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Perturbative Quantum Field Theory

graphs

// Feynman \\
@ each Feynman graph represents a Feynman integral (FI), ®(G)
@ truncated sum > ®(G) approximates the process

@ very accurate measurements demand precise theoretical predictions
Challenges: number of graphs & complexity of integrals
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Some FI are expressible as MPL, depending on momenta and masses like

® (V) _ 4ilm[Lix(z) + lig—(l — 2)log|z]]

and also including constants (like MZV) as in

()

Many conjectures by PSLQ), for example

o <<Z>> = 252(3(5 + %@,5 — 250002
Questions

© How to tell if a Fl evaluates to MPL? What is the alphabet?

@ How to compute it explicitly in an efficient and automated way?

.
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Some other definite integral representations

o hypergeometric functions ,F4 (expansion in a, b, ...)

oF (a’cb ‘z) = r(b)FE?— b) /01 tP71(1 — )71 — zt)ade

@ Appell’s functions F1, F, F3, F4

a r(c)
3 <b b clx y) T T(B)(B)(c—b—b)
></ /1 Vubflvblfl(l—u—v)C*b*blfl(l—ux)*a(l—vy)*a/dudv
o Jo

@ Phase-space integrals
@ periods of moduli spaces, string amplitudes

/ dtl cee dt5
o<ti<<ts<1 (1 — t1)(1 — t2)t3(ts — t2)(ts — t3)ts5
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@ path concatenation (analytic continuation) via coproduct
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G(a,b;z)- G(c;z) = G(a,b,c;z) 4+ G(a,c, b; z) + G(c, a, b; 2)

@ path concatenation (analytic continuation) via coproduct

Differential algebra, closed under integration

Qlz, ;15 0 €T]®ling {G(F:2): Fe T} U{E: o7 €X (0 £7)}

1
’z—0o @=1
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Multiple integration with hyperlogarithms

Idea: Use Fubini's theorem to compute

[ee] o0 o0
f,,:/ fn_ldan:/-~/ fo daq - - - da,.
0 0 0

If fy is simple enough (linearly reducible), each f,(apyt1,...) is a rational
linear combination of hyperlogarithms in ap1.

@ Write f,_1 in terms of hyperlogarithms:
G(o; - .
foo1 = Z La")k)\amk with & and 7 independent of «,,.
7,7,k (Oén - T)
@ Construct an antiderivative 0,, F = f,—1.
© Evaluate the limits
(o]
f, = / fam1 dap = lim F(ap) — lim F(ag).
0

Qap—00 ap—0
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Problem

Rewrite G(&'(«); z) as hyperlogs G(&; ) with constant letters 0,5 = 0.

(00 :=z,0441:=0)

—G(0,—;1) = —% [G(O;a) - G(—l;a)]
= G(0,—;1) =—-G(0,0; ) + G(0,—1; ) + (5

Algorithm 2: integration constants at & — 0
uses shuffles, Mobius transformations and path concatenation

Corollary (algorithmic)

If all o; € Q(«), then G(&;00) is a hyperlogarithm in a with alphabet

Y, = {zeros and poles of gj(a) —gj(a): 0<i<j<w+1}
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Singularities of the original integrand: S = {1, ¢}, i.e. at a3 = o for
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= o
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Example: massless triangle
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(1+ a2 + a3)(acaz + zzaz + (1 — 2)(1 — z)az)

_ 2 Liz(z) — 2Lip(2) + [log(1 — z) — log(1 — )] log(zZ)

z—Z

Singularities of the original integrand: S = {¢, ¢}, i.e. at a3 = o for

az(1—2z)(1-2)

01:—1—042 and 0p = — —
oy + 2z

After integrating a; from 0 to oo, the integrand has singularities

S3={l+m,a,l—-2z1-2zam+2z,z+m,z+az}
—_—  ———  — —— ——
01=0 02=0 02=00 o1=02 (pinch)

With the same logic, predict the possible singularities after [ dao:

Ssp={2,z2,1-2,1—-2,z—2,zz — 1}



Definition (Polynomial reduction

Let S denote a set of polynomials, then S are the irreducible factors of

{Ieade(f), floe—o f€5} and {[f,gle: f,g€S}.

