]; similarly for f(x) = max0�t�1 g(x; t) if g and Dxgare continuous.Taylor expansion:Let f : IRn ! IR and f 2 C1;1. Then
(ix) f(x+ u)� f(x) = Df(x)u+ 12 hu; qi

holds for some � 2 (0; 1) and q 2 @cDf(x+�u)u as well as for some � 2 (0; 1) and q 2 TDf(x+�u)u,cf. [22] and [44], respectively.All mentioned derivativs can be computed for Kojima's function if f; g; h 2 C2. For othermotivations, see Thm. 6.
7.3 Some chain rules

One easily sees that the above generalized derivatives do not change after adding a function h with
h(x0) = 0 and Th(x0)(x̂) = f0g8x̂: (7.3)

Even more, if F and G : X � P are two mappings such that the Hausdor�-distance of the imagesdH(F (x); G(x)) := inff� > 0jF (x) � G(x) + �B and G(x) � F (x) + �Bg satis�es
dH(F (x); G(x)) � kh(x)k; h from (7.3) (7.4)

then the introduced derivatives of F and G at �0 = (x0; p0) remain the same (replace the elementspk; p̂k; � which appear in the related derivative for F by corresponding (nearby) elements of theG�images and vice versa).Similarly, if G(x) = h(x) + F (x)8x (near x0) and if Dh(x0) exists as strict derivative, then(by direct substitutions) it follows with q0 = h(x0) + p0,
CG (x0; q0) = Dh(x0) + CF (�0); TG(x0; q0) = Dh(x0) + TF (�0);D�G(x0; q0) = Dh(x0)� +D�F (�0): (7.5)

In particular, this permits us to interpret the derivatives in terms of linear functions A : X ! Zand zero- derivatives only (the latter indicate some singularity, cf. Thm. 6) where q0 = p0 �Ax0:(i) p 2 CF (�0)(u) , 9A such that 0 2 C(F �A)(x0; q0)(u) and p = Au(ii) the same for the derivative T(iii) u� 2 D�F (�0)(p�) , 9A such that 0 2 D�(F �A)(x0; q0)(p�) and u� = A�p�.By considering related A with smallest norm one can study some range of stability for the mappingS, cf. [10].
Inverse mappings.Due to the symmetry with respect to images and pre-images, the derivative TS or CS of the inverseS = F�1 is just the inverse of TF or CF , respectively. For D�S, one has p� 2 D�S(z0)(x�) if theelements in (7.1) satisfy "kk(�; �)k � hp�; �i � hx�; �i. So, compared with D�F , p� and x� changethe place and the sign. Summarizing, this tells us

�x� 2 D�F (�0)(�p�) , p� 2 D�F�1(z0)(x�);p̂ 2 CF (�0)(x̂) , x̂ 2 C(F�1)(z0)(p̂);p̂ 2 TF (�0)(x̂) , x̂ 2 T (F�1)(z0)(p̂): (7.6)
C; T and D� for the inverse S = (h+ F )�1.This mapping assignes, to every p 2 P , the solutions of the inclusion p 2 h(x) + F (x). If
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Dh(x0) exists as strict derivative, the above formulas can be combined in order to obtain, forx0 2 S(p0); p0 � h(x0) = q0 and q0 2 F (x0),
x̂ 2 CS(z0)(p̂) , p̂ 2 [Dh(x0) + CF ( x0; q0)]( x̂);x̂ 2 TS(z0)(p̂) , p̂ 2 [Dh(x0) + TF ( x0; q0)]( x̂);p� 2 D�S(z0)(x�) , � x� 2 [D�h(x0) +D�F (x0; q0)](�p�): (7.7)

Linear transformationsRegular linear transformations of the image- or pre-image space change the generalized derivativesC; T;D� in the same manner as DF and the usual adjoint map D�F , respectively. Further, itholds for any linear function A
p̂ 2 CF (�0)(x̂)) Ap̂ 2 C(AF )(x0; Ap0)(x̂); similarly for T (AF ): (7.8)

However, regularity plays a role for the reverse direction.
Example 4 F (x) = 1=x; F (0) = 0: With A = 0 it holds 0 2 C(AF )(0; 0)(1) but CF (0; 0)(1) = ;.The same e�ect appears for TF . 3
The direction ( in (7.8) is valid if A�1 exists: apply (7.8) with A�1 to the right-hand side.The formulas ensure, under strict di�erentiability of h : X ! P and after regular lineartransformations in X and P , that the derivatives of S = h+ F and S�1 are available if (and onlyif !) the related derivatives are known for F.
7.4 Conditions of stability

