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1 Help

Um Gegenbeispiele in der Optimierung und der (eng verwandten sogenannten) Nonsmooth
Analysis zu verstehen, braucht man sicher zunächst einige konstruktive, wesentliche Grund-
aussagen; z.B. über Dualität, notwendige Optimalitätsbedingungen, Verhalten von Lösungen
bei Parameteränderungen u.s.w.
Andererseits versteht man diese nur halb, wenn man die Notwendigkeit der involvierten

Voraussetzungen nicht kennt und die Möglichkeiten und Grenzen vieler Zugänge nicht be-
werten kann. Beides geht nur konkret anhand von Beispielen, die oft den Charakter von
Gegenbeispielen besitzen.
Zugänge in der “Nonsmooth Analysis” gruppieren sich in der Literatur zumeist um unter-

schiedliche Typen sogenannter verallgemeinerter Ableitungen für nicht-C1-Funktionen bzw.
für mehrwertige Abbildungen. Diese verallgemeinern sämtlich Fréchet-Ableitungen (oder
deren adjungierte Operatoren), sind aber wegen fehlender Glattheit längst nicht so universell
einsetzbar. Insbesondere benötigt man für klassische Anwendungen wie Optimalitätsbedin-
gungen, implizite Funktionen und Newton-Verfahren jetzt jeweils unterschiedliche Verallge-
meinerungen, und das Verhalten impliziter bzw. inverser Funktionen muss detaillierter als im
klassischen Fall gefasst werden.
Daraus resultieren unterschiedliche Typen von Stabilität (etwa einer Gleichung) aber auch

unterschiedliche, (nur) für gewisse Fragestellungen mehr oder weniger sinnvolle Definitionen
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verallgemeinerte Ableitungen. Um zu erkennen, inwieweit diese einsetzbar und berechenbar
(also nützlich) sind, braucht es wieder konkrete Beispiele.
Im Folgenden balanzieren wir also zwischen konstruktiven und destruktiven Aussagen herum.

Trotzdem hoffe ich, dass eine Linie erkennbar wird, auch wenn noch nicht alle aufgelisteten
Literaturstellen (die natürlich wie immer nicht vollständig sind) eingeordnet wurden.

Einige Standardbezeichnungen in Kurzform:

r+ = max{0, r}, r− = min{0, r} wenn r ∈ IR, conv : konvexe Hülle

A+B = {a+ b | a ∈ A, b ∈ B} wenn a+ b erklärt ist

f ∈ C0,1 : f ist locally Lipschitz, f ∈ C1,1 : Df exist. und ist locally Lipschitz

inf
x∈∅

f(x) =∞, 〈x∗, x〉 : Bilinearform, dist(x,M) = inf
y∈M

d(x, y)

Mu = {Au | A ∈M} wenn M eine Menge von Operatoren ist, anwendbar auf u.

B(x, r) abgeschl. Kugel mit Radius r um x.

Some statement holds near x̄ if it holds for all x in some neighborhood of x̄.

Lebesgue-measure: Eine offene beschränkte MengeM ⊂ IRn kann als abzählbare Vereinigung
von Würfeln Wk mit Volumen vk geschrieben werden, die sich nur in Randpunkten schneiden
(Verfeinerung eines Gitters, dasM überdeckt, und Auswahl derjenigen Würfel, die ganz inM
liegen). Man definiert dann µ(M) =

∑
vk. Eine beschränkte Menge M ⊂ IRn heisst messbar,

wenn es zu jedem ε > 0 offene Mengen G und U gibt mit

M ⊂ G, G \M ⊂ U and µ(U) < ε.

Man definiert dann µ(M) = inf µ(G) bzgl. aller obigen Paare G, U . Ist M unbeschänkt,
setzt man µ(M) = limr→∞ µ( M ∩B(0, r) ), wenn der Limes existiert.

1.1 The lectures

1. Vorl. 15. 4. Introduction and Examples: 2.1, 2.2, 2.3, 2.9, 2.10

2. Vorl. 29. 4. Duality:
Brauchen u.s.c. und l.s.c. für Abbildung M=M(b), Dualitätslücke mit

√
x2 + y2 − x

3. Vorl. 6. 5. Duality:
Konstruktive Aussagen für schwach-analytische konvexe Funktionen und Michael’s selection
Satz, Notwendigkeit konvexer Bildmengen, Belousov Gegenbeispiel zur oberen Halbstetigkeit
von M=M(b), Cantor Menge.

4. Vorl. 13. 5. Weiter mit Cantor Menge und -Funktion; begin Blitzfunktion

5. Vorl. 20. 5.
Weiter mit Blitzfunktion und konstruktiven Aussagen zum Clarke - Konzept, einschliesslich
Generalized Jacobians und Beziehung zu Clarke’s Subdifferential.
Begin Def. metrically und strongly regular für multifunctions F : X ⇒ Y at (x̄, ȳ). Beispiele:
Äquivalenz für F : IRn → IRn, F ∈ C1; Nicht- Äquiv. für Lipsch. functions F , example 7.10.

6. Vorl. 27. 5.
Wiederhol. Def. pseudo-Lipschitz und strongly regular für multifunctions F : X ⇒ Y . Dazu:
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locally upper Lipschitz, lower Lipschitz, calmness. Spezielle Fälle: F als C1-Funktion. Ex-
ample 7.10; F = Ψ mit MFCQ Ex. 8.1 (nicht loc. upper Lipsch)

7. Vorl. 10. 6.
Weiter mit verallg. Ableitungen und Äquivalenz und Nicht- Äquivalenz von ps.Lip. Dazu:
Die hinreich. Beding. Propos. 7.2 und 7.7 sowie example 6.2 für Cf = ∅. Example 7.9 dafür
dass Clarke’s Bed. im Inv.Satz 7.7 nur hinr. ist

8. Vorl. 17. 6.
Inv. Satz 7.8 zu Tf und Rechnen mit Tf speziell im KKT-System (Produktregel, <simple>).
Ableit.-probleme, wenn f(x) = g(h(x)), weil i.a. nur Tf(x)(u) ⊂ Tg(h(x))(Th(x)(u)) gilt.
Punktw. Surjekt. von CF mit example 7.3. Äquivalenz/Nicht-Äquival. von metrisch bzw.
streng regulär für KKT-Systeme (C2 oder C1,1 -problem): Donch/Rockaf. Satz 7.14 und
stückweise quadrat. example 7.15., Fusek-Satz 7.11 zu Isoliertheit.

9. Vorl. 24. 6.
Coderivative (Mordukh.) und die hinr. Bedingungen Propos. 7.2, 7.5 für metr. Regular. von
F (ps. Lipsch.). Anwendung auf level sets im Hilbert Raum; example 7.6.

10. Vorl. 1. 8.
Partial derivatives and product rule for Tf,Cf and simple/non-simple Lipsch. functions.
Stability conditions in original data: KKT via Kojima’s funct. for loc. upper Lipsch. and
strongly regular. Weak-strong stationary points under MFCQ in C2-optim.problems.

11. Vorl. 8. 8.
Analysis around Propos. 8.3: ∃ two convex, polynomial optimiz. problems with the same first
k-th derivat. for all functions at the critical point such that stationary points are strongly/not
strongly regular. The same for metric regularity; expl. 8.7, 8.8.
∃ two C∞-functions with identical derivat. at the critical point and calm/not calm inverse.
example 5.2, Dirichlet Funkt. 5.1 and calmness.

12. Vorl. 15. 8.
Newton-example 9.2. The space V of all non-empty, convex, compact sets in IRn, and convex
sets K 6= ∅ with algrelint K = ∅.

Also nicht alles Aufgeschrieben wurde wirklich geschafft.
Schliesslich sei bemerkt, dass Gegenbeispiele nicht nur die Theorie betreffen, sondern gele-
gentlich auch Lösungsverfahren ... , cf. [86].

1.2 Some basic definitions

Throughout, X and Y are - at least - metric spaces.

1.2.1 The usual convex subdifferential and argmin

Let X be a (real) Banach space with dual X∗ and f : X → IR ∪ {∞}.
f is convex if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ X,λ ∈ (0, 1).

The usual subdifferential ∂f(x) of f (convex or not) at x with f(x) < ∞ consists of all
x∗ ∈ X∗ such that

f(y) ≥ f(x) + 〈x∗, y − x〉 ∀y ∈ X (1.1)
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where 〈x∗, x〉 stands for x∗(x) and x∗ is called subgradient. Thus

x∗ ∈ ∂f(x) ⇔ x ∈ argmin
X

f(.)− 〈x∗, .〉 . (1.2)

Remark 1.1. If f : IRn → IR it convex then f is continuous and ∂f(x) 6= ∅ ∀x, see e.g. [81].
If f : IRn → IR ∪ {∞} is convex, this fails to hold: Put f = 0 on intB (B = Euclidean
unit-ball), f =∞ on IRn \B and f(x) ∈ [1, 2] ∀x ∈ bdB (the boundary). Now f is convex,
discont. and ∂f(x) = ∅ ∀x ∈ bdB.

1.2.2 Generalized Jacobian

Definition 1.1. (locally Lipschitz) A function f : X → Y is called locally Lipschitz (in short
f ∈ C0,1(X,Y )) if ∀x ∈ X ∃ε > 0 : f is Lipschitz on B(x, ε) := {x′ | d(x′, x) ≤ ε}. 3

Functions f ∈ C0,1(IRn, IRm) are almost everywhere differentiable (a poweful Theorem of
Rademacher, cf. [17] ). This permits to define,

Definition 1.2. Generalized Jacobian ∂gJacf(x) [8, 9]: Let Mf (x) be the set of all limits A
of Jacobians Df(xk) such that Df(xk) exists and xk → x. Then ∂gJacf(x) is the convex hull
of Mf (x). 3

Since ‖Df(xk)‖ is bounded by a local Lipsch. constant of f , both Mf (x) and ∂gJacf(x) are
non-empty and bounded. In addition, the mappings Mf (.) and ∂gJacf(.) are closed.

Proposition 1.2.
If f : IRn → IR is convex then f ∈ C0,1 and ∂gJacf(x) = ∂f(x) [9].
For convex f, g : IRn → IR, it holds ∂(f+g)(x) = ∂f(x)+∂g(x) [81] (Moreau/Rockafellar).
But, for f = |x|, g = −f : ∂gJac(f + g)(x) = {0}, ∂gJacf(x) + ∂gJacg(x) = [−2, 2]. 3

For insiders:
The mapping Mf (.) is sometimes called B-derivative of f . However, B is also associated with
the “Bouligand” or contingent derivative (see below) and there is no coincidence:
For the function φ = (y+, y−), y ∈ IR in section 7.6.2, we have at the origin:
Mφ(0) = {(1, 0), (0, 1)}. The contingent derivative consists of the directional derivative of φ,
φ′(0;u) = (u, 0) if u ≥ 0, φ′(0;u) = (0, u) if u < 0. Thus φ′(0;u) 6= Mφ(0)u.

1.2.3 L.s.c. and u.s.c. multifunctions

Let F : X ⇒ Y be multivalued - i.e., F (x) ⊂ Y .
The set gphF = {(x, y) | y ∈ F (x), x ∈ X } is called the graph of F .
The set domF = {x | F (x) 6= ∅ } is called the domain of F .
One says F is closed if gphF is closed in X × Y .
The inverse multifunction F−1 : Y ⇒ X is defined by F−1(y) = {x ∈ X | y ∈ F (x) }.
For Banach spaces X,Y , we call F injective if 0 /∈ F (x)∀x 6= 0.
This will be applied to positively homogeneous mappings (y ∈ F (x)⇒ λy ∈ F (λx)∀λ ≥ 0)
which will play the role of certain derivatives.
If F (x) = {f(x)} is single-valued, we identify F (x) and f(x).
If f : X → IR and F (x) = {y ∈ IR | f(x) ≤ y} then F−1 is the level-set map of f .

Definition 1.3. (continuity) At x̄ ∈ X, F is called

upper semi-continuous (u.s.c.) if ∀y(x) ∈ F (x) and x→ x̄ : dist(y(x), F (x̄))→ 0.
lower semi-continuous (l.s.c.) if ∀y ∈ F (x̄) and x→ x̄ : dist(y, F (x))→ 0.
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Hence F (x̄) has to be sufficiently big and, in the second case, sufficiently small. The multi-
function F : [0, 1] ⇒ IR as

F (x) =
{
{ 1
k} if x = 1

k , k = 1, 2, ...
[0, x] otherwise (1.3)

is everywhere l.s.c., but not u.s.c. at x̄ = 1
k .

2 Basic examples to Continuity and Differentiability

We begin with some classical examples.

2.1 General examples

Example 2.1. [25] A real function, continuous at irrational points and with jumps at rational
points.

f =
{

0 if x irrational
1/n if x = m/n rational

(2.1)

where integers m,n 6= 0 are prime to each other. 3

Example 2.2. [25] A C1- function f such that f ′ is both positive and negative in intervals
Iε = (−ε, 0) and Iε = (ε, 0) near the minimum 0: The function

f =
{
x4 ( 2 + sin(1/x) ) if x 6= 0
0 if x = 0

(2.2)

has the global minimum at 0. The continuous derivative

f ′ =
{
x2 [ 4x ( 2 + sin(1/x) )− cos(1/x) ] if x 6= 0
0 if x = 0

attains posit. and neg. values on Iε and Iε (at max /min of cos(1/x) ). Thus f has stationary
points (f ′(x) = 0) arbitrarily close to 0. 3

Example 2.3. [25] Polynomials and minima on lines. Let

f = (y − x2)(y − 3x2). (2.3)

Then f(0, t) = t2 > 0, f(t, 2t2) = −t4 < 0. Hence the origin is not a local minimum.
Lines: If y = 0 then f = 3x4 ≥ 0. If x = 0 then f = y2 ≥ 0. On every other line through

the origin y = λx with λ 6= 0, we obtain

f = g(x) := (λx− x2)(λx− 3x2) = λ2x2 − 4λx3 + 3x4, g′(0) = 0, g′′(0) = 2λ2 > 0.

