Symbolic integration of multiple polylogarithms

Erik Panzer Institute des Hautes Études Scientifiques

Applications of Computer Algebra July 22nd, 2015 Kalamata. Greece

$$\int_0^\infty \int_0^\infty \frac{\log(1+1/(xz)) \, dx \, dy}{(1+y)(1+x+y+1/z)} = ?$$

$$\int_0^\infty \int_0^\infty \frac{\log(1+1/(xz)) \, dx \, dy}{(1+y)(1+x+y+1/z)} = ?$$

Sometimes such integrals are expressible as multiple polylogarithms (MPL)

$$\mathsf{Li}_{n_1,\dots,n_d}(z_1,\dots,z_d) = \sum_{0 < k_1 < \dots < k_d} \frac{z_1^{k_1} \cdots z_d^{k_d}}{k_1^{n_1} \cdots k_d^{n_d}} \qquad \left(\vec{n} \in \mathbb{N}^d\right)$$

and their special values, like multiple zeta values (MZV)

$$\zeta_{\vec{n}} = \operatorname{Li}_{\vec{n}}(1, \dots, 1).$$

$$\int_0^\infty \int_0^\infty \frac{\log(1+1/(xz)) \, dx \, dy}{(1+y)(1+x+y+1/z)} = \zeta_3 - \zeta_2 \log(z) - \operatorname{Li}_{1,2}(1,-z) - \operatorname{Li}_3(-z)$$

Sometimes such integrals are expressible as multiple polylogarithms (MPL)

$$\mathsf{Li}_{n_1,\dots,n_d}(z_1,\dots,z_d) = \sum_{0 < k_1 < \dots < k_d} \frac{z_1^{k_1} \cdots z_d^{k_d}}{k_1^{n_1} \cdots k_d^{n_d}} \qquad \left(\vec{n} \in \mathbb{N}^d\right)$$

and their special values, like multiple zeta values (MZV)

$$\zeta_{\vec{n}} = \operatorname{Li}_{\vec{n}}(1, \dots, 1).$$

$$\int_0^\infty \int_0^\infty \frac{\log(1+1/(xz)) \, dx \, dy}{(1+y)(1+x+y+1/z)} = \zeta_3 - \zeta_2 \log(z) - \text{Li}_{1,2}(1,-z) - \text{Li}_3(-z)$$

Sometimes such integrals are expressible as multiple polylogarithms (MPL)

$$\mathsf{Li}_{n_1,\dots,n_d}(z_1,\dots,z_d) = \sum_{\substack{0 < k_1 < \dots < k_d \\ k_1^{n_1} \cdots k_d^{n_d}}} \frac{z_1^{k_1} \cdots z_d^{k_d}}{k_1^{n_1} \cdots k_d^{n_d}} \qquad \left(\vec{n} \in \mathbb{N}^d\right)$$

and their special values, like multiple zeta values (MZV)

$$\zeta_{\vec{n}} = \operatorname{Li}_{\vec{n}} (1, \dots, 1).$$

Example

$$\int_{0}^{\infty} \dots \int_{0}^{\infty} \frac{d\alpha_{1} d\alpha_{2} d\alpha_{3} d\alpha_{4}}{[\alpha_{1} + \alpha_{4} + (\alpha_{1} + \alpha_{4} + 1)(\alpha_{2} + \alpha_{3})][(\alpha_{1} + \alpha_{2})(\alpha_{3} + \alpha_{3}\alpha_{4} + \alpha_{4}) + \alpha_{1}\alpha_{2}(\alpha_{3} + \alpha_{4})]}$$

$$= 6\zeta_{3} = 6\sum_{k=1}^{\infty} \frac{1}{k^{3}}$$

Motivation

- ullet each Feynman graph represents a Feynman integral (FI), $\Phi(G)$
- truncated sum $\sum_{G} \Phi(G)$ approximates the process

- ullet each Feynman graph represents a Feynman integral (FI), $\Phi(G)$
- truncated sum $\sum_{G} \Phi(G)$ approximates the process
- very accurate measurements demand precise theoretical predictions
 Challenges: number of graphs & complexity of integrals

Some FI are expressible as MPL, depending on momenta and masses like

$$\Phi\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = \frac{4i \operatorname{Im}\left[\operatorname{Li}_{2}(z) + \log(1-z) \log|z|\right]}{z - \overline{z}}$$

and also including constants (like MZV) as in

$$\Phi\left(-\begin{array}{|c|} \hline \\ \hline \\ \hline \end{array}\right) = 6\zeta_3.$$

Many conjectures by PSLQ, for example

Some FI are expressible as MPL, depending on momenta and masses like

$$\Phi\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = \frac{4i \operatorname{Im}\left[\operatorname{Li}_{2}(z) + \log(1-z) \log|z|\right]}{z - \overline{z}}$$

and also including constants (like MZV) as in

$$\Phi\left(-\begin{array}{|c|} \hline \\ \hline \\ \hline \end{array}\right) = 6\zeta_3.$$

Many conjectures by PSLQ, for example

$$\Phi\left(-\sqrt{\frac{25056}{875}}\zeta_{2}^{4}\right) = 252\zeta_{3}\zeta_{5} + \frac{432}{5}\zeta_{3,5} - \frac{25056}{875}\zeta_{2}^{4}$$

Questions

- How to tell if a FI evaluates to MPL? What is the alphabet?
- 2 How to compute it explicitly?