As before, we study closed maps S : P � X at a given point z0 = (p0; x0) 2 gphS, put F = S�1,suppose that P;X are Euclidean spaces and write �0 in place of (x0; p0). There is a basic device fordescribing the desired Lipschitz properties by generalized derivatives: Negate the related stability.
(i) Strongly Lipschitz: The map S is not strongly Lipschitz i�

9xk 2 S(pk); �k 2 S(�k) with xk; �k ! x0 and pk; �k ! p0such that xk 6= �k and k�k � pkk=k�k � xkk ! 0 (k !1): (7.9)
Writing, in situation (7.9), �k = xk+tkx̂k, where kx̂kk = 1 and tk > 0, and selecting a subsequencesuch that x̂k ! x̂, one obtains �k = pk + tkp̂k with p̂k ! 0 and

some x̂ 6= 0 belongs to TS(z0)(0); (7.10)
and vice versa. Hence, (7.9) and (7.10) coincide. In terms of F , the negation of (7.10) (i.e., thestrong Lipschitz property of S) is just injectivity of TF (�0):

0 2 TF (�0)(x̂)) x̂ = 0: (7.11)
(ii) Upper Lipschitz: The negation of the upper Lipschitz property is just

9xk 2 S(pk) with xk ! x0 and pk ! p0 such thatxk 6= x0 and kpk � p0k=kxk � x0k ! 0 (k !1): (7.12)
Writing then x̂k = xk�x0kxk�x0k , and selecting a subsequence such that x̂k ! x̂, one sees that

some x̂ 6= 0 belongs to CS(z0)(0); (7.13)
and vice versa. Hence, (7.12) and (7.13) coincide, too. In terms of F , the negation of (7.13) (i.e.,the upper Lipschitz property of S) requires exactly injectivity of CF (�0):

0 2 CF (�0)(x̂)) x̂ = 0: (7.14)
(iii) Lower Lipschitz: If S is lower Lipschitz then, taking x(p) 2 S(p) \ (x0 + Lkp � p0kB), itholds kx(p)�x0kkp�p0k � L for all p 6= p0; p near p0. Setting p = p0 + tp̂ for �xed p̂ 2 bdB and passing
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to the limit t # 0, some accumulation point x̂ of x(p)�x0t 2 LB exists and belongs to CS(z0)(p̂).Since gphCS(z0) is a cone, so
CS(z0)(p̂) \ LB 6= ; 8p̂ 2 B (7.15)

is necessary for S to be lower Lipschitz at z0. In terms of F , (7.15) means surjectivity (withlinear rate) of CF (�0); i.e., B � CF (�0)(LB): (7.16)
Though (7.16) is not su�cient for being lower Lipschitz even for F 2 C(IR2; IR2), cf. Ex.9 in [36],(7.16) plays a crucial role if it holds for all (x; p) 2 gphF near �0.
(iv) Pseudo-Lipschitz: We are now going to apply Lemma 1 for deriving two equivalentcharacterizations of the Aubin property of S = F�1 at z0, namely:

9� > 0 : B � CF (x; p)(�B) for all (p; x) 2 gphS near z0; (7.17)
and 0 2 D�F (�0)(p�)) p� = 0: (7.18)
Our general hypothesis that X and P are Euclidean spaces, is important in this context. We referto [35], example BE.2, where F is given by the level sets of a Lipschitz function, X = l2; P = IRand both conditions are not necessary (for dimX =1, Def. 3 must be modi�ed).Necessity:Condition (7.17) is necessary since the Aubin property implies that S is lower Lipschitz for z 2gphS near z0 with the same rank, cf. (7.16). We consider (7.18), assume that x� 2 D�F (�0)(p�),p� 6= 0 and verify: If x� 6= 0 then the rank L of the Aubin property ful�lls L � kp�kkx�k . If x� = 0then S does not obey the Aubin property.In fact, let the derivative condition hold with sequences "k; �k and (pk; xk) ! z0. Then (7.1)ensures due to jhx�; �ij � kx�k k�k,

"kk(�; �k)k+ kx�k k�k � kp�k k�kk if k(�; �k)k < �k and pk + �k 2 F (xk + �): (7.19)
Choose tk = k�kk2 (! 0) and put �k := �tkp�. Assume that any Lipschitz estimate k�k � Lk�kkholds for certain solutions � = �(k) to