Thus the origin is a (proper) local minimizer for f on each line through the origin. 3

Example 2.4. [45] A real convex function, non-differentiable on a dense set.
Consider all rational arguments y =

p

q
∈ (0, 1] such that p, q 6= 0 ∈ IN are prime to each

other, and put h(y) = 1
q! . For fixed q, the sum S(q) over all feasible h(y) fulfills S(q) ≤ q

q!
and

∑
q S(q) = c <∞. Now define

g1(x) =
{

0 if x = 0∑
y≤x h(y) if x ∈ (0, 1].

6



Then g1 is increasing, bounded by c and has jumps of size (q!)−1 at x = y. We extend g1 on
IR+ by setting

g(x) = kg1(1) + g1(x− k) if x ∈ [k, k + 1), k = 1, 2, ...

and put g(x) = −g(−x) for x < 0. Since g is increasing, the function

f(t) =

t∫
0

g(x) dx as Lebesgue integral

is convex and for t ↓ y and t ↑ y (t irrational, y rational) one obtains different limits for the
difference quotients of f . Thus f is not differentiable at y. 3

Linear functions on normed spaces

Example 2.5. Discontinuous lin. function on normed spaces:

X : x = (x1, x2, ...); only finitely many xk 6= 0. (2.4)

Non-equivalent norms:
‖x‖1 =

∑
k

|xk|, ‖x‖∞ = max
k
|xk|.

L(x) =
∑
k

k xk is not bounded on the unit balls for both norms.

L(x) =
∑
k

xk is bounded on the unit ball for ‖x‖1 but not for ‖x‖∞. 3

2.2 Cantor’s set and Cantor’s function

The existence of a subset C ⊂ [0, 1] with the cardinality of [0, 1] and L-measure zero has many
consequences. Next we follow [25]. Delete from [0, 1] the open middle segment of length 1

3 ,
i.e., (1

3 ,
2
3) to obtain the union

A1 = [0,
1
3

] ∪ [
2
3
, 1]

of two intervals. Next delete the open middle segments of length 1
9 of these intervals to obtain

the union
A2 = [0,

1
9

] ∪ [
2
9
,
3
9

] ∪ [
6
9
,
7
9

] ∪ [
8
9
, 1].

Continuing in the same manner one obtains a sequence of closed sets Ak ⊂ Ak−1. The Cantor
set is the intersection

C = ∩k Ak .

Let C ′ be the set of all reals x ∈ [0, 1] which can be written in the triadic system as

x ≡ 0, c1c2c3 ...; x =
∑
i

3−ici where ci ∈ {0, 2}

We show that C ′ = C. First notice that x ≡ 0, 1 and x′ ≡ 0, 02222.... coincide. Given x < y
in C ′, we have (for some n)

x ≡ 0, c1...cn 0 pn+2 pn+3 ... and y ≡ 0, c1...cn 2 qn+2 qn+3 ...

where y−x is minimal for given n ⇔ pn+2 = pn+3... = 2 and qn+2 = qn+3... = 0. This yields
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x ≡ 0, c1...cn 1 , y ≡ 0, c1...cn 2 . Thus the reals of the open interval (x, y) form just
one of the above deleted intervals and are in [0, 1] \ C.
Beginning with n = 0, so [0, 1] \ C contains the union of the 2n open intervals (assigned to
the feasible combinations of c1...cn ∈ {0, 2})

Ωn,c = (
n∑
i=1

3−ici + 1 ∗ 3−(n+1) ,

n∑
i=1

3−ici + 2 ∗ 3−(n+1) ) with length 3−(n+1). (2.5)

They are just used in order to define the gaps in Ak+1. Hence C ′ = C. Given n < 3, these
2n intervals are

n = 0 : (0 +
1
3
, 0 +

2
3

),

n = 1 : (
0
3

+
1
9
,

0
3

+
2
9

) = (
1
9
,
2
9

), (
2
3

+
1
9
,

2
3

+
2
9

) = (
7
9
,
8
9

)

n = 2 : (
0
3

+
1
27
,

0
3

+
2
27

) = (
1
27
,

2
27

), (
2
9

+
1
27
,

2
9

+
2
27

) = (
7
27
,

8
27

)

(
2
3

+
1
27
,

2
3

+
2
27

) = (
19
27
,
20
27

), ([
2
3

+
2
9

] +
1
27
, [

2
3

+
2
9

] +
2
27

) = (
25
27
,
26
27

),

and we obtain
C = [0, 1] \ ∪n,c Ωn,c.

C is not countable: To each x ∈ C, assign the dual-number y = D(x) with the 0-1- digits

y ≡ 0, d1 d2 d3 ... where di =
ci
2
∈ {0, 1}.

Then D maps C onto [0, 1] since all y ∈ [0, 1] have a preimage: x ≡ 0, c1c2c3 ... ; ci = 2di.
Thus C is not countable, C ∼= [0, 1] (gleichmächtig). Notice: D is monotone and the pre-image
is not unique for

y ≡ 0, d1, ..., dn011... ( ≡ 0, d1, ..., dn1 )

since
D(x) = y = D(x′)

holds for

x ≡ 0, (2d1)...(2dn)0222... and x′ ≡ 0, (2d1)...(2dn)200... where x 6= x′.

These are the boundary points of the (successively deleted) open intervals Ωc,n (2.5).

The function D is not locally Lipschitz:
Consider xk = 3−k ≡ 0, 0...0222... ∈ C (k zeros after 0,). Then D(xk) ≡ 0, 0...0111... (k zeros
after 0, and dual ) is 1

2 ,
1
4 ,

1
8 ...; hence D(xk) = 1

2k and D(xk)−D(0)
xk−0 = 3k

2k →∞.

The Cantor function: Define

g(x) = D(x) ∀x ∈ C and g(y) = D(x) = D(x′) ∀y ∈ (x, x′) some deleted interval.

This function is monotone (increasing) and constant on each set Ωc,n. It maps [0, 1] mono-
tonically onto [0, 1]. Hence g cannot have any jump.
In consequence, both g and D turn out to be continuous.

Moreover, on Ωc,n, the function g has derivative zero. Thus
g′ = 0 exists on the open set Ω = ∪c,n Ωc,n with full measure µ(Ω) = 1. Indeed,

µ(Ω) =
∞∑
n=0

µ(Ωn,c) =
∞∑
n=0

2n 3−(n+1) = 1
2

∞∑
n=0

(
2
3

)n+1 = 1
2

2
3

1− 2
3

= 1.
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Hence µ(C) = µ([0, 1])− µ(Ω) = 0.

So it follows for the Lebesgue-Integral and Stieltjes-Radon-Integral, respectively:∫ 1

0
g′(x)dx = 0,

∫ 1

0
dg(x) = 1.

The Riemann-Integral G(x) =
∫ x

0 g(t)dt of the continuous, monotone function g exists. Thus
G is convex, increasing, and G′(x) = g(x)∀x ∈ (0, 1). The second derivative G′′(x) = g′(x)
exists almost everywhere, with value zero, but G is not linear.

Homeomorphism and measure: The function h as h(x) = x + g(x) maps [0, 1] continu-
ously onto [0, 2] and is strongly increasing. Thus the inverse h−1 : [0, 2]→ [0, 1] exists and is
again continuous. In consequence, h is a homeomorphism between [0, 1] and [0, 2].
The h- image of each interval Ωc,n = (x, x′) is an interval of the same length x′ − x (since

g(x) = g(x′)).
Thus µ(h(Ωc,n)) = µ(Ωc,n) and µ(h(Ω)) = µ(Ω) = 1. It follows

µ(h(C)) = 2− µ(Ω) = 1 > 0 in spite of µ(C) = 0.

Let M ⊂ h(C) be not measurable (such M exists for every measurable set with positive
measure !). Then (by monotonicity) the set h−1(M) is a subset of C and has - in consequence-
measure zero. Conversely, one obtains
The homeomorphism h maps certain sets of measure zero onto non-measurable sets.

2.3 The distance x 7→ dist(y, F (x)) for closed mappings

Let F : X ⇒ Y be closed and dy(x) = dist(y, F (x)) for fixed y ∈ Y . For many constructions,
the following simple statements are useful.

Proposition 2.6. If Y = IRm then
(i) dy is l.s.c. and,
(ii) whenever F (x) 6= ∅, some y(x) ∈ F (x) realizes the distance. 3

Proof. Since F is closed so are the image-sets F (x). Hence, if F (x) 6= ∅, some y(x) ∈
F (x) ⊂ IRm with d(y, y(x)) = dy(x) exists. Let xk → x̄ and dy(xk) → α (< ∞). Select
y(xk) ∈ F (xk) such that ‖y− y(xk)‖ = dist(y, F (xk)). The bounded sequence {y(xk)} in IRm

has an accumulation point ȳ, and ‖y − ȳ‖ = α. Since gphF is closed, it follows ȳ ∈ F (x̄),
and consequently dist(y, F (x̄)) ≤ ‖y − ȳ‖ = α.

In infinite dimensions, both statements of Propos. 2.6 may fail.
Example 2.7.
(i) Let X = IR, Y = l2 and - with the unit-vectors ek ∈ l2 -

F (x) =


ek, if x = 1

k , k = 1, 2, . . . ,
2e1, if x = 0,
∅, otherwise.

Then gphF is closed, dist(0, F ( 1
k )) = d(0, ek) = 1, while dist(0, F (0)) = 2 > 1.

(ii) Using example 7.6, we have only to change the role of x and y. This means: With
f(x) = infk xk, x ∈ l2, put G(y) = {x ∈ l2 | f(x) ≤ y}. Now, for ξ ∈ l2 with ξk > 0∀k, the
distance 1 = dist(ξ, G(−1)) is not attained. 3

Example 2.8. Even for X = Y = IR, the distance dy is not necessarily continuous. Take

F (x) =
{
{1/x} if x 6= 0
{0} if x = 0

as a closed, but neither u.s.c. nor l.s.c. multifunction at the origin. 3
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2.4 Perfectly unstable quadratic one-parametric optimization

If an optimization problem (or any other problem) depends on some parameter p, the solution-
behavior as a (multi-)function of p is of interest. Assume the problem should be solved for
p = 0, but (due to some error) we solve it for p near 0. Evidently, we hope the error vanishes
as p→ 0 if p is continuously involved. Nevertheless, the reverse situation may occur even for
simple convex quadratic problems, i.e.,
Better approximation of involved functions can imply worser approximation of solutions.

Example 2.9. [2], [54]. Let us minimize, with real parameters p ≥ 0, the convex function

g(x, p) = p2x2 − 2p(1− p)x under the constraint x ≥ 0. (2.6)

The problem has, for p ∈ (0, 1), the unique minimizer x(p) = 1−p
p , and the extreme-value

α(.) satisfies
α(p) = −(1− p)2 > −1. (2.7)

For p = 0 and p ≥ 1, α(p) = 0 is obvious. In consequence,
1. The error of extreme-values

| α(p)− α(0) |

increases as p ↓ 0, and vanishes if the error of arguments |p − 0| is sufficiently large ≥ 1.
Due to (2.7),
2. g is a two-dimensional polynomial of (minimal) degree 4 which, on a polyhedron (the
non-negative orthant), is bounded below (infimum = −1) without having a minimum. 3

Example 2.10. [2] In the above example, the solution set at the critical parameter p = 0
was unbounded (IR+). Now it is nonempty and compact. Minimize, again with p ≥ 0,

fp(x, y) = xy − y + 2 g(x, p) under the constraints 0 ≤ y ≤ 1, x ≥ 0
with g from (2.6) (2.8)

Let φ(p) be the assigned infimum and Ψ(p) the set of (global) minimizers. We write z = (x, y).
Now it holds:
3. φ is not l.s.c., Ψ neither u.s.c. nor l.s.c. at 0, all sets Ψ(p) are nonempty and compact.
Proofs:
Obviously, Ψ(0) = {(0, 1)} and φ(0) = −1. Since xy − y ≥ −1 and α(p) ≥ −1, it follows
φ(p) ≥ −3.
The sets Ψ(p) (p > 0) are nonempty and compact since fp(z) → ∞ if ||z|| → ∞ and z is
feasible.
For p ↓ 0 and z(p) = (1−p

p , 0), it holds fp( z(p) )→ −2. Hence

lim inf
p↓0

φ(p) ≤ −2 < −1 = φ(0), (2.9)

which tells us that φ is not l.s.c. at 0. Next assume Ψ to be u.s.c. at 0. Then we have by
Def. 1.3 : For any z∗(p) ∈ Ψ(p) it holds dist(z∗(p),Ψ(0))→ 0 as p→ 0. Thus

z∗(p)→ (0, 1) if p ↓ 0.

The same follows, for certain z∗(p) ∈ Ψ(p), if Ψ is l.s.c. at 0. Continuity of f then implies

φ(p) = fp( z∗(p) )→ f0(0, 1) = φ(0) = −1 which contradicts (2.9).

So Ψ is neither u.s.c. nor l.s.c. at 0. 3
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3 Duality and RHS-perturbations in convex problems

3.1 Lagrange-Duality for (classical) convex problems and duality gaps

Consider the problem

(P) min {f(x) | gi(x) ≤ 0 ∀i = 1, ...,m; x ∈ X = IRn} (f, gi convex on X) (3.1)

and the Lagrangian

L(x, λ) = f(x) +
∑
i

λi gi(x) = f(x) + 〈λ , g(x)〉, λ ≥ 0.

Let (P) have a finite infimum vP (attained or not), and put

γ(λ) = inf
x∈X

L(x, λ).

The dual problem (D) consists in maximizing γ w.r. to λ ≥ 0. The sup-inf relation

vD := sup
λ≥0

γ(λ) = sup
λ≥0

inf
x∈X

L(x, λ) ≤ inf
x∈X

sup
λ≥0

L(x, λ) = vP (3.2)

is always true (even for arbitrary functions f, g).