Some FI are expressible as MPL, depending on momenta and masses like

$$\Phi\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = \frac{4i \operatorname{Im}\left[\operatorname{Li}_2(z) + \log(1-z) \log|z|\right]}{z - \bar{z}}$$

and also including constants (like MZV) as in

$$\Phi\left(---\right) = 6\zeta_3.$$

Many conjectures by PSLQ, for example

$$\Phi\left(--\right) = 252\zeta_3\zeta_5 + \frac{432}{5}\zeta_{3,5} - \frac{25056}{875}\zeta_2^4$$

Questions

- How to tell if a FI evaluates to MPL? What is the alphabet?
- 4 How to compute it explicitly in an efficient and automated way?

$$\Phi(G) = \int_{(0,\infty)^E} \frac{1}{\psi^{D/2}} \left(\frac{\psi}{\varphi}\right)^{E-h_1(G)D/2} \delta(1-\alpha_N) \prod_e d\alpha_e$$

Graph polynomials:

$$\psi = \sum_{\textit{T}} \prod_{e \notin \textit{T}} \alpha_{e} \qquad \qquad \varphi = \sum_{\textit{F} = \textit{T}_{1} \dot{\cup} \textit{T}_{2}} \textit{q}^{2} \left(\textit{T}_{1} \right) \prod_{e \notin \textit{F}} \alpha_{e} + \psi \sum_{e} \textit{m}_{e}^{2} \alpha_{e}$$

$$\Phi(G) = \int_{(0,\infty)^E} \frac{1}{\psi^{D/2}} \left(\frac{\psi}{\varphi}\right)^{E-h_1(G)D/2} \delta(1-\alpha_N) \prod_e d\alpha_e$$

Graph polynomials:

$$\psi = \sum_{\textit{T}} \prod_{e \notin \textit{T}} \alpha_{e} \qquad \qquad \varphi = \sum_{\textit{F} = \textit{T}_{1} \dot{\cup} \textit{T}_{2}} \textit{q}^{2} \left(\textit{T}_{1} \right) \prod_{e \notin \textit{F}} \alpha_{e} + \psi \sum_{e} \textit{m}_{e}^{2} \alpha_{e}$$

Example

$$\psi = \alpha_1 + \alpha_2 + \alpha_3$$

$$\varphi = p_1^2 \alpha_2 \alpha_3 + p_2^2 \alpha_1 \alpha_3 + p_3^2 \alpha_1 \alpha_2$$

$$\Phi(G) = \int_0^\infty \int_0^\infty \frac{d\alpha_2 d\alpha_3}{\psi \varphi} \Big|_{\alpha = 1}$$

$$\Phi(G) = \int_{(0,\infty)^E} \frac{1}{\psi^{D/2}} \left(\frac{\psi}{\varphi}\right)^{E-h_1(G)D/2} \delta(1-\alpha_N) \prod_e d\alpha_e$$

Graph polynomials:

$$\psi = \sum_{\textit{T}} \prod_{e \notin \textit{T}} \alpha_e \qquad \qquad \varphi = \sum_{\textit{F} = \textit{T}_1 \dot{\cup} \textit{T}_2} \textit{q}^2 \left(\textit{T}_1 \right) \prod_{e \notin \textit{F}} \alpha_e + \psi \sum_{e} \textit{m}_e^2 \alpha_e$$

$$\Phi(G) = \int_{(0,\infty)^E} \frac{1}{\psi^{D/2}} \left(\frac{\psi}{\varphi}\right)^{E-h_1(G)D/2} \delta(1-\alpha_N) \prod_e d\alpha_e$$

Graph polynomials:

$$\psi = \sum_{\textit{T}} \prod_{\textit{e} \notin \textit{T}} \alpha_{\textit{e}} \qquad \qquad \varphi = \sum_{\textit{F} = \textit{T}_1 \dot{\cup} \textit{T}_2} \textit{q}^2 \left(\textit{T}_1 \right) \prod_{\textit{e} \notin \textit{F}} \alpha_{\textit{e}} + \psi \sum_{\textit{e}} \textit{m}_{\textit{e}}^2 \alpha_{\textit{e}}$$

$$\Phi(G) = \int_{(0,\infty)^E} \frac{1}{\psi^{D/2}} \left(\frac{\psi}{\varphi}\right)^{E-h_1(G)D/2} \delta(1-\alpha_N) \prod_e d\alpha_e$$

Graph polynomials:

$$\psi = \sum_{\textit{T}} \prod_{\textit{e} \notin \textit{T}} \alpha_{\textit{e}} \qquad \qquad \varphi = \sum_{\textit{F} = \textit{T}_1 \dot{\cup} \textit{T}_2} \textit{q}^2 \left(\textit{T}_1 \right) \prod_{\textit{e} \notin \textit{F}} \alpha_{\textit{e}} + \psi \sum_{\textit{e}} \textit{m}_{\textit{e}}^2 \alpha_{\textit{e}}$$