�k := pk + �k 2 F (xk + �):
Since k(�; �k)k < �k follows for large k, (7.19) may be applied. If x� = 0 this yields "kk(�; �k)k �kp�k k�kk which contradicts p� 6= 0. If x� 6= 0 then (7.19) yields, with every � > 0, thatk�k � kp�k+�kx�k k�kk for large k. This veri�es L � kp�kkx�k . 2Su�ciency:Condition (7.17): As for Thm. 1, we verify (5.6) provided that (7.17) holds with � < L:Given (p; x), choose some x̂ 2 �B such that ��pk��pk 2 CF (x; p)(x̂): Then x0 2 S(p0) holds forcertain elements p0 = p + t(� � p) + o1(t) and x0 = x + tk� � pkx̂ + o2(t) where t = tk # 0 ando1(t)=t! 0; o2(t)=t! 0. So we obtain for small t = tk,

dist (x; S(p0)) + Lkp0 � �k � tk� � pk�+ ko2(t)k+ L(1� t)kp� �k+ Lko1(t)k� ( t�+ L(1� t) ) kp� �k+ ko(t)k < Lk� � pk
which �nishes the proof. 2The criterion (7.17) is known from [1].Condition (7.18): If S is not pseudo-Lipschitz at z0, then the proof of Thm. 2 shows that(5.8) holds for related sequences. This tells us by de�nition that y� 6= 0 and 0 2 D�F (�0)(y�).Condition (7.18) excludes the existence of such y�, hence it implies the Aubin property. 2The criterion (7.18) is known from [58] and also from [40] where the equivalent property ofopeness with linear rate has been investigated.
In consequence, the following stability conditions in terms of generalized derivatives are valid (forclosed mappings in �nite dimension).

25



Theorem 6 It holds for z0 2 gphS and F = S�1:(i) The Aubin property of S is equivalent to each of the conditions (7.17), (7.18).(ii) S is strongly Lipschitz i� 0 2 TF (�0)(x̂)) x̂ = 0.(iii) S is upper Lipschitz i� 0 2 CF (�0)(x̂)) x̂ = 0.(iv) For S to be lower Lipschitz, condition (7.16) is necessary, but not su�cient, in general. 3
We emphasize once again that these facts were observed in many papers, e.g., [4, 43, 30, 76, 50, 36,40, 58], and the statements have been modi�ed for more general spaces, e.g., in [1, 61, 25, 41, 36].Notice however that, under (ii) and (iii), local solvability is not ensured.
8 Fixed points and persistence of solvability
In �nite dimension, the Aubin property of S = F�1 at z0 along with the identity

DgG(�0) = DgF (�0) (8.1)
for Dg = D� ensures, by Thm. 6, local solvability of

p 2 G(x): (8.2)
We would like to show that upper and strong Lipschitz stability are similarly invariable if CF = CGor TF = TG coincide at �0. But this is not true:
Example 5 Let F be the real, linear function F (x) = x, and de�ne G(x) = fxg if (jxj = 1=k; k =1; 2; ::: or x = 0), and G(x) = ; otherwise. For both mappings at (0; 0), the C� and T�derivativeis just the identity, but F�1 = F obeys the related stability property in contrast to G�1 = G. Therelated co-derivatives are:D�F (0; 0)(p�) = fp�g; D�G(0; 0)(p�) = IR. 3
Hence solvability of (8.2) does not only depend on CG or TG at the reference point and needsextra assumptions. In addition, solvability may disappear if DgF and DgG slightly di�er at thereference point. On the other hand, solvability can be handled by the help of Thm. 5 and viastandard �xed point techniques. The latter will be investigated now.Suppose that the variation of F is given by a small loc. Lipsch. perturbation h as in Thm. 5

G = h+ F
with small � and �. The inclusion (8.2), i.e., p 2 h+ F , leads us to �xed points after the setting(6.19), i.e., Tp(x) := S(p� h(x))
since p 2 h(x) + F (x) , x 2 Tp(x): (8.3)
The inner function 
p(x) = p � h(x) has Lipschitz rank � on X� = x0 + �B for small � > 0.Moreover, if S is upper Lipschitz (or strongly Lipschitz) with rank � then the estimate

Tp; "(x) := (p0 + "B) \ Tp(x) � x0 + �(kp� p0k+ kh(x)� h(x0)k)B� x0 + �(kp� p0k+ ��)B
ensures for p near p0 and small �, namely (e.g.) if

kp� p0k < 12��1minf"; �g and ��� < 12 minf"; �g; (8.4)
that Tp; " maps the ball X� into itself.Hence �xed point Theorems can be applied to verify solvability. We mention here only thoseapproaches which are closely related to the stability notions of this paper.