Lemma (approximation of Landau varieties)

If the singularities of F are cointained in S, then the singularities of
Jo° F dae are contained in Se. Goal: bounds as tight as possible
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Definition (Polynomial reduction

Let S denote a set of polynomials, then S are the irreducible factors of

{Ieade(f), floe—o f€5} and {[f,gle: f,g€S}.

Lemma (approximation of Landau varieties)

If the singularities of F are cointained in S, then the singularities of
Jo° F dae are contained in Se. Goal: bounds as tight as possible

This gives only very coarse upper bounds. For example, zz — 1 is spurious:
It drops out in Sp3MN S32 ={z,2z,1 —2,1—2z,z— z} because

So3={z,z2,1-2,1-2,z—2,zz—z—Z}.

Improvements
e Fubini algorithm [Brown|: intersect over different orders

o Compatibility graphs [Brown, Panzer]

10/20



Compatibility graphs

Keep track of compatibilities C C (g) between polynomials:
@ start with the complete graph ¢y — ¢
@ in S, only take resultants [f, g]e for compatible {f,g} € C
e in C, only pairs [f, gle — [g, h]e become compatible
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Compatibility graphs

Keep track of compatibilities C C (g) between polynomials:
@ start with the complete graph ¢y — ¢
@ in S, only take resultants [f, g]e for compatible {f,g} € C
e in C, only pairs [f, gle — [g, h]e become compatible

zZoy + ap and ag + ap not compatible = no resultant 1 — zZ in (S, C)32

11/20



Problem for multiple integrals

If some gi() — 0j(«) does not factorize linearly in v, the transformation
to G(--- ; ) introduces algebraic letters.

Definition
If for some order of variables (edges), all S1,...k are linear in a1, then S
(the Feynman graph G with S = {v, ¢}) is called linearly reducible.

| A

\

Write O(S) = Q[d@, f~L: f € S] and

MPL(S) = O(S) ® ling {iterated integrals of d log(f)'s (f € S)}.

Lemma (algorithmic)
If S is linearly reducible and fy € MPL(S), then

/ .. / fO dOél -y € /\/IPL(SL._,,N) ®Q C.
0 0

12/20
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MPL have plenty of relations, like

Lio(—1/a) = %Iog2(a) + Liz2(—a) —

All hyperlogarithms G(&; &), 0,6 = 0, are linearly independent over C(«).

The recursive algorithm (differentiation & integration & limits) solves

Problem: Bases for MPL

Given some MPL G(&(@), z(d)) or Liz(Z(a)) whose arguments (&, z or Z)

are rational functions of variables a1, ..., a,, write it in the basis
> G(Gi(0n, ... an);a1)G(F2(0s, . . ., an)i a2) -+ - G(F; vn).-
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MPL have plenty of relations, like

Lio(—1/a) = %Iog2(a) + Liz2(—a) —

All hyperlogarithms G(&; &), 0,6 = 0, are linearly independent over C(«).

The recursive algorithm (differentiation & integration & limits) solves

Problem: Bases for MPL

Given some MPL G(&(@), z(d)) or Liz(Z(a)) whose arguments (&, z or Z)
are rational functions of variables a1, ..., a,, write it in the basis

Z G(d1(az, ... an); a1)G(F2(as, ..., an);a2) - G(Gn; ap).

= -
01,--+50n

completely symbolic (no numerics)

dependens on order of the variables aq, ..., a,

in general not the shortest or “simplest” representation
allows for symbolic verification of MPL identities

13 /20



HyperInt




Maple

Manual .ws

open source: https://bitbucket.org/PanzerErik/hyperint
polynomial reduction

integration of hyperlogarithms

transformations of MPL to G(--- ;1) - G(--- ; ap)-basis

symbolic computation of constants (MZV and alternating sums)

Feynman graph polynomials

> read "HyperInt.mpl":
> hyperInt(polylog(2,-x)*polylog(3,-1/x)/x,x=0..infinity):
> fibrationBasis(%);

G

computes [5° Lio(—x) Liz(—1/x)dx = §¢3.