Example

$$\Phi(G) = \int_{(0,\infty)^E} \frac{1}{\psi^{D/2}} \left(\frac{\psi}{\varphi}\right)^{E-h_1(G)D/2} \delta(1-\alpha_N) \prod_e d\alpha_e$$

Graph polynomials:

$$\psi = \sum_{\textit{T}} \prod_{\textit{e} \notin \textit{T}} \alpha_{\textit{e}} \qquad \qquad \varphi = \sum_{\textit{F} = \textit{T}_1 \dot{\cup} \textit{T}_2} \textit{q}^2 \left(\textit{T}_1 \right) \prod_{\textit{e} \notin \textit{F}} \alpha_{\textit{e}} + \psi \sum_{\textit{e}} \textit{m}_{\textit{e}}^2 \alpha_{\textit{e}}$$

$$\Phi(G) = \int_{(0,\infty)^E} \frac{1}{\psi^{D/2}} \left(\frac{\psi}{\varphi}\right)^{E-h_1(G)D/2} \delta(1-\alpha_N) \prod_e d\alpha_e$$

Graph polynomials:

$$\psi = \sum_{\textit{T}} \prod_{e \notin \textit{T}} \alpha_{e} \qquad \qquad \varphi = \sum_{\textit{F} = \textit{T}_{1} \dot{\cup} \textit{T}_{2}} \textit{q}^{2} \left(\textit{T}_{1} \right) \prod_{e \notin \textit{F}} \alpha_{e} + \psi \sum_{e} \textit{m}_{e}^{2} \alpha_{e}$$

Example

$$\Phi(G) = \int_{(0,\infty)^E} \frac{1}{\psi^{D/2}} \left(\frac{\psi}{\varphi}\right)^{E-h_1(G)D/2} \delta(1-\alpha_N) \prod_e d\alpha_e$$

Graph polynomials:

$$\psi = \sum_{\textit{T}} \prod_{e \notin \textit{T}} \alpha_e \qquad \qquad \varphi = \sum_{\textit{F} = \textit{T}_1 \dot{\cup} \textit{T}_2} \textit{q}^2 \left(\textit{T}_1 \right) \prod_{e \notin \textit{F}} \alpha_e + \psi \sum_{e} \textit{m}_e^2 \alpha_e$$

$$\Phi(G) = \int_{(0,\infty)^E} \frac{1}{\psi^{D/2}} \left(\frac{\psi}{\varphi}\right)^{E-h_1(G)D/2} \delta(1-\alpha_N) \prod_e d\alpha_e$$

Graph polynomials:

$$\psi = \sum_{\textit{T}} \prod_{e \notin \textit{T}} \alpha_{e} \qquad \qquad \varphi = \sum_{\textit{F} = \textit{T}_{1} \dot{\cup} \textit{T}_{2}} \textit{q}^{2} \left(\textit{T}_{1} \right) \prod_{e \notin \textit{F}} \alpha_{e} + \psi \sum_{e} \textit{m}_{e}^{2} \alpha_{e}$$

Example

$$\psi = \alpha_1 + \alpha_2 + \alpha_3$$

$$\varphi = p_1^2 \alpha_2 \alpha_3 + p_2^2 \alpha_1 \alpha_3 + p_3^2 \alpha_1 \alpha_2$$

$$\Phi(G) = \int_0^\infty \int_0^\infty \frac{d\alpha_2 d\alpha_3}{\psi \varphi} \Big|_{\alpha = 1}$$

Some other definite integral representations

• hypergeometric functions ${}_{p}F_{q}$ (expansion in a, b, \ldots)

$${}_{2}F_{1}\left(egin{array}{c} a,b \\ c \end{array}\Big|z
ight) = rac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a} \mathrm{d}t$$

Appell's functions F₁, F₂, F₃, F₄

$$F_{3}\begin{pmatrix} a, a' \\ b, b' \end{vmatrix} c | x | y = \frac{\Gamma(c)}{\Gamma(b)\Gamma(b')\Gamma(c - b - b')} \times \int_{0}^{1} \int_{0}^{1-v} u^{b-1} v^{b'-1} (1 - u - v)^{c-b-b'-1} (1 - ux)^{-a} (1 - vy)^{-a'} du dv$$

- Phase-space integrals
- periods of moduli spaces, string amplitudes

$$\int_{0 < t_1 < \dots < t_5 < 1} \frac{\mathrm{d} t_1 \cdots \mathrm{d} t_5}{(1 - t_1)(1 - t_2)t_3(t_4 - t_2)(t_5 - t_3)t_5} = \frac{6}{5} \zeta_2^2 = \frac{\pi^4}{30}$$

Techniques

$$G(\underbrace{0\cdots 0,\sigma_d}_{n_d},\ldots,\underbrace{0\cdots 0,\sigma_1}_{n_1};z)=(-1)^d\operatorname{Li}_{n_1,\ldots,n_d}\left(\frac{\sigma_2}{\sigma_1},\cdots,\frac{\sigma_d}{\sigma_{d-1}},\frac{z}{\sigma_d}\right)$$