Definition 3.1. We say that weak duality holds if vD = vP ; and that strong duality holds if,
in addition, (D) is solvable, i.e., vD = maxλ≥0 γ(λ).

Note: ! In some papers, already our weak duality is called (strong) duality and the trivial
relation vD ≤ vP is called weak duality !
If vD < vP , a duality gap occurs.

RHS perturbation function: Duality is closely connected with the (monotone) right-hand-side
perturbation function

φ(b) = inf
x∈M(b)

f(x) where M(b) = {x | g(x) ≤ b}, (b ∈ IRm) and φ(b) =∞ if M(b) = ∅.

(3.3)
For b > 0, it holds M(0) ⊂M(b) and φ(b) ≤ φ(0) = vP , hence

lim inf
b→0

φ(b) ≤ φ(0) is always true.

Proposition 3.1.
(i) strong duality is equivalent to the existence of a subgradient λ∗ for φ at the origin (i.e.,
∂φ(0) 6= ∅ ), and is ensured if a Slater point xS exists (gi(xS) < 0∀i).
(ii) weak duality holds true if φ is l.s.c. at 0.

We briefly show statement (ii), i.e: If lim infb→0 φ(b) = φ(0) (i.e. φ l.s.c. at 0) then weak
duality holds true.

Proof. Since M(0) 6= ∅, all x ∈M(0) are Slater points in M(b), b > 0, which yields - by (i) -
strong duality for the related problem with Lagrangian Lb(x, λ) = f(x) +

∑
i λi (gi(x)− bi).

In (3.2), we thus obtain vP (b) = φ(b) and

vD(b) = max
λ≥0

γb(λ) = max
λ≥0

inf
x∈X

( L(x, λ)− 〈λ, b〉 ) = inf
x∈X

sup
λ≥0

L(x, λ)− 〈λ, b〉 = vP (b),

and with any dual solutions λ(b) ≥ 0,

vD(b) = inf
x∈X

( L(x, λ(b))− 〈λ(b), b〉 ) = φ(b). (3.4)
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Since 〈λ(b), b〉 ≥ 0, it follows infx∈X L(x, λ(b)) ≥ vD(b) = φ(b) and

vD = sup
λ≥0

inf
x∈X

L(x, λ) ≥ inf
x∈X

L(x, λ(b)) ≥ φ(b). (3.5)

Hence vD ≥ lim infb→0 φ(b) = φ(0) = vP .

Remark 3.2. φ is l.s.c. at 0 if M = M(b) is u.s.c. at 0 and M(0) 6= ∅ is compact.

Indeed, take x(b) ∈M(b) with f(x(b)) < φ(b)+ε(b), ε(b) ↓ 0, b→ 0. By dist(x(b),M(0))→
0 and compactness there is a cluster point x̄ ∈ M(0), thus (since convex f : IRn → IR are
continuous)

φ(0) ≤ f(x̄) ≤ lim inf
b→0

φ(b).

Remark 3.3. Considering only b ∈ domM(.), it holds: φ is u.s.c. at 0 if M is l.s.c. at 0.

Indeed, take x ∈ M(0) with f(x) < φ(0) + ε, ε > 0. Since dist(x,M(b)) → 0 there exist
x(b) ∈M(b) with x(b)→ x. Hence b→ 0 yields

φ(b) ≤ f(x(b))→ f(x) < φ(0) + ε and lim sup
b→0

φ(b) ≤ φ(0) + ε.

Lack of strong duality; Study the real problem min{x | x2 ≤ 0} (exercise).
Lack of weak duality is more complicated. It needs x ∈ IR2 and skillful constraints.

3.2 Convex problems with bad constraints and duality gaps

Now we specify the problem

Example 3.4. RHS perturbations of convex inequalities; systems M(b) = {x | g(x) ≤ b}.
Put

H(α) = {(x, y) | h(x, y) ≤ α}; h =
√
x2 + y2 − x. (3.6)

Then
(x, y) ∈ H(0) ⇔ y = 0, x ≥ 0.

To construct a duality gap, function h was already used in [27].

Note. Setting µ(x, y) = h(x, y)−y, µ is a so-called NCP function (the zero-set coincides with
the non-negative half-axes), cf. [18].

Consider
M(α, β) = H(α) ∩ {(x, y) | y = β}. (3.7)

Fixed x:
Put x = t > 0 fixed. Then

√
t2 + β2 − t = σ(β) ↓ 0 if β → 0. Now choose α = σ(β).

Then

(t, β) ∈M(α, β) and (s, β) /∈M(α, β) ∀s < t since s 7→
√
s2 + β2 − s is decreasing.

1.) It follows that M is not lower semi-continuous at the origin
i.e., the condition of Def. 1.3

lim
(α,β)→0, M(α,β)6=∅

dist((x, y),M(α, β)) = 0 ∀(x, y) ∈M(0, 0) (3.8)

is violated. Indeed, we may put (x, y) = (0, 0) and α = σ(β) (the limit is ≥ t).
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2.) the mapping α 7→ H(α) is not u.s.c.
To see this, fix y = β 6= 0. Feasibility now means

√
x2 + β2 − x ≤ α. Due to√

x2 + β2 − x =
√
x2 + β2 −

√
x2 =

β2√
x2 + β2 +

√
x2
→ 0 ( if x→∞),

points (x, β) ∈ H(α) exist for all α > 0. This implies, since dist( (x, β), H(0) ) ≥ |β|, that
the mapping α 7→ H(α) is not u.s.c., cf. Def. 1.3.

3.) Perturbed infima finite, but φ is not l.s.c.
For the convex parametric optimization problem

min {y | (x, y) ∈ H(α), y ≥ −1} (3.9)

and its (finite) extreme-values φ = φ(α) (α ≥ 0), one obtains:

φ is not l.s.c. due to φ(α) =
{

0 if α = 0
−1 if α > 0.

(3.10)

4.) Duality gap
The convex problem

min {y | h(x, y) ≤ 0} (3.11)

with the solution set H(0) and optimal-value v = 0 has a duality gap. This means, the
Lagrangian

L(x, y, λ) = y + λ h(x, y), λ ≥ 0

as well as
γ(λ) := inf

(x,y)∈IR2
L(x, y, λ),

satisfy supλ≥0 γ(λ) < v. In other words, it holds

vD := sup
λ≥0

inf
(x,y)∈IR2

L(x, y, λ) < inf
(x,y)∈IR2

sup
λ≥0

L(x, y, λ) = v.

Indeed, for any λ and any y < 0, we find (big) x such that

| λ h(x, y) | = | λ (
√
x2 + y2 − x ) | < 1.

Hence L(x, y, λ) < y + 1. With y → −∞, this yields γ(λ) = −∞ and vD = −∞. 3

Example 3.5. In [2], the properties of example 3.4 have been derived by using a (more
complicated ?) convex function h with obvious behavior for fixed y,

h =


|y| e−x/|y| if x ≥ 0, y 6= 0

0 if x ≥ 0, y = 0
|y| − x if x ≤ 0.

(3.12)

3

3.3 Nice properties for weakly analytic convex functions f, gi

We call f weakly analytic provided the following is true: If f is constant on a segment [x, y] ⊂
IRn, x 6= y then it is constant on the whole line which includes the segment.
In particular, this holds for all analytic functions and polynomials on IRn.

Proposition 3.6. Provided that all convex gi in (3.1) are weakly analytic, then M in (3.3)
is l.s.c. Moreover, φ is even continuous, if b is restricted to domM := {b | M(b) 6= ∅}.
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A proof can be found in [2]. However, M is not necessarily u.s.c. There is a computer- gener-
ated counterexample with convex polynomials of degree 16, Belousov/Schironin (Moskau) ca
1982. Hence Remark 3.2 cannot be used for showing that φ is l.s.c.

Proposition 3.7. If also f is convex and weakly analytic then there is even a continuous
function ψ : dom Ψ→ IRn such that ψ(b) ∈ Ψ(b) (the solution set) for all b ∈ dom Ψ.

The proof uses E. Michael’s selection theorem for l.s.c. multifunctions [64], simplified:
For every l.s.c. multifunction F with non-empty, convex images F (x) there is a continuous
function f satisfying f(x) ∈ F (x)∀x.
Here, convexity is essential since even u.s.c. and l.s.c. mappings F do not necessarily have

a continuous selection.
Example 3.8. On the closed Euclidean unit ball B of IR2, define

F (x) = {y ∈ B | ‖y − x‖2 ≥ 1
2} (x ∈ B). (3.13)

It is easy to see that F is u.s.c. and l.s.c. everywhere. A continuous selection f ∈ F cannot
exist on B since f : B → B would have a fixed-point ξ (Brouwer’s fixed-point theorem). Then
ξ = f(ξ) ∈ F (ξ) contradicts to the definition of F . 3

Exercise: Analyze the continuity properties for F with the Euclidean norm and with poly-
hedral norms, respectively, and with ">" instead of "≥".

4 The lightning function and constant Clarke subdifferential

4.1 Some preparations (Clarke’s subdifferential)

Let f : IRn → IR be a locally Lipschitz function.
1. Given x, u ∈ IRn, the limsup

f ′Cl(x, u) := lim sup
xk→x, tk↓0

t−1
k (f(xk + tku)− f(xk)); x, u ∈ IRn

is Clarke’s directional derivative of f at x in direction u. If x is a local minimizer of f then
(put xk = x) it follows

f ′Cl(x, u) ≥ 0 ∀u (necessary, weak condition for a local minimizer). (4.1)

This condition is weak since it also holds for f = −|x| at x̄ = 0 (take a first sequence with
xk < 0 and a second one with xk > 0).

2. For any x∗ ∈ IRn, consider f − x∗ with (f − x∗)(x) = f(x) − 〈x∗, x〉 and define a set
∂Clf(x) by saying

x∗ ∈ ∂Clf(x) ⇔ (f − x∗)′Cl(x, u) ≥ 0 ∀u. (4.2)

3. By the definition only, one obtains: ∂Clf(x) = ∂g(0) for the sublinear function g(.) =
f ′Cl(x, .). Hence, the generalized subdifferential ∂Clf(x) - meanwhile called Clarke’s subdif-
ferential of f at x [9] - turns out to be a non-empty, convex compact set.

3. Clearly, (f − x∗)′Cl(x, u) = f ′Cl(x, u)− 〈x∗, u〉. In consequence, condition

0 ∈ ∂Clf(x) (4.3)

coincides with (4.1) and replaces the necessary condition Df(x) = 0 for f ∈ C1.

Now we present a special real Lipschitz function G such that Clarke’s subdifferential fulfills

∂ClG(x) = [−1, 1] ∀x.
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The existence of such functions has been clarified in [4]. Our construction gives a complete
impression of such functions. We shall also see that the following sets are dense in IR:

the set DN = {x | G is not directionally differentiable (in the usual sense) at x},
the set of local minimizers and the set of local maximizers.
In addition, h(x) = 1

2(x+G(x)) has further strange properties.

4.2 Construction

[45] To begin with, let U : [a, b] → IR be any affine-linear function with Lipschitz rank
L(U) < 1, and let c = 1

2(a + b). As the key of the following construction, we define a linear
function V by

V (x) =
{
U(c)− ak(x− c) if U is increasing,
U(c) + ak(x− c) otherwise.

Here, we put

ak :=
k

k + 1
, (4.4)

and k denotes the step of the (later) construction. Given any ε ∈ (0, 1
2(b − a)) consider the

following 4 points in IR2:

p1 = (a, U(a)), p2 = (c− ε, V (c− ε)), p3 = (c+ ε, V (c+ ε)), p4 = (b, U(b)).

By connecting these points in natural order, a piecewise affine function

w(ε, U, V ) : [a, b]→ IR

(the lightning) is defined. It consists of 3 affine pieces on the intervals

[a, c− ε], [c− ε, c+ ε], [c+ ε, b].

By the construction of V and p1,...,p4, it holds

Lip (w(ε, U, V )) < 1 if ε > 0 is small.

After taking ε in this way (it may depend on the interval and the step k of our construction),
we repeat our construction (like defining Cantor’s set) with each of the related 3 pieces and
larger k.
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Now, start this procedure on the interval [0, 1] with the initial function

U(x) = 0 and k = 1.

In the next step k = 2 we apply the construction to the 3 pieces just obtained, then with k = 3
to the now existing 9 pieces and so on. The concrete choice of the (feasible) ε = ε(k) > 0 is
not important in this context. In any case, we obtain a sequence of piecewise affine functions

gk on [0, 1]

with Lipschitz rank < 1. This sequence has a cluster point g in the space C[0, 1] of continuous
functions, and g has Lipschitz rank L = 1 due to (4.4). Let

Nk = {y ∈ (0, 1) | gk has a kink at y} and N be the union of all Nk.

If y ∈ Nk , then the values gi(y) will not change during all forthcoming steps i > k. Hence
g(y) = gk(y). The set N is dense in [0, 1]. Thus gk → g in C.
Let c be a center point of some subinterval I(k) used during the construction (Obviously,

these c form a dense subset of the interval). Then c is again a centre point of some subinterval
I(k+ i) for all i > 0. Thus, also g(c) = gk+i(c) holds true for all i ≥ 0. Let c+

k > c and c−k < c
be the nearest kink-points of gk right and left from c. Then we have

dk :=
g(c)− g(c−k )
c− c−k

=
g(c+

k )− g(c)
c+
k − c

= ± k

k + 1
(4.5)
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where the sign alternates. Via k → ∞ this shows that usual (not Clarke’s) directional
derivatives g′(c,±1) cannot exist. Thus g is not differentiable at c.
Assume dk > 0. Then (since the orientation of the middle part changes with k) it holds

g(c)− g(c−k+1)

c− c−k+1

=
k + 1
k + 2

and

g(c) < min{g(c+
k ), g(c−k+1)}. (4.6)

The inequality tells us that the function g has a local minimizer ξ in Ωk := (c−k+1, c
+
k ). If

|x∗| < 1 and k is large enough then inequality (4.6) holds - due to (4.5) - for the function g−x∗,
too. Hence also g− x∗ has a local minimizer ξ(x∗) in Ωk, and the sets of local minimizers for
g and g − x∗, respectively, are dense. By definition, it holds

x∗ ∈ ∂Clg(ξ(x∗)).