(i) Studying the �xed points of (8.3) was the key idea in [68]: Apply Kakutani'sTheorem to Tp; " if S is upper Lipschitz stable and has convex ranges.
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(ii) If S is strongly Lipschitz stable, Banach's principle can be directly appliedsince Tp; " is contractive for � < ��1: This was a crucial observation in [69].
(iii) Finally, under the Aubin property of S at z0, solvability of (8.2) followsagain from Thm. 5

In [36], Thm. 4.5 and Thm. 4.2, also perturbations by multifunctions h are allowed in view of(iii). In [6], [69], [48] and [36] the underlying spaces were Banach spaces. Recall that Thm. 5then remains valid. In some of the mentioned papers, only the case of small C1 functions h hasbeen taken into account, but the proofs for small loc. Lipsch. functions use basically the sameprinciples.Persistence of upper Lipschitzian stability for more general variations G in (8.1) (where Dg =C), has been shown in [42] (S upper Lipschitz stable, S and G closed and convex-valed, x0 2domG). So one may summarize.
Theorem 7 The Aubin property of S at z0 as well as strong Lipschitz stability are persistent (atleast) with respect to small perturbations h as in Thm. 5. The same holds true, in �nite dimension,for upper Lipschitz stability, provided that S = F�1 is closed and convex-valued. 3
Implicit mappings and invariancesInvariance w.r. to �rst-order approximation of involved functions:In Thm. 7, one can put F (x) = �(x) + N (x) and h(x) = �L(x) � �(x) where �L(x) = �(x0) +D�(x0)(x� x0) is a linearization of a C1 function � at a zero x0 2 F�1(0). Then p 2 h(x) +F (x)means p 2 �L(x) +N (x) (8.5)
and h becomes an arbitrarily small Lipschitz function in the sense of Thm. 5. This is a basicsituation Thm. 7 can be applied to. Strong Lipschitz stability (which includes local solvability),the Aubin property as well as upper Lipschitz stability (which includes local solvability again), forconvex-valued S is invariant with respect to replacing � by its linearization. Moreover, derivativeformulas for solution mappings then follow from the �xed point representation

x 2 S(p� h(x)) = F�1(p� h(x))
and can be computed, by the chain rules above, if (and only if) related derivatives for N are known.The validity of this equivalence between

p 2 �(x) +N (x) and p 2 �L(x) +N (x)
in view of being s.L.s. was shown by Robinson [69], 1980. In his paper, N had a particular (normalcone) structure, but the main proofs hold for any closed N , too. Concerning the same principlefor other stability notions, we refer to [68, 42, 9, 48, 35, 76, 36]. Notice however, that replacing� by �L does not work in view of calmness: With N = f0g and � = x2, calmness is violated atthe origin though it holds true for �L � 0. This is a consequence of the possible "discontinuouschange" of S(p0) when passing from � to �L.The invariance principle simpli�es stability conditions only up to a certain level. If one cannottranslate some condition including N or some "derivative" of N in original terms, nothing is knownabout stability of (8.5) as well. So the structure and description of N become important.Invariance w.r. to second-order approximations inside N :If N has a concrete structure, de�ned by some function  and related systems of equations andinequalities or their polar cones, a similar invariance principle can be observed. In many stabilityconditions,  may be replaced by its quadratic approximation at the reference point, cf. e.g.,[70, 64, 8, 76, 9, 36, 73]. This means for the original problem that the related stability is invariantw.r. to quadratic approximation of all involved functions near the reference point. Of course, thisinvariance principle fails if � or  are not su�ciently smooth. Then also the stability results in[53, 54, 76, 50, 51] for solutions of optimization problems cannot be applied since second derivativesare decisive used.However, depending on the stability we are aiming at, this principle may fail even if all involvedfunctions are convex polynomials. A typical example will be presented now.
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9 The form of concrete known stability conditions
To simplify we consider C2 problems in �nite dimension without equations (they make the state-ments only longer, not more di�cult).

P (a; b) : min f(x)� ha; xi; s:t: x 2 IRn; gi(x) � b 8 i = 1; ::::;m: (9.1)
Consider �rst the map S(a; b) de�ned by the KKT points in Kojima's form (2.6). The upperLipschitz property at ((0; 0); (x0; y0)) can be checked by solving the system

D2Lx(x0; y0+)u + Dg(x0)T � = 0;Dg(x0) u � � = 0;�i = 0 if y0i < 0; �i = 0 if y0i > 0; (9.2)
with variables u 2 IRn and (�; �) 2 IR2m which have, in addition, to satisfy

�i�i = 0; �i � 0 � �i if y0i = 0: (9.3)
Similarly, strong Lipschitz stability s.L.s. can be checked by solving (9.2) where (�; �) has, insteadof (9.3), to satisfy the weaker condition