Hyperlogarithms [Poincaré 1884, Lappo-Danilevsky 1927]

$$G(\sigma_1,\ldots,\sigma_w;z) := \int_0^z \frac{\mathrm{d}z_1}{z_1-\sigma_1} \int_0^{z_1} \frac{\mathrm{d}z_2}{z_2-\sigma_2} \cdots \int_0^{z_{w-1}} \frac{\mathrm{d}z_w}{z_w-\sigma_w}$$

$$G(\underbrace{0\cdots 0,\sigma_d}_{n_d},\ldots,\underbrace{0\cdots 0,\sigma_1}_{n_1};z)=(-1)^d\operatorname{Li}_{n_1,\ldots,n_d}\left(\frac{\sigma_2}{\sigma_1},\cdots,\frac{\sigma_d}{\sigma_{d-1}},\frac{z}{\sigma_d}\right)$$

Hyperlogarithms [Poincaré 1884, Lappo-Danilevsky 1927]

$$G(\sigma_1,\ldots,\sigma_w;z) := \int_0^z \frac{\mathrm{d}z_1}{z_1-\sigma_1} \int_0^{z_1} \frac{\mathrm{d}z_2}{z_2-\sigma_2} \cdots \int_0^{z_{w-1}} \frac{\mathrm{d}z_w}{z_w-\sigma_w}$$

- ullet locally analytic, multivalued functions on $\mathbb{C}\setminus\{0,\sigma_1,\ldots,\sigma_w\}$
- divergences at $z \to \sigma_i$ (or ∞) are logarithmic
- span an algebra via the shuffle product

$$G(a, b; z) \cdot G(c; z) = G(a, b, c; z) + G(a, c, b; z) + G(c, a, b; z)$$

• path concatenation (analytic continuation) via coproduct

$$G(\underbrace{0\cdots 0,\sigma_d}_{n_d},\ldots,\underbrace{0\cdots 0,\sigma_1}_{n_1};z)=(-1)^d\operatorname{Li}_{n_1,\ldots,n_d}\left(\frac{\sigma_2}{\sigma_1},\cdots,\frac{\sigma_d}{\sigma_{d-1}},\frac{z}{\sigma_d}\right)$$

Hyperlogarithms [Poincaré 1884, Lappo-Danilevsky 1927]

$$G(\sigma_1,\ldots,\sigma_w;z):=\int_0^z\frac{\mathrm{d}z_1}{z_1-\sigma_1}G(\sigma_2,\ldots,\sigma_w;z_1),\ G(\underbrace{0\cdots 0}_w;z)=\frac{\log^w(z)}{w!}$$

- ullet locally analytic, multivalued functions on $\mathbb{C}\setminus\{0,\sigma_1,\ldots,\sigma_w\}$
- divergences at $z \to \sigma_i$ (or ∞) are logarithmic
- span an algebra via the shuffle product

$$G(a, b; z) \cdot G(c; z) = G(a, b, c; z) + G(a, c, b; z) + G(c, a, b; z)$$

• path concatenation (analytic continuation) via coproduct

$$G(\underbrace{0\cdots 0,\sigma_d}_{n_d},\ldots,\underbrace{0\cdots 0,\sigma_1}_{n_1};z)=(-1)^d\operatorname{Li}_{n_1,\ldots,n_d}\left(\frac{\sigma_2}{\sigma_1},\cdots,\frac{\sigma_d}{\sigma_{d-1}},\frac{z}{\sigma_d}\right)$$

Hyperlogarithms [Poincaré 1884, Lappo-Danilevsky 1927]

$$G(\sigma_1,\ldots,\sigma_w;z):=\int_0^z\frac{\mathrm{d}z_1}{z_1-\sigma_1}G(\sigma_2,\ldots,\sigma_w;z_1),\ G(\underbrace{0\cdots 0}_w;z)=\frac{\log^w(z)}{w!}$$

- ullet locally analytic, multivalued functions on $\mathbb{C}\setminus\{0,\sigma_1,\ldots,\sigma_w\}$
- divergences at $z \to \sigma_i$ (or ∞) are logarithmic
- span an algebra via the shuffle product

$$G(a, b; z) \cdot G(c; z) = G(a, b, c; z) + G(a, c, b; z) + G(c, a, b; z)$$

path concatenation (analytic continuation) via coproduct

Differential algebra, closed under integration

$$\mathbb{Q}[z, \frac{1}{z - \sigma} \colon \sigma \in \Sigma] \otimes \lim_{\mathbb{Q}} \left\{ G(\vec{\sigma}; z) \colon \vec{\sigma} \in \Sigma^{\times} \right\}$$

$$G(\underbrace{0\cdots 0,\sigma_d}_{n_d},\ldots,\underbrace{0\cdots 0,\sigma_1}_{n_1};z)=(-1)^d\operatorname{Li}_{n_1,\ldots,n_d}\left(\frac{\sigma_2}{\sigma_1},\cdots,\frac{\sigma_d}{\sigma_{d-1}},\frac{z}{\sigma_d}\right)$$