Since each x is limit of a sequence of minimizers to g − x∗, one easily obtains x∗ ∈ ∂Clg(x).
Taking into account that x 7→ ∂Clg(x) is closed it follows

[−1, 1] ⊂ ∂Clg(x) ∀x.

Since g has Lipschitz rank 1, the equation has to hold.

[−1, 1] = ∂Clg(x) ∀x.

Starting with large k such that dk < 0, we obtain that the local maximizers form also a dense
set. Finally, by a mean-value theorem for Lipschitz functions [9], one obtains

∂Clg(x) = [−1, 1] = ∂gJacg(x) ∀x ∈ (0, 1).

This tells us, for each ε > 0 and x ∈ (0, 1): There are sequences xn, yn → x such that Dg(xk)
and Dg(yk) exist and satisfy Dg(xn)→ 1 and Dg(yn)→ −1.
To extend g on IR one may put G(x) = g(x − integer (x)) where integer (x) denotes the

integer part of x.
G is nowhere semismooth (semismooth is a useful property for Newton’s method; see below).

Derived functions: Let

h(x) =
1
2

(x+G(x)), then ∂Clh(x) = [0, 1] ∀x.

The Lipschitz function h is strictly increasing and has a continuous inverse h−1 which is
nowhere locally Lipschitz.
h is not directionally differentiable (in the usual sense) on a dense subset of IR.
In the negative direction −1, h is strictly decreasing, but Clarke’s directional derivative

h′Cl(x,−1) is identically zero.

The integral F (t) =
t∫

0

h(x) dx is a convex function with strictly increasing derivative h,

such that (for generalized derivative-sets defined below),

0 ∈ Th(t)(1) = [0, 1] ∀t and 0 ∈ Ch(t)(1) for all t in a dense set.
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5 Lipschitzian stability / invertibility

5.1 Stability- Definitions for (Multi-) Functions

5.1.1 Metric and strong regularity

Let F : X ⇒ Y (metric spaces) be a multifunction. In many situations, then the behavior of
“solution sets”

F−1(y) = {x ∈ X | y ∈ F (x)}

is of interest. Multifunctions come into the play, even in the context of functions, if

F−1(y) = {x ∈ X | f(x) ≤ y}, F (x) = {y ∈ IR | y ≥ f(x)}

for real-valued f and similarly for systems of equations and inequalities. Often F−1 describes
solution sets (or stationary points) of optimization problems which depend on parameter y.
Then, the following properties of F or F−1 reflect certain Lipschitz-stability of related solu-
tions (being of interest, e.g., if such solutions are involved in other “multilevel” problems [11]).
Let ȳ ∈ F (x̄).

Definition 5.1. We call F−1 pseudo-Lipschitz at (x̄, ȳ) if there are positive L, ε, δ such that

∀(x, y) : [ x ∈ F−1(y) , y ∈ B(ȳ, δ), x ∈ B(x̄, ε) ] ∀y′ ∈ B(ȳ, δ)
∃ x′ ∈ F−1(y′) such that d(x′, x) ≤ Ld(y′, y).

(5.1)

Definition 5.2. If, in addition, x′ is unique, then F is called strongly regular. 3

The latter means that - locally near (x̄, ȳ) - the inverse F−1 is single-valued and a Lipschitz
function with rank L. Notice that both properties describe the behavior of F−1 and remain
valid if we exchange (x̄, ȳ) by some (x̂, ŷ) ∈ gphF sufficiently close to (x̄, ȳ).
The pseudo-Lipschitz property of F−1 appears in the literature also under several other

notions:
- sometimes F is called pseudo-Lipschitz and often F is called metrically regular
- or one says that F−1 obeys the Aubin-property.

In any case, one should look at the current definition.

5.1.2 Weaker stability requirements

Setting (x, y) = (x̄, ȳ), condition (5.1) requires

∀y′ ∈ B(ȳ, δ) ∃x′ ∈ F−1(y′) such that dist(x′, x̄) ≤ Ld(y′, ȳ) (5.2)

which means that F−1 is lower Lipschitz at (x̄, ȳ) with rank L. In particular, this implies
local solvability of y′ ∈ F (x) if d(y′, ȳ) < δ.
Setting y′ = ȳ, condition (5.1) requires

∀(x, y) : [x ∈ F−1(y), y ∈ B(ȳ, δ), x ∈ B(x̄, ε) ]
∃x′ ∈ F−1(ȳ) such that d(x′, x) ≤ Ld(ȳ, y).

(5.3)

This requirement defines so-called calmness of F−1 at (ȳ, x̄).

Definition 5.3. We call F weak-strong regular at (x̄, ȳ) if there are positive L, ε, δ such that

∀(x, y) with y ∈ F (x), y ∈ B(ȳ, δ), x ∈ B(x̄, ε)
∀y′ ∈ B(ȳ, δ) with M := F−1(y′) ∩B(x̄, ε) 6= ∅ :

M is a singleton and x′ ∈M fulfills d(x′, x) ≤ Ld(y′, y).
(5.4)
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In other words, we consider F−1 on Yε := {y′ | F−1(y′) ∩ B(x̄, ε) 6= ∅} only. If ȳ ∈ intYε,
we obtain strong regularity and vice versa. The linear function f : l2 → l2 as f(x1, x2, ...) =
(0, x1, x2, ...) is weak-strong regular but neither strongly nor metrically regular.
Finally, F−1 is called locally upper Lipschitz with rank L at (x̄, ȳ) if (as for F = |x|)

∀y′ ∈ B(ȳ, δ) : ( F−1(y′) ∩B(x̄, ε) ) ⊂ B(x̄, Ld(y′, ȳ)). (5.5)

In this situation, F−1 is calm and x̄ is isolated in F−1(ȳ) (put y′ = ȳ). The sets F−1(y′) may
be empty. Property (5.5) does not follow from metric regularity (put F (x) = x1 + x2).
Notice:
Strong regularity implies all other mentioned stability properties.
Calmness follows from all other mentioned stability properties excepted lower Lipschitz.
If x̄ is a local minimizer of f : X → IR then the level set mapping F−1(y) = {x | f(x) ≤ y}

is never lower Lipschitz at (f(x̄), x̄).

5.1.3 The common question

All introduced stabilities involve a clear and classical analytical question for functions f = F :
Given (x, y) near (x̄, ȳ) such that f(x) = y as well as y′ near ȳ, we ask for certain x′ satisfying
f(x′) = y′ with small (Lipschitzian) distance d(x′, x). The different stability types arise
from additional hypotheses or requirements like y′ = ȳ, uniqueness of x′ and so on. For
multifunctions, the same question concerns the inclusion y ∈ F (x). Having the differentiable
case in mind, many approaches are thinkable to this question.

(1) Try to find x′ constructively by a solution method: of Newton-type, by a descent method
if f maps into IR and y′ < y or by another method [51], [58].

(2) Generalize implicit/inverse function theorems by allowing that certain non-differentiable
situations (typical for the problem under consideration) occur [83], [76].

(3) Define new derivatives and show (if possible) how the well-known calculus around im-
plicit functions can be adapted [1], [82], [70].

All these ideas appear in the framework of nonsmooth analysis and not any of them dominates
the others. They have specific advantages and disadvantages which will be discussed now.

5.2 First stability-examples

Calmness of f−1 does not depend on differentiability.

Example 5.1. The inverse f−1 of Dirichlet’s function

f(x) =
{

0 if x is rational
1 if x is irrational

is calm at (0, 0) since f−1(y) = ∅ for y 6= 0 near 0. The mapping S(y) = {x | f(x) ≥ y}
is even pseudo-Lipschitz at (0, 0) since f(x) ≥ y holds for all irrational x and all y near 0.
Clearly, f is not closed. 3

Though calmness may hold for very strange functions, note that:
Even for f ∈ C∞(IR, IR), calmness cannot be checked by considering derivatives only.

Example 5.2. Calm and not calm for functions with identical derivatives. Let f ≡ 0 and

g(x) =

{
e−

1
x2 if x 6= 0

0 if x = 0.
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Then g(n)(0) = f (n)(0) = 0 for all n ∈ IN . f−1 is calm at (0, 0) since f−1(y) = ∅ for
y 6= 0. On the other hand, it holds with each fixed L: If y > 0 is small enough and
x ∈ g−1(y) then dist(x, g−1(0)) = |x| > Ld(y, 0). Moreover, given any q ∈ (0, 1], also
dist(x, g−1(0)) > Ld(y, 0)q follows for small y > 0. The latter means that g−1 is even not
Hoelder-calm at the origin. 3

Strong regularity of multifunctions is possible.

Example 5.3. A strongly regular IRn- multi function. Let f(x) = ‖x‖2 on IRn. Then the
usual subdifferential (sect. 1.2.1) has the form

∂f(x) =
{

B if x = 0
{ x
‖x‖} if x 6= 0 (B = Euclidean unit ball)

∂f : IRn ⇒ IRn is strongly regular at (0, 0) since (∂f)−1 is locally constant and single-valued,

(∂f)−1(x∗) = {x | x minimizes ξ 7→ f(ξ)− 〈x∗, ξ〉 } = {0} if ‖x∗‖ < 1. 3

6 Basic generalized derivatives

6.1 CF, TF and D∗F

Below, we shall use certain "directional limits" of a function f : X → Y (normed spaces) at
x in direction u ∈ X. They collect certain limits v of difference quotients, namely

Definition 6.1.

Cf(x;u) = { v | ∃uk → u, tk ↓ 0 : v = lim t−1
k [f( x+ tkuk)− f( x) ] },

T f(x;u) = { v | ∃(xk, uk)→ (x, u), tk ↓ 0 : v = lim t−1
k [f(xk + tkuk)− f(xk) ] }.

The mapping Cf is said to be the contingent derivative (also Bouligand-) derivative of f .
Alternatively, one can define Cf by using the contingent (also Bouligand-) cone to gph f , see
below. The limits of Tf were introduced by Thibault in [84, 85] (to define other objects)
and called limit sets. They appeared in [45, 56] (to study inverse Lipschitz functions) as ∆−
or T- derivatives.
Evidently, Cf(x;u) ⊂ Tf(x;u) is always true. Other useful properties are, for f ∈ C0,1(IRn, IRm),

conv Tf(x;u) = ∂gJacf(x)u := {Au | A ∈ ∂gJacf(x)}, (6.1)

Tf(x;u+ v) ⊂ Tf(x;u) + Tf(x; v) (element-wise sum; by definitions only). (6.2)

Tf(x; ru) = r Tf(x;u) ∀r ∈ IR (element-wise multipl.; by definitions only). (6.3)

If f ∈ C1 then Cf(x;u) = Tf(x;u) = {Df(x)u}.
If f(x) = |x| then Cf(0; 1) = {1} and Tf(0; 1) = [−1, 1] = Tf(0;−1).
In what follows, we also write

Cf(x;u) = Cf(x)(u) and Tf(x;u) = Tf(x)(u).

Now let F : X ⇒ Y (normed spaces) be multivalued.

Definition 6.2. Given y ∈ F (x), define CF as: v ∈ CF (x, y)(u) if
∃(uk, vk)→ (u, v) and tk ↓ 0 such that (x+ tkuk, y + tkvk) ∈ gphF . 3
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This means that (u, v) is some (Bouligand-) tangent direction to gphF at z := (x, y),

v ∈ CF (z)(u) ⇔ (u, v) ∈ CgphF (z) ⇔ ∃tk ↓ 0 : t−1
k dist(z + tk(u, v), gphF )→ 0. (6.4)

Evidently, CF corresponds to Cf for functions where y + tkvk = f(x+ tkuk).
If gphF ⊂ IRn × IRm is a finite union of polyhedral sets [79] then CF (x, y) can be easily

determined via classical feasible directions for gphF

v ∈ CF (x, y)(u) ⇔ ∃ε > 0 : (x, y) + t(u, v) ∈ gphF ∀t ∈ [0, ε], (6.5)

which leads to linear inequality systems for characterizing (u, v).

Definition 6.3. Similarly, but with more limits: v ∈ TF (x, y)(u) if
∃(uk, vk, xk, yk)→ (u, v, x, y) and tk ↓ 0: (xk, yk) ∈ gphF and (xk+tkuk, yk+tkvk) ∈ gphF .

3

This defines a (bigger) set called strict graphical derivative in [82]. TF has been applied (up
to now) only to such F which can be linearly transformed into C0,1 functions, [60, 61, 62],
and is hard to compute even for polyhedral F as in example 7.9. We shall see that

• CF plays a role for metric regularity and for being locally upper Lipschitz,

• Tf is crucial for strong and weak-strong regularity.

Remark 6.1. For f ∈ C0,1(X, IRn), Cf(x;u) and Tf(x;u) are nonempty and compact,
and one may put uk ≡ u in Def. 6.1, without changing these sets. 3

Example 6.2. [45] A C0,1-function f : [0, 1
2) → C such that directional derivatives f ′

nowhere exist and Cf(x;u) = ∅. For x ∈ [0, 1
2) define a contin. function hx : [0, 1]→ IR by

hx(t) =


0 if 0 ≤ t < x
t− x if x ≤ t < 2x
x if 2x ≤ t ≤ 1 .

Now f(x) := hx defines a C0,1 function f : [0, 1
2)→ C. Consider the difference quotients

g(x, λ) =
f(x+ λ)− f(x)

λ
and notice that g(x, λ) ∈ C[0, 1].

If λ > 0, then g(x, λ)(2x) ≤ 0 and g(x, λ)(2x+ 2λ) = 1. Hence limλ↓0 g(x, λ) cannot exist in
C[0, 1]. If λ < 0, we obtain for x > 0 that g(x, λ)(2x) ≥ 0 and g(x, λ)(2x+ 2λ) = −1. Thus
limλ↑0 g(x, λ) cannot exist, too. In consequence, f has no directional derivative and Cf(x;u)
is empty for all directions u ∈ IR \ {0}. 3

Again let X and Y be Banach spaces.