�i�i � 0 if y0i = 0: (9.4)
In both cases, the related stability just means, that only the trivial solution exists.
Due to the C2 hypothesis, here the Aubin property and s.L.s. coincide [8]. This fails to holds forf 2 C1;1 [48]. These and the following statemens remain true for variational inequalities (replaceDf in Kojima's function by any function of related dimension and smootheness).
Next let S denote the map of stationary points, i.e.,S(a; b) = fx j 9y : (x; y) is a KKT point for P (a; b)g, and let x0 2 S(0; 0) be the crucial point.If LICQ is satis�ed at x0 (the active constraint- gradients form a linear independent system)then there is exactly one Lagrange multiplier y(x; a; b) and the function y(:) is loc. Lipsch.. So Sand the map of KKT points are locally "lipeomorph"; the above characterizations remain true.Hence let only MFCQ be satis�ed (without MFCQ or related conditions in section 1, nearlynothing is known).Now, the upper Lipschitz property can be checked by solving a �nite number of quadraticsystems, each de�ned by �rst and second derivativs of f; g at the reference point. Such systemsare not known for the Aubin property and strong stability. Recently, it has been shown that theydo not exist (even for convex, polynomial problems), cf. [37]. Let (without loss of generality)g(x0) = 0.
Theorem 8 The stationary point map S is not strongly Lipschitz at (0; 0; x0) i�

There exist u 2 IRn n f0g and a Lagrange vector y to (x0; 0; 0) such thatyiDgi(x0)u = 0 8i; and with certain xk ! x0 and �k 2 IRm; one has�ki Dgi(x0)u � 0 8i and limk!1 Pi �ki Dgi(xk) = �D2xL(x0; y)u: 3 (9.5)
Examples demonstrate that the limit condition cannot be replaced by a condition in terms ofderivatives (for f; g at x0) up to a �xed order.By similar limits, the T-derivative of S can be "determined" and the Aubin property at (0; 0; x0)can be characterized: The Aubin property is violated i� there is a nontrivial pair (u�; ��) 2 IRn+m
such that, for some sequence

(pk; xk)! (0; x0) ; (pk; xk) 2 gphS; (9.6)
the following conditions hold true (with p = (a; b) and Y (p; x) = set of Kojima- Lagr. multipliers,cf. (2.6) ):

Dgi(xk)u� = 0 if i 2 J+; i.e. if yi > 0 for some y 2 Y (pk; xk);��i � 0 and Dgi(xk)u� � 0 if i 2 J0; i.e. if yi = 0 for some y 2 Y (pk; xk);��i = 0 if i 2 J�; i.e. if yi < 0 for some y 2 Y (pk; xk) (9.7)
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and kD2xL(x0; y+)u� +Dg(x0)T��k < "k # 0 8y 2 Y (pk; xk): (9.8)
A proof and specializations can be found in [36], Thm. 8.42. After choosing an appropriatesubsequence the index sets in (9.7) are �x. However, replacing the points (pk; xk) by (0; x0)violates the equivalence for nonlinear g.
10 Future research
(1) All these characterizations of stability do nothing say about the topological properties of thesolution sets, in particular (and important due to possible characterizations via Kojima functions)if F : IRn ! IRn is a loc. Lipsch. function. Up to now, only the following is known:If F�1 obeys the Aubin property at the origin without being strongly Lipschitz then thereis no continuous function s = s(p) such that s(p) 2 F�1(p) for all p in some nbhd of 0. Hencebifurcation is necessary. Such F exists: identify z 2 IR2 with a complex number and put F (0) = 0and F (z) = z2=jzj for z 6= 0.If F�1 obeys the Aubin property at the origin and has directional derivatives (i.e. card CF (x; u) �1), then x = 0 is necessarily an isolated solution of F (x) = 0, cf. [16]. After deleting the hypothesiscard CF (x; u) � 1, the same statement or counterexamples are unknown.
(2) For stability of B- space problems, the direct approach via algorithms seems to be mostappropriate to decrease the gap between stability theory and practical aspects of applications (ba-sically) by re�nements of the algorithms for particular classes of problems. The most relevant (andsimplest) classes are those where the graph of the mapping is a union of �nitely many smoothmanifolds. Nevertheless, algorithmic approaches can be used quite general, [49].
(3) Already for IRn problems, it would be a big step ahead to characterize subclasses of problemswhich permit more convenient conditions in Thm. 8. Up to now, this has been done (withoutrequiring LICQ) only for problems having linear constraints with at most one quadratic exception,cf. [37].
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