Hyperlogarithms [Poincaré 1884, Lappo-Danilevsky 1927]

$$G(\sigma_1,\ldots,\sigma_w;z):=\int_0^z\frac{\mathrm{d} z_1}{z_1-\sigma_1}G(\sigma_2,\ldots,\sigma_w;z_1),\ G(\underbrace{0\cdots 0}_w;z)=\frac{\log^w(z)}{w!}$$

- ullet locally analytic, multivalued functions on $\mathbb{C}\setminus\{0,\sigma_1,\ldots,\sigma_w\}$
- divergences at $z \to \sigma_i$ (or ∞) are logarithmic
- span an algebra via the shuffle product

$$G(a, b; z) \cdot G(c; z) = G(a, b, c; z) + G(a, c, b; z) + G(c, a, b; z)$$

• path concatenation (analytic continuation) via coproduct

Differential algebra, closed under integration

$$\mathbb{Q}[z, \frac{1}{z-\sigma} \colon \sigma \in \Sigma] \otimes \lim_{\mathbb{Q}} \left\{ G(\vec{\sigma}; z) \colon \vec{\sigma} \in \Sigma^{\times} \right\} \cup \left\{ \frac{1}{\sigma-\tau} \colon \sigma, \tau \in \Sigma \ (\sigma \neq \tau) \right\}$$

Multiple integration with hyperlogarithms

Idea: Use Fubini's theorem to compute

$$f_n = \int_0^\infty f_{n-1} d\alpha_n = \int_0^\infty \cdots \int_0^\infty f_0 d\alpha_1 \cdots d\alpha_n.$$

If f_0 is simple enough (linearly reducible), each $f_n(\alpha_{n+1},...)$ is a rational linear combination of hyperlogarithms in α_{n+1} .

Multiple integration with hyperlogarithms

Idea: Use Fubini's theorem to compute

$$f_n = \int_0^\infty f_{n-1} d\alpha_n = \int_0^\infty \cdots \int_0^\infty f_0 d\alpha_1 \cdots d\alpha_n.$$

If f_0 is simple enough (linearly reducible), each $f_n(\alpha_{n+1},...)$ is a rational linear combination of hyperlogarithms in α_{n+1} .

• Write f_{n-1} in terms of hyperlogarithms:

$$f_{n-1} = \sum_{\vec{\sigma},\tau,k} \frac{\mathcal{G}(\vec{\sigma};\alpha_n)}{(\alpha_n - \tau)^k} \lambda_{\sigma,\tau,k} \quad \text{with } \vec{\sigma} \text{ and } \tau \text{ independent of } \alpha_n.$$

Multiple integration with hyperlogarithms

Idea: Use Fubini's theorem to compute

$$f_n = \int_0^\infty f_{n-1} d\alpha_n = \int_0^\infty \cdots \int_0^\infty f_0 d\alpha_1 \cdots d\alpha_n.$$

If f_0 is simple enough (linearly reducible), each $f_n(\alpha_{n+1},...)$ is a rational linear combination of hyperlogarithms in α_{n+1} .

① Write f_{n-1} in terms of hyperlogarithms:

$$f_{n-1} = \sum_{\vec{\sigma}, \tau, k} \frac{G(\vec{\sigma}; \alpha_n)}{(\alpha_n - \tau)^k} \lambda_{\sigma, \tau, k}$$
 with $\vec{\sigma}$ and τ independent of α_n .

② Construct an antiderivative $\partial_{\alpha_n} F = f_{n-1}$.

Multiple integration with hyperlogarithms

Idea: Use Fubini's theorem to compute

$$f_n = \int_0^\infty f_{n-1} d\alpha_n = \int_0^\infty \cdots \int_0^\infty f_0 d\alpha_1 \cdots d\alpha_n.$$

If f_0 is simple enough (linearly reducible), each $f_n(\alpha_{n+1},...)$ is a rational linear combination of hyperlogarithms in α_{n+1} .

• Write f_{n-1} in terms of hyperlogarithms:

$$f_{n-1} = \sum_{\vec{\sigma}, \tau, k} \frac{G(\vec{\sigma}; \alpha_n)}{(\alpha_n - \tau)^k} \lambda_{\sigma, \tau, k}$$
 with $\vec{\sigma}$ and τ independent of α_n .

- ② Construct an antiderivative $\partial_{\alpha_n} F = f_{n-1}$.
- Evaluate the limits

$$f_n := \int_0^\infty f_{n-1} d\alpha_n = \lim_{\alpha_n \to \infty} F(\alpha_n) - \lim_{\alpha_n \to 0} F(\alpha_n).$$

Rewrite $G(\vec{\sigma}(\alpha); z)$ as hyperlogs $G(\vec{\sigma}; \alpha)$ with constant letters $\partial_{\alpha} \vec{\sigma} = 0$.