Definition 6.4. Mordukhovich’s co-derivative [69, 70] D∗F (x, y) : Y ∗ ⇒ X∗. Write x∗ ∈
D∗F (x, y)(y∗) if there exist sequences
εk, δk ↓ 0, (x∗k, y

∗
k)→ (x∗, y∗) (weak∗) and (xk, yk)→ (x, y) in gphF (strong) such that

〈 y∗k, v 〉 ≥ 〈x∗k, u 〉 − εk ‖(u, v)‖X×Y
if (xk + u, yk + v) ∈ gphF and ‖(u, v)‖X×Y < δk.

(6.6)

Having (6.6), (x∗k,−y∗k) is said to be an εk−normal to gphF at (xk, yk) while (x∗,−y∗) is
called limiting ε-normal. 3
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Specializations:
case 0. F = f is a C0,1 function: Now y = f(x) is unique and
x∗ ∈ D∗f(x)(y∗) ⇔ ∃ εk, δk ↓ 0, (x∗k, y

∗
k)→ (x∗, y∗) (weak∗) and xk → x such that

〈 y∗k, f(xk + u)− f(xk) 〉 ≥ 〈x∗k, u〉 − εk ‖u‖X if ‖u‖ < δk. (6.7)

If dimY <∞, we may obviously put y∗k = y∗ without changing the Definition. If y∗ = e1 we
simply consider the first component f1. If dimX <∞, we may put x∗k = x∗.
case 1. If F = L : X → Y is linear and continuous then D∗L(x) = L∗ coincides with the
adjoint operator (direct proof by the definition).
case 2. Level sets. Let F (ξ) = {η ∈ IR | f(ξ) ≤ η} (ξ ∈ X), f ∈ C0,1(X, IR) and f(x) = y.

Then: x∗ ∈ D∗F (x, y)(1) ⇔

∃ εk, δk ↓ 0, x∗k → x∗ (weak∗) and xk → x such that
f(xk + u)− f(xk) ≥ 〈x∗k, u〉 − εk ‖u‖ if ‖u‖ ≤ δk.

(6.8)

Any x∗ satisfying (6.8) is a so-called limiting Fréchet-subgradient of f at x. Other sub-
differentials and their nice and bad properties: see the script to Optimization and Variational
Inequalities.
case 3. For f ∈ C0,1(IRn, IRm), there is a direct relation to Cf (by the definitions only)

x∗ ∈ D∗f(x)(y∗) ⇔ ∃ xk → x, εk ↓ 0 such that
〈y∗, v〉+ εk ≥ 〈x∗, u〉 ∀(u, v) : ‖(u, v)‖ ≤ 1 and v ∈ Cf(xk)(u).

(6.9)

case 4. For f ∈ C1(IRn, IRm), this yields v = Df(xk)u and D∗f(x) = [Df(x)]∗ = Df(x)T .

6.2 Chain rules and simple Lipsch. functions

By the symmetric/asymmetric definitions, it holds

v ∈ TF (x, y)(u) ⇔ u ∈ T (F−1)(y, x)(v) the same for CF

−x∗ ∈ D∗F (x, y)(−y∗) ⇔ y∗ ∈ C(F−1)(y, x)(x∗) multiply with -1 in (6.6).

Computing CF, TF or D∗F may be a hard job not only for multifunctions, but also for
Lipschitz functions f in finite dimension. In the standard situation

f(x) = g(h(x)) for g, h ∈ C0,1 (appropriate finite dimension)

the inclusion

Tf(x)(u) ⊂ Tg(h(x))[Th(x)(u)] =Def. {a | a ∈ Tg(h(x))(b) for some b ∈ Th(x)(u)} (6.10)

holds true. If g ∈ C1, the equation holds. Both statements are direct consequences of the
definitions. If h ∈ C1 the equation may fail.

Example 6.3. (chain rule). Let x ∈ IR, h(x) = (x, 0) and f(x) = g(h(x)) where

g(y1, y2) =


0 if y1 ≤ 0;
y1 if 0 ≤ y1 ≤ |y2|
|y2| otherwise.

Then h(0) = (0, 0), Dh(0) = (1, 0), g(y1, 0) ≡ 0, f ≡ 0. It follows Tf(0)(1) = {0}, but
1 ∈ Tg(h(0))(1, 0) (Take y1,k = 0, y2,k = 1

k = tk in the definition of T ). 3
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"Simple" Lipschitz Functions

For several chain rules, the following property plays a key role.

Definition 6.5. (a private Def. of Fusek, Klatte, Kummer) A function g ∈ C0,1[IRm, IRq] is
said to be simple at y if, for all v ∈ IRm, all w ∈ Tg(y)(v) and each sequence tk ↓ 0, there is
a sequence yk → y such that

w = lim t−1
k [g(yk + tkv)− g(yk)] holds

at least for some subsequence of k →∞.

All g ∈ C0,1(IRm, IR) are simple [56]. Further simple functions are y 7→ y+ and y 7→ (y+, y−),
[45], see also Exercise 15.
However, neither all g ∈ C0,1(IR, IR2) nor all PC1-functions g into IR2 are simple. Roughly

speaking, then the following situation occurs: To obtain a given limit w1 for the first compo-
nent, it may happen that certain special sequences tk must be taken, which are inappropriate
to obtain the limit w2 for the second component.
Detailed investigations of simple functions and relations to the following chain rule can be

found in [21] and [24].

Proposition 6.4. (partial derivatives for Tf). Let g and h be locally Lipschitz, f =
h(x, g(y)), and let Dgh(·, ·) exist and be locally Lipschitz, too. Then

Tf(x, y)(u, v) ⊂ Txh(x, g(y))(u) +Dgh(x, g(y))(Tg(y)(v)). (6.11)

If, additionally, g is simple at y then (6.11) holds as equation. 3

This implies for the product f(x, y) = A(x)B(y) of two C0,1- matrix- functions with appro-
priate dimensions:

Proposition 6.5. (Product rule) If A or B is simple then

Tf(x̄, ȳ)(u, v) = [TA(x̄)(u)] B(ȳ) +A(x̄) [TB(ȳ)(v)].

Both statements also hold for the contingent derivative Cf where <simple> becomes <di-
rectional differentiable>. Applied to multifunctions and CF , <simple> leads to the so-called
proto-derivative [82], [75].

6.3 A non-simple Lipschitz function f : IR→ IR2

Here, some detailed calculations are needed.

Example 6.6. [24] Put a0 = 1 and consider for k ∈ IN the points

ak = 2−k, bk =
9
8

2−k, ck =
1
2

(ak + bk) =
17
16

2−k,

dk =
15
8

2−k, ek =
1
2

(dk + ak−1) =
31
16

2−k.

Let f : IR→ IR2 be given by the components

f1(x) =


x− ak if x ∈ [ak, ck],
bk − x if x ∈ [ck, bk],

0 else

f2(x) =


x− dk if x ∈ [dk, ek],
ak−1 − x if x ∈ [ek, ak−1],

0 else,
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The function f is globally Lipschitz with modulus L = 1. Considering the direction u = 1
and the sequences xk = ck, tk = ek − ck we obtain

1
tk

[f(xk + tku)− f(xk)] =
16
14

2k
[(

0
1
16 2−k

)
−
(

1
16 2−k

0

)]
=
(
− 1

14
1
14

)
∈ Tf(0)(u).

Now let a sequence {rk} with

2−(k+1) < rk <
3
4

2−k, k ∈ IN (6.12)

be given. Our goal (to show <simple>) is to find reals yk → 0 such that

vk := r−1
k [f(yk + rk)− f(yk)]→ (− 1

14
,

1
14

)T

at least for some subsequence. This implies that, for large k, the first (second) component of
vk has to be negative (positive), respectively. Hence there are indices n(k), `(k), n(k) ≥ `(k)
with yk ∈ [an(k), bn(k)] and yk + rk ∈ [d`(k), a`(k)−1], and we have rk ≥ d`(k) − bn(k).

For `(k) ≤ n(k)− 1 we would get rk ≥ dn(k)−1 − bn(k) = 21
8 2−n(k) and

|vk1 | ≤ r−1
k

1
16

2−n(k) ≤ 1
42

<
1
14
.

Thus, in order to obtain the limes (− 1
14 ,

1
14)T only subsequences with `(k) = n(k) are suitable.

As a consequence, it follows

rk ≥ dn(k) − bn(k) =
3
4

2−n(k) and rk ≤ an(k)−1 − an(k) = 2−n(k).

In other words, for the sequence {rk} (6.12), one cannot find a suitable sequence of indices
{n(k)}. Hence f is not simple at 0. 3

Violation of formula

Tf(x, y)(u, v) = Txh(x, g(y))(u) + Tgh(x, g(y))(Tg(y)(v)). (6.13)

For the function f of this example, there were pair–wise disjoint intervals Ik(f) and some
v(f) ∈ Tf(0)(1), such that the equation

v(f) = lim r−1
k [f(yk + rk)− f(yk)] with yk → 0

can only hold if rk ∈ Ik(f) (for some infinite subsequence). Let the same situation occur with
respect to a second function g : IR→ IR2 and intervals Ik(g) such that Ik(g)∩Iν(f) = ∅ ∀k, ν.
Defining now

h(x, y) = (f(x), 0) + (0, g(y)) ∈ IR4, x, y ∈ IR,

the point (v(f), v(g)) cannot belong to Th(0, 0)(1, 1), and chain rule (6.13) fails to hold even
for a sum of functions.

7 Sufficient stability conditions

We connect now stability with properties of generalized derivatives. Of course, this makes
only sense when the latter can be determined.
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7.1 Main motivations for defining CF and TF

First of all, let us note that - directly by the definitions - injectivity of CF (x̄, ȳ) and of
TF (x̄, ȳ) is equivalent to certain stability properties, provided dimX + dimY <∞.

Proposition 7.1. Let F : IRn ⇒ IRm be closed and ȳ ∈ F (x̄).

(a) F−1 is loc. upper Lipsch. at (ȳ, x̄) ⇔ CF (x̄, ȳ)(.) is injective.
(b) F is weak-strong regular at (x̄, ȳ) ⇔ TF (x̄, ȳ)(.) is injective. (7.1)

Statement (a) was shown in [40], statement(b) in [60] (by negation of the stab. requirements).

7.2 Metric regularity

For characterizing F−1 : Y ⇒ X (now Banach spaces) to be pseudo-Lipschitz, one can again
apply the contingent derivative CF . Let us claim:

∃L > 0 : ∀(x, y) ∈ gphF near (x̄, ȳ) : BY (0, 1) ⊂ CF (x, y)(BX(0, L)). (7.2)

This condition requires uniform surjectivity of the multifunctions CF (x, y) near (x̄, ȳ) with
a linear rate. Such mappings are also called uniformly open. Conditions like (7.2) are often
equivalent to certain stability, cf. [19], [20], [73], [87], but checking them is highly non-trivial.

Proposition 7.2. (Aubin/Ekeland [1] )
If F is closed and (7.2) holds true then F is metrically regular at (x̄, ȳ) with constant L.

In finite dimension, the point-wise inclusion BY (0, 1) ⊂ CF (x̄, ȳ)(BX(0, L)) is necessary for
F−1 to be lower Lipschitz at (ȳ, x̄). However, even for continuous functions f , it is not
sufficient to ensure (weaker) f(x̄) ∈ int f(X).

Example 7.3. [45]. The pointwise condition (7.2). We construct f : IR2 → IR2 (continuous)
with f(0) = 0, f ′(0;u) = u ∀u ∈ IR2 and 0 /∈ int f(IR2). Let

M = {(x, y) ∈ IR2 | |y| ≥ x2 if x ≥ 0, x2 + y2 ≤ 1, x ≤ 1
2}

and G = convM. For (x, y) ∈ M , let f(x, y) = (x, y). For (x, y) ∈ G\M with y ≥ 0 put
f(x, y) = (x, x2). In order to define f at the remaining points (x, y) ∈ G\M with

−x2 < y < 0

let D be the nonlinear triangle given by upper/lower parables and the points

P 1 = (x,−x2), P 2 = (0, 0), P 3 = (x, x2) and let t = t(x, y) = − y

x2
.

Then t ∈ (0, 1). We assign, to (x, y), the point h(x, y) = (x, t(−x2) + (1− t)x2) between the
parables. Then h is continuous. Next we shift the point h(x, y) to the left boundary of D and
call this (continuous) horizontal projection p(x, y). Finally, define f by

f(x, y) = p(x, y).

So f becomes a continuous function of the type G→M . Setting g(z) = f(π(z)) where π(z)
is the projection of z = (x, y) onto G, f can be continuously extended to the whole space.
We identify f and g. Clearly, f ′(0;u) = u holds for all u ∈ IRn, and 0 /∈ int f(IR2). 3

Propos. 7.2 generalizes the classical Graves-Lyusternik-Theorem,

Proposition 7.4. [28], [67].
If f ∈ C1(X,Y ) and Df(x̄) : X → Y is surjective then f is metrically regular at (x̄, f(x̄)).
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If X = Y are Hilbert spaces, then the image f(B(x̄, ε)) is even convex for small ε > 0, cf.
[74]. Along with Propos. 7.11, this is one of only few statements which tell us something
about the structure of gph f in case of metric regularity.

Provided that X and Y are Asplund spaces (like IRn and Lp, 1 < p < ∞) also injectivity
of D∗F (in place of the uniform surjectivity in Propos. 7.2) ensures a sufficient condition.

Proposition 7.5. (Mordukhovich [70] )
If F is closed, X, Y are Asplund and 0 /∈ D∗F (x̄, ȳ)(y∗) whenever y∗ 6= 0 then F is metrically
regular at (x̄, ȳ).