~l| oo

14 /20


https://bitbucket.org/PanzerErik/hyperint

Sometimes a linearly reducible order is obvious, like for

/ dt; ---dts
o<tic<ts<1 (1 — t1)(1 — t2)t3(ta — t2)(ts — t3)t5

> hyperInt(1/(1-t1)/(1-t2)/t3/(t4-t2)/(t5-t3)/t5,
[t1=0..t2,t2=0..t3,t3=0..t4,t4=0..t5,t5=0..1]):
> fibrationBasis(%);

6,
5@2
In complicated cases, one first computes a polynomial reduction to check

if a linearly reducible order exists. Both, polynomial reduction and
integration can be parallelized manually.

® (%) =988, + 38 <C3,5,3 - C3,5<3> — U2

+ 896(3 (%C&s + g%@CS - %%)
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HyperInt: triangle

Graph polynomials:
> E:=[[1,2],[2,3],[3,1]1]:
> M:=[[3,1],[1,z*zz],[2, (1-2)*(1-z=z)]]:
> psi:=graphPolynomial (E):
> phi:=secondPolynomial(E,M):
Integration:
> hyperInt(eval(1/psi/phi,x[3]=1), [x[1],x[2]]):
> factor(fibrationBasis (%, [z,zz]));
(G(z;1)G(22;0) — G(z;0)G(2z;1) + G (2z;0,1)
—G(2z;1,0)+ G(z,1,0) — G(z,0,1))/(z — zz)
Polynomial reduction:
> L[{}]:=[{psi,phi}, {{psi,phil}}]:
> cgReduction(L):
> L[{x[1],x[2]1}]1[1];
{-1+z,-1+zz,—zz+z}
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Linearly reducible Feynman graphs




Linearly reducible families (fixed loop order)

@ all <4 loop massless propagators [Panzer|

L <

17/20



Linearly reducible families (fixed loop order)

@ all <4 loop massless propagators [Panzer|

< < G

@ all < 3 loop massless off-shell 3-point [Chavez & Duhr, Panzer|

17/20



Linearly reducible families (fixed loop order)

O all <4 loop massless propagators [Panzer]

< < G

@ all < 3 loop massless off-shell 3-point [Chavez & Duhr, Panzer|

N - I

© all <2 loop massless on-shell 4-point [Liders]
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Linearly reducible families (infinite)

@ 3-constructible graphs [Brown, Schnetz, Panzer]
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Linearly reducible families (infinite)

@ 3-constructible graphs [Brown, Schnetz, Panzer]

H-B0-

All e-coefficients of these graphs (off-shell) are MPL over the alphabet
{z,z,1-2,1-2,z—2,1—22,1—z—2,zz—z— Z}.

@ minors of ladder-boxes (< 2 legs massive)

All e-coefficients of these graphs are MPL. For the massless case, the
alphabet is just {x,1+ x} for x = s/t.

18 /20



Linear reducibility: Forest functions

Minors of ladder boxes are closed under the operations

———O
([~ -] »[1]
——O
All minors of ladder boxes (with p? = p3 = 0) evaluate to MPL. \

19/20
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hyperlogarithms are very suitable for computer algebra
Maple implementation HyperInt
polynomial reduction

requires linear reducibility! Counterexample:

/°°/°° dx dy
0o Jo xyz+(1+x+y)(x+y+xy)

possible extension: algebraic functions in the differential forms
(root-valued letters)

Holy grail: Infer analytic structure of a FI from combinatorial
structure, i.e. by “looking at the graph”

o extremely difficult
e so far, only very few results
e but some infinite families

Thank you!
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