Rewrite $G(\vec{\sigma}(\alpha); z)$ as hyperlogs $G(\vec{\sigma}; \alpha)$ with constant letters $\partial_{\alpha} \vec{\sigma} = 0$.

$$dG(\vec{\sigma};z) = \sum_{i=1}^{w} G(\cdots, \phi_i, \cdots; z) d\log \frac{\sigma_i - \sigma_{i-1}}{\sigma_i - \sigma_{i+1}} \quad (\sigma_0 := z, \sigma_{w+1} := 0)$$

$$\frac{\partial}{\partial \alpha} G(0, -\alpha; 1) = -\frac{1}{\alpha} G(-\alpha; 1)$$

Rewrite $G(\vec{\sigma}(\alpha); z)$ as hyperlogs $G(\vec{\sigma}; \alpha)$ with constant letters $\partial_{\alpha} \vec{\sigma} = 0$.

$$dG(\vec{\sigma};z) = \sum_{i=1}^{w} G(\cdots, \phi_i, \cdots; z) d\log \frac{\sigma_i - \sigma_{i-1}}{\sigma_i - \sigma_{i+1}} \quad (\sigma_0 := z, \sigma_{w+1} := 0)$$

$$\frac{\partial}{\partial \alpha}G(0,-\alpha;1) = -\frac{1}{\alpha}\Big[G(0;\alpha) - G(-1;\alpha)\Big]$$

Rewrite $G(\vec{\sigma}(\alpha); z)$ as hyperlogs $G(\vec{\sigma}; \alpha)$ with constant letters $\partial_{\alpha} \vec{\sigma} = 0$.

$$dG(\vec{\sigma};z) = \sum_{i=1}^{w} G(\cdots, \phi_i, \cdots; z) d\log \frac{\sigma_i - \sigma_{i-1}}{\sigma_i - \sigma_{i+1}} \quad (\sigma_0 := z, \sigma_{w+1} := 0)$$

$$\frac{\partial}{\partial \alpha} G(0, -\alpha; 1) = -\frac{1}{\alpha} \Big[G(0; \alpha) - G(-1; \alpha) \Big]$$

$$\Rightarrow G(0, -\alpha; 1) = -G(0, 0; \alpha) + G(0, -1; \alpha)$$

Rewrite $G(\vec{\sigma}(\alpha); z)$ as hyperlogs $G(\vec{\sigma}; \alpha)$ with constant letters $\partial_{\alpha} \vec{\sigma} = 0$.

$$dG(\vec{\sigma};z) = \sum_{i=1}^{w} G(\cdots, \phi_i, \cdots; z) d\log \frac{\sigma_i - \sigma_{i-1}}{\sigma_i - \sigma_{i+1}} \quad (\sigma_0 := z, \sigma_{w+1} := 0)$$

$$\frac{\partial}{\partial \alpha} G(0, -\alpha; 1) = -\frac{1}{\alpha} \Big[G(0; \alpha) - G(-1; \alpha) \Big]$$

$$\Rightarrow G(0, -\alpha; 1) = -G(0, 0; \alpha) + G(0, -1; \alpha) + \zeta_2$$

Rewrite $G(\vec{\sigma}(\alpha); z)$ as hyperlogs $G(\vec{\sigma}; \alpha)$ with constant letters $\partial_{\alpha} \vec{\sigma} = 0$.

$$dG(\vec{\sigma};z) = \sum_{i=1}^{w} G(\cdots, \phi_i, \cdots; z) d\log \frac{\sigma_i - \sigma_{i-1}}{\sigma_i - \sigma_{i+1}} \quad (\sigma_0 := z, \sigma_{w+1} := 0)$$

Algorithm 1: weight recursion (example)

$$\frac{\partial}{\partial \alpha} G(0, -\alpha; 1) = -\frac{1}{\alpha} \Big[G(0; \alpha) - G(-1; \alpha) \Big]$$

$$\Rightarrow G(0, -\alpha; 1) = -G(0, 0; \alpha) + G(0, -1; \alpha) + \zeta_2$$

Algorithm 2: integration constants at $\alpha \to 0$

uses shuffles, Möbius transformations and path concatenation

Rewrite $G(\vec{\sigma}(\alpha); z)$ as hyperlogs $G(\vec{\sigma}; \alpha)$ with constant letters $\partial_{\alpha} \vec{\sigma} = 0$.

$$dG(\vec{\sigma};z) = \sum_{i=1}^{w} G(\cdots, \phi_i, \cdots; z) d\log \frac{\sigma_i - \sigma_{i-1}}{\sigma_i - \sigma_{i+1}} \quad (\sigma_0 := z, \sigma_{w+1} := 0)$$

Algorithm 1: weight recursion (example)

$$\frac{\partial}{\partial \alpha} G(0, -\alpha; 1) = -\frac{1}{\alpha} \Big[G(0; \alpha) - G(-1; \alpha) \Big]$$

$$\Rightarrow G(0, -\alpha; 1) = -G(0, 0; \alpha) + G(0, -1; \alpha) + \zeta_2$$

Algorithm 2: integration constants at $\alpha \to 0$

uses shuffles, Möbius transformations and path concatenation

Corollary (algorithmic)