For dimX + dimY < ∞, these 3 sufficient conditions are even necessary. But already in
Hilbert spaces, the sufficient conditions Propos. 7.2 and Propos. 7.5 are very strong, far
from being necessary.

7.3 The sufficient conditions of Mordukhovich and Aubin/Ekeland in l2

We consider the level-set map for one of the simplest nonsmooth, nonconvex functions on a
Hilbert space. f is monotone in all components, is concave, globally Lipschitz and nowhere
positive.
Example 7.6. [45]. Let X = l2, x = (x1, x2, ...) and f(x) = infk xk. Put F (x) =
{y ∈ IR | f(x) ≤ y} such that F−1(y) = {x ∈ X | f(x) ≤ y} is a level set map. Since f
is concave the usual directional derivatives f ′(x;u) exist and (due to the Lipsch. property)
Cf(x;u) = {f ′(x;u)}. Recalling f ≤ 0, it holds f ′(x;u) ≤ 0∀u if f(x) = 0 (In particular for
x = ξ in (7.3) ). Now we summarize the main properties of f and F−1.

(i) F−1 is (globally) pseudo-Lipschitz, e.g., with rank L = 2. Indeed, if f(x) ≤ y and
y′ < y, there is some k such that xk < y + 1

2 |y
′ − y|.

Put x′ = x− 2|y′ − y|ek where ek is k-th unit vector in l2. Then, ‖x′ − x‖ ≤ 2|y′ − y|
is trivial, and x′ ∈ F−1(y′) follows from f(x′) ≤ x′k ≤ y −

3
2 |y
′ − y| ≤ y′.

(ii) At each ξ ∈ l2 with ξk > f(ξ) ∀k, it holds

f ′(ξ;u) ≥ 0 ∀u ∈ X. (7.3)

In consequence, condition (7.2) is violated. We show even more for ξ from (ii):
If f(ξ + tu) ≤ f(ξ) − t holds for certain t ↓ 0 and bounded u, say for ‖u‖ ≤ C, then
u = u(t) necessarily depends on t, and there is no (strong) accumulation point of u(t).

Proof: By assumption, we have

ξk > f(ξ) = inf
n
ξn = 0 ∀k and ξk + tuk < −

1
2
t for some k.

Due to |uk| ≤ C and ξk > 0, the second inequality cannot hold for t ↓ 0 if k is fixed.
Similarly, it cannot hold if k = k(t) ≤ m is bounded since mink≤m ξk > 0. Thus k(t)
diverges. So one obtains from ξk > 0 by division that uk(t) < −1

2 holds for an infinite
number of components. If u is fixed, this yields the contradiction u 6∈ l2.
Hence u depends on t. Assuming u(t) → u0 for certain t ↓ 0, we obtain again a
contradiction, namely lim inft↓0 u(t)k(t) ≤ −1

2 for certain k(t) → ∞, though u0 ∈ l2

yields necessarily limk→∞ u
0
k = 0.

(iii) Mordukhovich’s injectivity condition is violated since 0 ∈ D∗F (0, 0)(1). To see this,
let xk = − ek

k and x∗k = ek. Then x∗k → 0 (weak∗). We show according to (6.8) that
∃ εk, δk ↓ 0 such that

f(xk + u)− f(xk) ≥ 〈x∗k, u〉 − εk ‖u‖ if ‖u‖ ≤ δk. (7.4)
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Obviously, we have f(xk) = − 1
k , 〈x

∗k, u〉 = uk and f(xk+u) = inf
{
− 1
k + uk, infν 6=k uν

}
.

With ‖u‖ < δk := 1
2k , then f(xk + u) = − 1

k + uk follows and (7.4) holds true since

(−1
k

+ uk) +
1
k
≥ uk − εk ‖u‖. 3

7.4 Strong regularity for f ∈ C0,1(IRn, IRn) via Tf and ∂gJacf

Notice that the mapping u 7→ ∂gJacf(x̄)u is injective iff all A ∈ ∂gJacf(x̄) are regular matrices.

Proposition 7.7. [8]
Any f ∈ C0,1(IRn, IRn) is strongly regular at (x̄, f(x̄)) if all A ∈ ∂gJacf(x̄) are regular. 3

Proposition 7.8. [56]
Any f ∈ C0,1(IRn, IRn) is strongly regular at (x̄, f(x̄)) ⇔ Tf(x̄, .) is injective. 3

These conditions do not coincide, see below.

7.5 Strong regularity with singular generalized Jacobians

Example 7.9. A piecewise linear bijection of IR2 with 0 ∈ ∂gJacf(0). [56], [45].
On the sphere of IR2, let vectors ak and bk (k = 1, 2, ..., 6) be arranged as follows:
Put a7 = a1, b7 = b1 and ensure the following properties, see the picture below:

(i) a1 = b1, a2 = b2; a4 = −b4, a5 = −b5.

(ii) The vectors ak and bk turn around the sphere in the same order.

(iii) The cones Ki generated by ai and ai+1, and Pi generated by bi and bi+1, are proper.

Let Li : IR2 → IR2 be the unique linear function satisfying Li(ai) = bi and Li(ai+1) = bi+1.
Setting f(x) = Li(x) if x ∈ Ki we define a piecewise linear, continuos function which maps Ki

onto Pi. By construction, f is surjective and has a well-defined piecewise linear, continuous
inverse (given by L−1

i on Pi); hence f is a strongly regular piecewise linear homeomorphism
of IR2. Moreover, f = id on intK1 and f = −id on intK4. Thus, ∂gJacf(0) contains E
and −E and, by convexity, the zero-matrix, too. 3
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7.6 General relations between strong and metric regularity

7.6.1 Loc. Lipschitz functions

To begin with let f ∈ C1(IRn, IRm) and ȳ = f(x̄).
If m = n, then the usual implicit function theorem ensures
metrically regular ⇔ strongly regular at (x̄, ȳ) ⇔ detDf(x̄) 6= 0.

If rankDf(x̄) = m < n, one obtains metric regularity (again by the implicit function theorem)
but never strong regularity. If rankDf(x̄) < m, metric regularity fails. Hence, for C1

functions in finite dimension, the characterization of strong/metric regularity is evident.
We study now locally Lipschitz functions for m = n.

Example 7.10. metrically regular 6= strongly regular for a function f ∈ C0,1(IR2, IR2). Take
the complex function

f(z) =

{
z2

|z| if z 6= 0
0 if z = 0

(as a IR2 function) and study the equation f(z) = ζ with two solutions for ζ 6= 0. 3

Example 7.10 is typical for a general property of loc. Lipschitz functions.

Proposition 7.11. (Fusek, [23]) Let f ∈ C0,1(IRn, IRn) be metrically regular at (x̄, f(x̄)) and
directionally differentiable at x̄. Then x̄ is isolated in f−1(f(x̄)) and f ′(x̄; .) is injective. 3

Nevertheless, the equations f(x) = y may have solutions x1(y) 6= x2(y), both converging to
x̄ as y → ȳ = f(x̄). If f is not directionally differentiable, there is neither a proof nor a
counterexample for x̄ being isolated in f−1(ȳ) as yet.
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7.6.2 KKT-mapping and Kojima’s function with/without C2- functions

We are now going to consider particular C0,1 functions Φ : IRµ → IRµ which are closely related
to stationary points in optimization problems.
For parametric optimization problems P (p) with parameter p = (a, b, c) ∈ IRn+m+mh

min {f(x)− 〈a, x〉 | gi(x) ≤ bi, hj(x) = cj ; i = 1, ...,m, j = 1, ...,mh} f, g, h ∈ C1 (7.5)

the set KKT (p) of Karush-Kuhn-Tucker- points (x, y, z) ∈ IRn+m+mh is given by

Df(x) +
∑
yiDgi(x) +

∑
zjDhj(x) = a

g(x) ≤ b, h(x) = c; y ≥ 0, yi(gi(x)− bi) = 0 ∀i. (7.6)

This is the usual Lagrange condition if inequalities are deleted.

Proposition 7.12. Under some regularity of the constraints, e.g.
- calmness of the constraint map M(b, c) = {x ∈ IRn | g(x) ≤ b, h(x) = c } at (0, 0, x̄),
- or the stronger condition MFCQ at x̄
(rankDh(x̄) = mh and ∃u : Dh(x̄)u = 0 and Dgi(x̄)u < 0 ∀i with gi(x̄) = 0),

it holds:
If x̄ solves (locally) problem (7.5) at p = 0 then ∃y, z such that (x̄, y, z) ∈ KKT (0). 3

As well-known, MFCQ is equivalent to the pseudo-Lipschitz property of M(.) at (0, 0, x̄).
(Once more a consequence of the implicit function theorem).

Kojima’s function: The KKT-System for p = 0 can be written in terms of Kojima’s [52]
function Φ : IRµ → IRµ which has the components

Φ1 = Df(x) +
∑

i y
+
i Dgi(x) +

∑
ν zνDhν(x), y+

i = max{0, yi},
Φ2i = gi(x) − y−i , y−i = min{0, yi},
Φ3 = h(x).

(7.7)

The zeros of Φ are related to KKT- points via the (loc. Lipschitzian) transformations

(x, y, z) ∈ Φ−1(0) ⇒ (x, y+, z) is KKT-point
(x, y, z) a KKT-point ⇒ (x, y + g(x), z) ∈ Φ−1(0)

(7.8)

and Φ is, for f, g, h ∈ C2, one of the simplest nonsmooth functions.

The product form: Moreover, Φ can be written as a (separable) product

Φ(x, y, z) = M(x) N(y, z) (7.9)

where N = (1, y+
1 , ..., y

+
m, y−1 , ..., y

−
m, z)

T ∈ IR1+2m+mh (7.10)

and

M(x) =

 Df(x) Dg1(x)... Dgm(x) 0... 0... 0 Dh1(x)... Dhmh
(x)

gi(x) 0 ... 0 0... −1... 0 0 ... 0
h(x) 0 ... 0 0... 0... 0 0 ... 0

 (7.11)

with i = 1, ...,m and -1 at position i in the related block. Equation

Φ(x, y, z) = (a, b, c)T (7.12)

describes by (7.8) the KKT-points KKT (p) of problem (7.5).
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Replacing Df by another function of corresponding dimension and smoothness,
the system describes solutions of variational inequalities over M(b, c).

Due to the structure of Φ and since N(.) is <simple> , the derivatives TΦ and CΦ (Def.
6.1) can be exactly determined for f, g, h ∈ C1,1 (derivatives loc. Lipsch.) by the product
rule Propos. 6.5 (provided TM or CM is available). After that, questions on stability of
solutions (locally upper Lipsch., strong regularity) can be reduced to injectivity of CΦ and
TΦ), respectively.
All other known concepts for strong/metric regularity require f, g, h ∈ C2 due to the used

technique. The situation f, g, h ∈ C1,1 \ C2 is typical for multi-level problems which involve
optimal values or solutions of other (sufficiently "regular") optimization models [11], [71].

For f, g, h ∈ C2, non-smoothness is only implied by the components of N :

φ(yi) = (y+
i , y

−
i ) = (y+

i , yi − y
+
i ) = 1

2 (yi + |yi|, yi − |yi|). (7.13)

So, Φ is a PC1 function (useful for Newton’s method, sect. 9.2), and we need generalized
derivatives of the absolute value at the origin only. In addition, the equation

TN(ȳ)(v) = ∂gJacN(ȳ)(v) := {Av | A ∈ ∂gJacN(ȳ)}

is obvious. This implies, sinceM(.) is C1 (for more explicit formulas see [45]),

∂gJacΦ(x̄, ȳ)(u, v) = TΦ(x̄, ȳ)(u, v) = [DM(x̄)u]N(ȳ) +M(x̄)∂gJacN(ȳ)(v).

7.6.3 Stability of KKT points

The final results follow by computing TΦ or CΦ in terms of the given functions. Once more,
this is possible by the product rule since N is <simple>.
Assume f, g ∈ C2 and delete equations (only for a more compact description). Again, let

KKT (a, b) = KKT (p) be the set of KKT points. We shall see:

(i) The local upper Lipschitz property
of KKT at (0, (x̄, ȳ)) can be checked by studying the linear system

D2Lx(x̄, ȳ+)u + Dg(x̄)T α = 0,
Dg(x̄) u − β = 0,
αi = 0 if gi(x̄) < 0, βi = 0 if ȳi > 0,

(7.14)

with variables u ∈ IRn and (α, β) ∈ IR2m which have, in addition, to satisfy

αiβi = 0, αi ≥ 0 ≥ βi if ȳi = gi(x̄) = 0. (7.15)

(ii) The strong regularity of KKT−1 (or of Kojima’s function Φ)
at (0, (x̄, ȳ)) can be checked by studying system (7.14) where (α, β) has, instead of (7.15), to
satisfy the weaker condition

αiβi ≥ 0 if ȳi = gi(x̄) = 0. (7.16)

These systems have the trivial solution (u, α, β) = 0 ∈ IRn+2m. They do not change after
replacing the original problem (7.5) at p = 0 by its quadratic approximation at (x̄, ȳ):

min {Df(x̄)(x− x̄) + 1
2(x− x̄)TD2Lx(x̄, ȳ+)(x− x̄) | gi(x̄) +Dgi(x̄)(x− x̄) ≤ 0}. (7.17)
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Proposition 7.13. In both cases,
the related Lipschitz property for KKT just means (equivalently), that the corresponding sys-
tems (7.14, 7.15) and (7.14, 7.16), respectively, are only trivially solvable. 3

For f, g ∈ C1,1, proofs and history of these statements we refer to [45]. By considering solutions
with u = 0, both stabilities imply the constraint qualification LICQ at x̄ (the gradients of
active constraints are linearly independent) which makes Lagrange multipliers unique.

7.6.4 The Dontchev-Rockafellar Theorem for Lipschitzian gradients ?

Again we study the problem (7.5) and use the notations above. Recall that KKT (.) is
pseudo-Lipschitz (by definition) iff Φ is metrically regular.