If all $\sigma_i \in \mathbb{Q}(\alpha)$, then $G(\vec{\sigma}; \sigma_0)$ is a hyperlogarithm in α with alphabet

$$\Sigma_{\alpha} = \{ \text{zeros and poles of } \sigma_i(\alpha) - \sigma_j(\alpha) \colon \ 0 \le i < j \le w+1 \}$$

$$\Phi\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = \int_0^\infty \int_0^\infty \frac{\mathrm{d}\alpha_2 \, \mathrm{d}\alpha_3}{(1+\alpha_2+\alpha_3)(\alpha_2\alpha_3+z\bar{z}\alpha_3+(1-z)(1-\bar{z})\alpha_2)}$$

$$\Phi\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = \int_0^\infty \int_0^\infty \frac{\mathrm{d}\alpha_2 \, \mathrm{d}\alpha_3}{(1+\alpha_2+\alpha_3)(\alpha_2\alpha_3+z\bar{z}\alpha_3+(1-z)(1-\bar{z})\alpha_2)}$$

Singularities of the original integrand: $S = \{\psi, \varphi\}$, i.e. at $\alpha_3 = \sigma_i$ for

$$\sigma_1 = -1 - \alpha_2$$
 and $\sigma_2 = -\frac{\alpha_2(1-z)(1-\bar{z})}{\alpha_2 + z\bar{z}}$

$$\Phi\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = \int_0^\infty \int_0^\infty \frac{\mathrm{d}\alpha_2 \, \mathrm{d}\alpha_3}{(1+\alpha_2+\alpha_3)(\alpha_2\alpha_3+z\overline{z}\alpha_3+(1-z)(1-\overline{z})\alpha_2)}$$

Singularities of the original integrand: $S = \{\psi, \varphi\}$, i.e. at $\alpha_3 = \sigma_i$ for

$$\sigma_1 = -1 - \alpha_2$$
 and $\sigma_2 = -\frac{\alpha_2(1-z)(1-\bar{z})}{\alpha_2 + z\bar{z}}$

After integrating α_1 from 0 to ∞ , the integrand has singularities

$$S_{3} = \left\{\underbrace{1 + \alpha_{2}}_{\sigma_{1} = 0}, \underbrace{\alpha_{2}, 1 - z, 1 - \bar{z}}_{\sigma_{2} = 0}, \underbrace{\alpha_{2} + z\bar{z}}_{\sigma_{2} = \infty}, \underbrace{z + \alpha_{2}, \bar{z} + \alpha_{2}}_{\sigma_{1} = \sigma_{2}}\right\}$$

$$\Phi\left(\begin{array}{c} \Phi\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = \int_0^\infty \int_0^\infty \frac{\mathrm{d}\alpha_2 \, \mathrm{d}\alpha_3}{(1+\alpha_2+\alpha_3)(\alpha_2\alpha_3+z\overline{z}\alpha_3+(1-z)(1-\overline{z})\alpha_2)}$$

$$= \int_0^\infty \frac{\mathrm{d}\alpha_2}{(z+\alpha_2)(\overline{z}+\alpha_2)} \log \frac{(1+\alpha_2)(z\overline{z}+\alpha_2)}{(1-z)(1-\overline{z})\alpha_2}$$

Singularities of the original integrand: $S = \{\psi, \varphi\}$, i.e. at $\alpha_3 = \sigma_i$ for

$$\sigma_1 = -1 - \alpha_2$$
 and $\sigma_2 = -\frac{\alpha_2(1-z)(1-\bar{z})}{\alpha_2 + z\bar{z}}$

After integrating α_1 from 0 to ∞ , the integrand has singularities

$$S_{3} = \left\{ \underbrace{1 + \alpha_{2}}_{\sigma_{1} = 0}, \underbrace{\alpha_{2}, 1 - z, 1 - \bar{z}}_{\sigma_{2} = 0}, \underbrace{\alpha_{2} + z\bar{z}}_{\sigma_{2} = \infty}, \underbrace{z + \alpha_{2}, \bar{z} + \alpha_{2}}_{\sigma_{1} = \sigma_{2}} \right\}$$

$$\Phi\left(\begin{array}{c} \Phi\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = \int_0^\infty \int_0^\infty \frac{\mathrm{d}\alpha_2 \, \mathrm{d}\alpha_3}{(1+\alpha_2+\alpha_3)(\alpha_2\alpha_3+z\overline{z}\alpha_3+(1-z)(1-\overline{z})\alpha_2)}$$

$$= \int_0^\infty \frac{\mathrm{d}\alpha_2}{(z+\alpha_2)(\overline{z}+\alpha_2)} \log \frac{(1+\alpha_2)(z\overline{z}+\alpha_2)}{(1-z)(1-\overline{z})\alpha_2}$$

Singularities of the original integrand: $S = \{\psi, \varphi\}$, i.e. at $\alpha_3 = \sigma_i$ for

$$\sigma_1 = -1 - \alpha_2$$
 and $\sigma_2 = -\frac{\alpha_2(1-z)(1-\bar{z})}{\alpha_2 + z\bar{z}}$