Proposition 7.14. (Dontchev/Rockafellar [15]). Let all involved functions f, g, h be C2.
Then, if Φ is metrically regular at (x̄, y, z, 0), Φ is even strongly regular at this point. 3

This statement (formulated for variational inequalities) fails to hold for C1,1-functions under
(7.5), even without constraints.

Example 7.15. [45] A piecewise quadratic function f ∈ C1,1(IR2, IR) having pseudo-Lipsch.
stationary points (solutions of Df(x, y) = a ∈ IR2) which are -locally- not unique (hence also
not strongly regular).
We write (x, y) ∈ IR2 in polar-coordinates, r(cos φ , sin φ), and describe f as well as the
partial derivatives Dxf, Dyf over 8 cones (of size π/4)

C(k) = { (x, y) | φ ∈ [
k − 1

4
π,

k

4
π] }, (1 ≤ k ≤ 8), by

cone f Dxf Dyf
C(1) y (y − x) −y +2y − x
C(2) x (y − x) −2x+ y x
C(3) x (y + x) +2x+ y x
C(4) −y(y + x) −y −2y − x.

On the remaining cones C(k + 4), (1 ≤ k ≤ 4), f is defined as in C(k).
Studying the Df -image of the sphere, it is not difficult to see (but needs some effort) that

Df is continuous and (Df)−1 is pseudo-Lipschitz at the origin. For a ∈ IR2\{0}, there are
exactly 3 solutions of Df(x, y) = a. Our picture shows Df and f if (x, y) turns around the
sphere. 3
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8 Explicite stability conditions for stationary points

Now let S denote the map of stationary points for (7.5). We assume f, g ∈ C2 and delete
equations (only for a more compact description), i.e.,

S(a, b) = {x | ∃y : (x, y) is a KKT point for P (a, b) }, p = (a, b). (8.1)

Obviously, S(p) is a projection of KKT (p). Let x̄ ∈ S(0) be the crucial point and suppose
throughout MFCQ at x̄ for p = 0 (without MFCQ, nearly nothing is known for stability
under nonlinear constraints). Even with MFCQ, the behavior of S is not Lipschitz for simple
examples.

Example 8.1. Consider the “classical” problem (Bernd Schwartz ca 1970) for x ∈ IR2,

min x2 such that g1(x) = −x2 ≤ b1, g2(x) = x2
1 − x2 ≤ b2.

At the origin, MFCQ holds true with u = (0, 1). Setting a ≡ 0, b2 = 0; b1 = −ε we obtain
S(0, b) = {(x1, ε) | |x1| ≤

√
ε}. Hence S is neither calm nor loc. upper Lipschitz at 0. 3
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8.1 Necessary and sufficient conditions

8.1.1 Locally upper Lipschitz

Proposition 8.2. (upperLip) S is locally upper Lipschitz at (0, x̄) ⇔ each solution of
system (7.14), (7.15) (for each Lagr. multiplier ȳ to x̄) satisfies u = 0.
If x̄ was a local minimizer for p = 0, the condition even implies S(p) 6= ∅ for small ‖p‖. 3

For a proof see Thm. 8.36 [45]. The proof of the first statement uses the fact that MFCQ
ensures - with the Kojima function Φ

u ∈ CS(0, x̄)(α, β) ⇔ (α, β) ∈ ∪ȳ∈Y (0,x̄), v∈IRm CΦ(x̄, ȳ)(u, v). (8.2)

Thus the local upper Lipschitz property can be checked by solving a finite number of linear
systems, defined by the first and second derivatives of f, g at x̄ via (7.14), (7.15). In conse-
quence, for two problems with the same first and second derivatives of f, g at x̄, the stationary
point mappings are either both locally upper Lipschitz or both not.
The same remains true (only the formulas change) for S = S(a) with fixed constraints

[b ≡ 0], though this situation is surprisingly more involved, cf. [60, 61, 62].

8.1.2 Weak-strong regularity

Similar statements, beginning with formula (8.2) for TS, are not known for metric and strong
regularity. In contrary, we shall see (sect. 8.2) that a comparable simple answer does not
exist - even in the subclass of convex, polynomial problems.
Without loss of generality (since inactive constraints can be removed), we suppose g(x̄) = 0.

We also put Ai = Dgi(x̄).

Proposition 8.3. [46]. (strLip) The mapping S−1 is not weak-strong regular at (0, x̄) ⇔

There exist u ∈ IRn \ {0} and a Lagrange vector y to (0, x̄) such that
yi Aiu = 0 ∀i, and with certain xk → x̄ and αk ∈ IRm, one has
αki Aiu ≥ 0 ∀i and limk→∞

∑
i α

k
i Dgi(xk) = −D2

xL(x̄, y)u. 3

(8.3)

If all constraints are linear (disregarding only one quadratic constraint) the limit condition
(where ‖αk‖ → ∞ is possible) can be simplified into a non-limit form. Generally, (8.3) cannot
be replaced by a condition in terms of derivatives (for f, g at x̄) until a fixed order.
Next put again p = (a, b) and let Y (p, x) be the set of Lagr. multipliers for p and x.

Proposition 8.4. (AubStat) The pseudo-Lipschitz property is violated for S at (0, x̄) ⇔
there is some (u∗, α∗) ∈ IRn+m \ {0} and a sequence (pk, xk)→ (0, x̄) in gphS, such that

Dgi(xk)u∗ = 0 if yi > 0 for some y ∈ Y (pk, xk),
α∗i ≤ 0 and Dgi(xk)u∗ ≤ 0 if yi = gi(xk)− bki = 0 for some y ∈ Y (pk, xk),
α∗i = 0 if gi(xk)− bki < 0

(8.4)

and ‖D2
xL(x̄, y)u∗ +Dg(x̄)Tα∗‖ < εk ↓ 0 ∀y ∈ Y (xk, pk). 3

A proof and specializations of Propos. 8.4 can be found in [45], Thm. 8.42. By choosing an
appropriate subsequence, the index sets in (8.4) can be fixed. But setting (pk, xk) ≡ (0, x̄)
violates again the equivalence for nonlinear g.

Remark 8.5. The conditions of Propos. 8.3 and 8.4 are equivalent to non-injectivity of TS−1

and D∗S−1, respectively (at the point in question), cf. Propositions 7.1, 7.5. Hence verifying
injectivity of these generalized derivatives (not to speak about computing them) requires to
study the same limits.
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8.2 Bad properties for strong and metric regularity of stationary points

Next we have x̄ = 0 ∈ IR2, p̄ = 0 ∈ IR2 and write Ai = Dgi(0).
We will show - by modifying example 8.1 as in [46] - that condition (8.3) cannot be simplified

and that (weak-) strong regularity cannot be handled by looking at the first 123 derivatives
of the involved functions at x̄ alone.
Example 8.6. Consider the following problem for parameter (a, b) = 0 with some real
constant r:

min rx2
1 + x2 such that g1(x) = −x2 ≤ 0, g2(x) = x2

1 − x2 ≤ 0.

Then Df = (2rx1, 1), Dg1 = (0,−1), Dg2 = (2x1,−1) and x̄ = (0, 0) is a stationary point
with Y 0 = {y ≥ 0 | y1 + y2 = 1} and A1 = A2 = (0,−1). With γ = 2r + 2y2, we have

Q(y) := D2
xL(x̄, y) =

(
γ 0
0 0

)
.

Hence uQ(y) = (γu1, 0).
Since at least one yi is positive for y ∈ Y 0, it follows u⊥Ai ∀i from yiAiu = 0∀i. Hence all

u of interest have the form u = (u1, 0), u1 6= 0. Condition (8.3) now requires exactly that for
some sequence of (α1, α2) ∈ IR2 and of converging x→ x̄, it holds

(γu1, 0) + α1(0,−1) + α2(2x1,−1)→ 0.

This condition cannot be satisfied with fixed x = x̄ = 0 whenever γ 6= 0. Note that γ 6= 0
holds for all y ∈ Y 0 if r /∈ [−1, 0], so convexity of the problem plays no role.

On the other hand, we can define the sequences x = ( 1
k , 0), α2 = −1

2 k γu1, α1 = −α2 in
order to satisfy the singularity condition.
Thus, if r /∈ [−1, 0], S−1 is not weak-strong regular (the same for r ∈ [−1, 0] by other
arguments). Moreover, if r > 0 then - in spite of singularity - Kojima’s condition [52]

For each y ∈ Y 0, Q(y) is positive definite on K(y) = {u | u⊥Ai if yi > 0}. (8.5)

for his modified definition of strong stability is satisfied at (0, x̄). 3

Example 8.7. Change example 8.6, with some integer q ≥ 2 and r = 1, as follows

min x2
1 + x2 such that g1(x) = −x2 ≤ 0, g2(x) = xq+1

1 − x2 ≤ 0. (8.6)

We obtain again singularity at (0, 0), since for any u = (u1, 0) 6= 0, it holds

(2u1, 0) + α1(0,−1) + α2( (q + 1)xq1,−1 )→ 0

for the sequences x = ( 1
k , 0), α2 = − 2u1

(q+1)xq
1

and α1 = −α2.

For odd q, we are still in the class of convex, polynomial problems with unique and contin-
uous solutions x(p) for all parameters p = (a, b).

Nevertheless,
one cannot identify the singularity by using alone the first q derivatives of f and g at x̄,

since these derivatives are the same for the next, strongly regular example with r = 1. 3

Example 8.8. Change only the second constraint in example 8.6,

min rx2
1 + x2 such that g1(x) = −x2 ≤ 0, g2(x) = −x2 ≤ 0.

Now the mapping S−1 is strongly regular at (0, x̄) for every r 6= 0 (Dgi is constant). If r < 0,
the stationary points are never minimizers. 3

Finally, our problems had unique solutions for r > 0. So weak-strong regularity is strong
regularity and, moreover, the same unpleasant situations occur in view of metric regularity.
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9 The nonsmooth Newton method

9.1 Convergence

We summarize properties of f which are necessary and sufficient for solving an equation

f(x) = 0, f : IRn → IRn loc. Lipschitz

by a Newton-type method. Such methods can be applied to KKT-systems (after any refor-
mulation as an equation).

The crucial conditions
Newton’s method for computing a zero x̄ of f : X → Y (normed spaces) is determined by

xk+1 = xk −A−1f(xk), (9.1)

where A = Df(xk) is supposed to be invertible. The formula means that xk+1 solves

f(xk) +A(x− xk) = 0, A = Df(xk). (9.2)

Forgetting differentiability replace A by any invertible linear operator Ak : X → Y , assigned
to xk (if Df(xk) exists, Ak could take the place of an approximation). To replace also the
regularity condition of Df(x̄) for the usual C1-Newton method, suppose:

∃ K+,K− such that ‖Ak‖ ≤ K+ and ‖A−1
k ‖ ≤ K

− ∀Ak and small ‖xk − x̄‖. (9.3)

The locally superlinear convergence of Newton’s method means that, for some o-type function
r and initial points x0 near x̄, we have

xk+1 − x̄ = zk with ‖zk‖ ≤ r(xk − x̄). (9.4)

Substituting xk+1 from (9.1) and applying Ak to both sides, this requires

f(xk) = f(xk)− f(x̄) = Ak (xk − xk+1) = Ak [(xk − x̄)− zk] with ‖zk‖ ≤ r(xk − x̄). (9.5)

Condition (9.5) claims equivalently (with A = Ak)

A(xk − x̄) = f(xk)− f(x̄) +Azk, ‖zk‖X ≤ r(xk − x̄) (9.6)

and yields necessarily, with
o(u) = K+r(u) : (9.7)

Ak(xk − x̄) = f(xk)− f(x̄) + vk for some vk ∈ B(0, o(xk − x̄)) ⊂ Y. (9.8)

Sufficiency: Conversely, having (9.8), it follows

xk − x̄ = A−1
k (f(xk)− f(x̄)) +A−1

k vk for some vk ∈ B(0, o(xk − x̄)). (9.9)

So the solutions of equation (9.1) fulfill

zk := xk+1 − x̄ = (xk+1 − xk) + (xk − x̄)
= −A−1

k f(xk) + A−1
k (f(xk)− f(x̄)) +A−1

k vk = A−1
k vk.

Hence ‖zk‖ = ‖A−1
k vk‖ ≤ K−o(xk − x̄). This ensures the convergence (9.4) with

r(u) = K−o(u) (9.10)

for all initial points near x̄. So we have shown
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Proposition 9.1. (Convergence) Under the regularity condition (9.3), method (9.1) fulfills
the convergence-condition (9.4) ⇔ the assignment xk 7→ Ak satisfies, for xk near x̄, the
approximation-condition (9.8). 3

Hence we may use any A = A(x) ∈ Lin(X,Y ) whenever the conditions

(CI) ‖A(x)‖ ≤ K+ and ‖A(x)−1‖ ≤ K− (injectivity) as well as (9.11)

(CA) A(x)(x− x̄) ∈ f(x)− f(x̄) + o(x− x̄)B (approximation) (9.12)

are satisfied for sufficiently small ‖x− x̄‖. The quantities o(.) and r(.) are directly connected
by (9.7) and (9.10).
A multifunction N which assigns, to x near x̄, a non-empty set N (x) of linear functions A(x)
satisfying (CA) with the same o(.) is called a Newton map (at x̄) in [45] .

In the current context, the function f : X → Y may be arbitrary (for normed spaces X,Y ) as
long as A(x) consists of linear (continuous) bijections between X and Y .

Nevertheless, outside the class of C0,1 functions we cannot suggest any reasonable definition
for A(x) since (9.11) and (9.12) already imply the (pointwise) Lipschitz estimate

‖f(x)− f(x̄)‖ ≤ (1 +K+)‖x− x̄‖.

Because the zero x̄ is usually unknown, this estimate should be required at least for all x̄
near the zero of f . Similarly, it makes sense to require (CA) for points x̄ near the solution,
too. If this can be satisfied, f is called slantly differentiable in [34].

9.2 Semismoothness

Condition (9.12) appears in various versions in the literature. Let f ∈ C0,1(IRn, IRm). If
all A(x) in ∂gJacf(x) satisfy (9.12) with the same o(.), then f is called semismooth at x̄,
[63]; sometimes – if o(·) is even quadratic – also strongly semismooth. In others papers, A is
a mapping that approximates ∂gJacf ; and all f satisfying the related conditions (9.12) are
called weakly semismooth. The simplest example is f(x) = |x|.
However, neither a relation between A and ∂gJacf nor the existence of directional deriva-

tives is essential for the interplay of the conditions (9.4), (9.11) and (9.12) in Propos. 9.1. The
main problem is the characterization of those functions f which allow us to find practically
relevant Newton functions A = A(x) satisfying (9.12). This class of functions f is not very
big (for finite dimension, see [45], locally PC1-functions).

A particular Newton map:
Let f = PC1(α1, ..., αk) be a piecewise C1 function, i.e., f is continuous, αj ∈ C1(X,Y ),

and for each x there is some (active) j = j(x) such that f(x) = αj(x). In this case, all

A(x) ∈ {Dαj(x) | αj(x) = f(x)}

fulfill (9.12); this is a simple exercise. So one may select any A(x) = Dαj(x)(x).
Also semi-smoothness of the Euclidean norm makes no problems. Near x̄ 6= 0, it is C∞.

For x̄ = 0 and x 6= 0, we have Df(x)(x − x̄) = ‖x‖ − ‖x̄‖. For other approaches to such
methods, more references and basic papers, cf. [18], [45], [30], [53].
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9.3 Alternating Newton sequences everywhere for f ∈ C0,1(IR, IR)

Newton methods cannot be applied to all loc. Lipsch. functions, even if n = 1 (provided
the steps have the usual form at C1-points of f). Assumptions like strong regularity due
not help, in the present context, since the subsequent function is everywhere strongly regular
(with uniform L) and even differentiable at the unique zero.
Example 9.2. [55], [45]
Alternating sequences for f ∈ C0,1(IR, IR) with almost all initial points.
To construct f , put I(k) = [k−1, (k − 1)−1] ⊂ IR for integers k ≥ 2, and put

c(k) = 1
2 [k−1 + (k − 1)−1] (the center of I(k))

c(2k) = 1
2 [(2k)−1 + (2k − 1)−1] (the center of I(2k)).

In the (x, y)-plane, let gk = gk(x) be the lin. function through the points ((k−1)−1, (k−1)−1)
and (−c(k), 0),

i.e., gk(x) = ak(x+ c(k)), where ak =
(k − 1)−1

(k − 1)−1 + c(k)
.

Similarly, let hk = hk(x) be the lin. function through the points (k−1, k−1) and (c(2k), 0)

i.e., hk(x) = bk(x− c(2k)) where bk =
k−1

k−1 − c(2k)
.

Evidently, gk = 0 at x = −c(k), hk = 0 at x = c(2k). Now define f for x > 0 as

f(x) = min {gk(x), hk(x)} if x ∈ I(k) and f(x) = g2(x) if x > 1.

Finally, let f(0) = 0 and f(x) = −f(−x) for x < 0. 3

Properties of f : For k → ∞, one obtains lim ak = 1
2 and lim bk = 2. The assertion

Df(0) = 1 can be directly checked. Again directly, one determines the global Lipschitz rank

L = max bk = b2 =
1
2
/ [

1
2
− 1

2
(
1
4

+
1
3

) ] =
12
5
.
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On the left side of interval I(k), f coincides with hk, on the right with gk. Because of

gk(c(k)) < hk(c(k)),

it holds f = gk at c(k), and f is differentiable near the center point c(k).
Now, start Newton’s method at any x0 6= 0 where Df(x0) exists. Then the next iterate x1

is some point ±c(k). There, it holds Df = Dgk (or Df = −Dgk for negative arguments).
Hence, the next point x2 is the center point on the opposite side. It follows that the method
generates the alternating sequence x0, x1, x2 = −x1, x3 = x1, ...

Other counterexamples: Study also f(x) = xq, q ∈ (0, 1), which shows the difficulties if
f is everywhere C1 except the origin, and if f is not locally Lipschitz.

9.4 Difficulties for elementary f ∈ C0,1(l2, l2)

can be seen by

Example 9.3. [29]. Let f : l2 → l2, fi(x) = x+
i , i = 1, 2, ..., and define, as in IRn,

Ai(x)u =
{
ui if xi > 0
0 if xi ≤ 0.

At x̄ with x̄k 6= 0 ∀k, we check condition (CA), i.e., A(x)(x− x̄) ∈ f(x)− f(x̄) + o(x− x̄)B.
Put xk = x̄− 2x̄kek ∈ l2. Then xk − x̄ = −2x̄kek → 0 (k →∞) (not possible in IRn),

fi(xk) =
{

(−x̄i)+ if i = k
(+x̄i)+ if i 6= k

and Ai(xk)(xk − x̄) =
{
−2x̄kek if xki > 0 and i = k

0 otherwise.

If i 6= k this implies fi(xk)− fi(x̄) = 0 = Ai(xk)(xk − x̄).
If i = k this implies, due to xii = −x̄i,

fi(xk)− fi(x̄) = (−x̄i)+ − (x̄i)+ and Ai(xk)(xk − x̄) =
{
−2x̄i if xii = −x̄i > 0

0 otherwise.

Thus we obtain for i = k,

fi(xk)− fi(x̄) = |x̄i|; Ai(xk)(xk − x̄) = 2|x̄i| if − x̄i > 0;
fi(xk)− fi(x̄) = −|x̄i|; Ai(xk)(xk − x̄) = 0 if − x̄i ≤ 0.

The difference is at least |x̄i| = |x̄k|. Since ‖xk − x̄‖ = 2|x̄k|, (CA) is violated. 3

10 Convex sets with empty algebraic relative interior

For many statements of functional analysis, crucial sets have to possess interior points. Usu-
ally, this requires more than to have a nonempty algebraic interior or a relative algebraic
interior. Given a convex set K in a linear space V one defines

x ∈ algrelint K if ∀y ∈ K ∃r > 0 : x− r(y − x) ∈ K
x ∈ algint K if ∀y ∈ V ∃r > 0 : x− r(y − x) ∈ K. (10.1)

For V = IRn, these notions coincide with the related topological definitions.
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10.1 The space of convex compact subsets of IRn

Now we study a space of convex sets (see [72] for details and references). It has been investi-
gated in order to extend the usual subdifferential to functions which are the difference of two
convex functions (Demianov, Rubinov).
Let K be the set of all nonempty, convex and compact subsets of IRn. By the addition

A+B = {a+ b | a ∈ A, b ∈ B}
we obtain a commutative half group with zero 0 = {0}. Using the separation theorem, one
easily shows the cancellation law

A+ C = B + C ⇒ A = B.

Thus embedding in a group is possible by considering all pairs (A,B) ∈ K×K with equivalence
relation

(A,B) ∼ (C,D) if A+D = B + C

and new addition
(A,B) + (C,D) =Def (A+ C,B +D)

which is invariant with respect to the equivalence relation and gives

(A, 0) + (0, A) =Def (A,A) ∼ (0, 0).

Hence we may identify the pairs (A,B) and the equivalence classes [A,B] like in the context
of natural and integer numbers, respectively. To simplify we still write (A,B) and identify
equivalent elements. Now define a multiplication with real r: First put rA = {ra | a ∈ A} for
r ≥ 0 and next

r(A,B) = (rA, rB) if r ≥ 0, r(A,B) = (|r|B, |r|A) if r < 0.

We obtain a vector space V (even a metric can be introduced) where (−1)(A,B) = (B,A)
is the inverse element w.r. to addition. The set K is now the convex cone (K, 0) ⊂ V (the
“non-negative orthant”). We show

Proposition 10.1. algrelint (K, 0) = ∅ for all n > 1. 3

Proof. Given A,B ∈ K we have to consider, for small r > 0, the ray

(A, 0)− r(B,A) = (A, 0) + r(A,B),

and to ask for convexity of (A, 0) + r(A,B) which means by definition,

(A, 0) + r(A,B) ∼ (Cr, 0) for some Cr ∈ K.
The latter means A+ rA = Cr + rB and

A ∈ algrelint K ⇔ ∀B ∈ K ∃r > 0 ∃CB,r ∈ K : (1 + r)A = CB,r + rB. (10.2)

If n = 1, the interval A = [−1, 1] has the claimed property. Now assume that A ∈ algrelint K
exists for n > 1. For any u ∈ IRn, consider

pA(u) = max
a∈A
〈u, a〉 and the set of maximizer ΨA(u). (10.3)

Choose u 6= 0, v ⊥ u, v 6= 0 and put B = [−1, 1]v (to simplify, study u = e1, v = e2). We
obtain

(1 + r)A = C + r[−1, 1]v, C = CB,r. (10.4)
Let x ∈ ΨC(u) (it depends on v and r, too).
Then all ξ ∈ x + r[−1, 1]v satisfy 〈u, ξ〉 = 〈u, x〉 and belong to (1 + r)A. In addition, (10.4)
tells us that all ξ maximize 〈u, a〉 on (1 + r)A, too. In consequence, all ξ′ = ξ

1+r maximize
〈u, a〉 on A. Thus ΨA(u) is not a singleton.
However, then pA cannot be differentiable at u. Since this holds for each u 6= 0 and pA is convex
(even sublinear = positively homogeneous and subadditive), we arrived at a contradiction.
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10.2 Spaces of sublinear and convex functions

• By the definitions (10.3), an isomorphism between K and the set Π of sublinear, positive
homogeneous functions p : IRn → IR is established:

A 7→ pA, p 7→ A := ∂p(0)

(use again the separation theorem to verify this fact, called Minkovski duality). Now,
the space V corresponds with the space D of all functions p − q, p, q ∈ Π. Again,
algrelint (Π, 0) is empty in D.

• Let C be the set of all continuous real functions x = x(t), t ∈ IR and K be the subset
of all convex x. Given any x ∈ K define y ∈ K as y(t) = e(t2) + emax{0,x(t)}.

Since limt→±∞[x(t) − r(y(t) − x(t))] = −∞ ∀r > 0, the function x − r(y − x) is not
convex. Thus x /∈ algrelint K.

• Another example, related to Michael’s selection theorem, can be found in [2], p. 31.
There, F : X = [0, 1] ⇒ IR is the l.s.c. multifunction defined by (1.3) and K is the
convex set of all continuous f such that f(x) ∈ F (x) ∀x.

11 Exercises

Exercise 7 [45] Verify: If f ∈ C0,1(IRn, IRn) is strongly regular at (x̄, f(x̄)) and directionally
differentiable near x̄ then the local inverse f−1 is directionally differentiable near f(x̄).

Otherwise one finds images y = f(x) for x near x̄ and v ∈ IRn such that Cf−1(y)(v) contains
at least two different elements p and q. Since f ′ exists and p ∈ Cf−1(y)(v) iff v ∈ Cf(x)(p),
one obtains f ′(x; p) = v = f ′(x; q). For small t > 0, then the images

f(x+ tp)− f(x+ tq) = f(x+ tp)− f(x)− (f(x+ tq)− f(x))

differ by a quantity of type o(t) while the pre-images differ by t(p − q). Therefore, the local
inverse f−1 cannot be Lipschitz near (f(x̄), x̄) for p 6= q.

Exercise 13 [45] Let f ∈ C0,1(IRn, IRn) be strongly regular at (x̄, 0). Show, e.g., by
applying (6.1) and (6.2), that the local inverse f−1 is semismooth at 0 if so is f at x̄.

Otherwise, ∂gJac(f−1) is not a Newton map at 0. Then, due to

conv Tf−1 = ∂gJac(f−1),

also Tf−1 is not a Newton map at 0: There exist c > 0 and elements u ∈ Tf−1(y)(y − 0)
such that

‖u− (f−1(y)− f−1(0))‖ > c‖y‖ where u = u(y) and y → 0.

Setting x = f−1(y) and using that f and f−1 are locally Lipschitz, we obtain with some new
constant C > 0 :

‖u− (x− x̄)‖ ≥ C‖x− x̄‖.

Since Tf is a Newton map at x̄, we may write (with different o− functions)

Tf(x)(x− x̄) ⊂ f(x)− f(x̄) + o(x− x̄)B = y + o(x− x̄)B.
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Next apply u ∈ Tf−1(y)(y) ⇔ y ∈ Tf(x)(u). By subadditivity of the homogeneous map
Tf , we then observe

y ∈ Tf(x)(u) ⊂ Tf(x)(u+ x̄− x) + Tf(x)(x− x̄)
⊂ Tf(x)(u+ x̄− x) + y + o(x− x̄)B.

Hence
0 ∈ Tf(x)(u+ x̄− x) + w holds with certain w ∈ o(x− x̄)B.

We read the latter as
u+ x̄− x ∈ Tf−1(y)(−w)

which yields, with some Lipschitz rank L of f−1 near the origin,

C‖x− x̄‖ ≤ ‖u− (x− x̄)‖ ≤ L‖w‖ ≤ Lo(x− x̄).

This is impossible for o-type functions and proves the statement.

Exercise 15 [45] Verify that positively homogeneous g ∈ C0,1(IRn, IRm) are <simple> at
the origin.
Let v ∈ Tg(0)(r) and tk ↓ 0 be given (k = 1, 2, ...). We know by the structure of Tg(0)(r)
that there exist qk such that vk := g(qk + r)− g(qk)→ v.
Given k select some ν > k such that ‖tνqk‖ < 1/k and put pν = tνqk. Then

vk = t−1
ν [g(tνqk + tνr)− g(tνqk)] = t−1

ν [g(pν + tνr)− g(pν)].

Next select k′ > ν and choose a related v′ > k′ in the same way as above. Repeating
this procedure, the subsequence of all s ∈ {tν , tν′ , tν′′ , ...} then realizes, with the assigned
p(s) ∈ {pν , pν′ , pν′′ , ...}, v = lim s−1[g(p(s) + sr)− g(p(s))] and p(s)→ 0.
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