After integrating α_1 from 0 to ∞ , the integrand has singularities

$$S_{3} = \left\{ \underbrace{1 + \alpha_{2}}_{\sigma_{1} = 0}, \underbrace{\alpha_{2}, 1 - z, 1 - \overline{z}}_{\sigma_{2} = 0}, \underbrace{\alpha_{2} + z\overline{z}}_{\sigma_{2} = \infty}, \underbrace{z + \alpha_{2}, \overline{z} + \alpha_{2}}_{\sigma_{1} = \sigma_{2}} \right\}$$

With the same logic, predict the possible singularities after $\int_0^\infty d\alpha_2$:

$$S_{3,2} = \{z, \bar{z}, 1-z, 1-\bar{z}, z-\bar{z}, z\bar{z}-1\}$$

Singularities of the original integrand: $S = \{\psi, \varphi\}$, i.e. at $\alpha_3 = \sigma_i$ for

$$\sigma_1 = -1 - \alpha_2$$
 and $\sigma_2 = -\frac{\alpha_2(1-z)(1-\overline{z})}{\alpha_2 + z\overline{z}}$

After integrating α_1 from 0 to ∞ , the integrand has singularities

$$S_{3} = \left\{\underbrace{1 + \alpha_{2}}_{\sigma_{1} = 0}, \underbrace{\alpha_{2}, 1 - z, 1 - \bar{z}}_{\sigma_{2} = 0}, \underbrace{\alpha_{2} + z\bar{z}}_{\sigma_{2} = \infty}, \underbrace{z + \alpha_{2}, \bar{z} + \alpha_{2}}_{\sigma_{1} = \sigma_{2}}\right\}$$

With the same logic, predict the possible singularities after $\int_0^\infty d\alpha_2$:

$$S_{3,2} = \{z, \bar{z}, 1-z, 1-\bar{z}, z-\bar{z}, z\bar{z}-1\}$$

Singularities of the original integrand: $S = \{\psi, \varphi\}$, i.e. at $\alpha_3 = \sigma_i$ for

$$\sigma_1 = -1 - \alpha_2$$
 and $\sigma_2 = -rac{lpha_2(1-z)(1-ar{z})}{lpha_2 + zar{z}}$

After integrating α_1 from 0 to ∞ , the integrand has singularities

$$S_{3} = \big\{\underbrace{1+\alpha_{2}}_{\sigma_{1}=0}, \underbrace{\alpha_{2}, 1-z, 1-\bar{z}}_{\sigma_{2}=0}, \underbrace{\alpha_{2}+z\bar{z}}_{\sigma_{2}=\infty}, \underbrace{z+\alpha_{2}, \bar{z}+\alpha_{2}}_{\sigma_{1}=\sigma_{2}}\big\}$$

With the same logic, predict the possible singularities after $\int_0^\infty d\alpha_2$:

$$S_{3,2} = \{z, \bar{z}, 1-z, 1-\bar{z}, z-\bar{z}, z\bar{z}-1\}$$

Definition (Polynomial reduction [Brown])

Let S denote a set of polynomials, then S_{e} are the irreducible factors of

$$\left\{ \operatorname{lead}_e(f), \left. f \right|_{\alpha_e = 0} \colon \right. \left. f \in S \right\} \quad \text{and} \quad \left\{ [f, g]_e \colon \left. f, g \in S \right\}.$$

Lemma (approximation of Landau varieties)

If the singularities of F are cointained in S, then the singularities of $\int_0^\infty F \, d\alpha_e$ are contained in S_e. Goal: bounds as tight as possible

Definition (Polynomial reduction [Brown])

Let S denote a set of polynomials, then S_e are the irreducible factors of

$$\left\{ \left[\mathsf{lead}_e(f), \, f \right]_{\alpha_e = 0} \colon \ f \in S \right\} \quad \text{and} \quad \left\{ [f, g]_e \colon \ f, g \in S \right\}.$$

Lemma (approximation of Landau varieties)

If the singularities of F are cointained in S, then the singularities of $\int_0^\infty F \, d\alpha_e$ are contained in S_e . Goal: bounds as tight as possible

This gives only very coarse upper bounds. For example, $z\bar{z}-1$ is spurious: It drops out in $S_{2,3}\cap S_{3,2}=\{z,\bar{z},1-z,1-\bar{z},z-\bar{z}\}$ because

$$S_{2,3} = \{z, \bar{z}, 1-z, 1-\bar{z}, z-\bar{z}, z\bar{z}-z-\bar{z}\}.$$

Improvements

- Fubini algorithm [Brown]: intersect over different orders
- Compatibility graphs [Brown, Panzer]

Compatibility graphs

Keep track of compatibilities $C \subset \binom{S}{2}$ between polynomials:

- ullet start with the complete graph ψ —— arphi
- in S_e , only take resultants $[f,g]_e$ for compatible $\{f,g\}\in C$
- in C_e , only pairs $[f,g]_e \longrightarrow [g,h]_e$ become compatible

Compatibility graphs

Keep track of compatibilities $C \subset \binom{S}{2}$ between polynomials:

- ullet start with the complete graph ψ —— φ
- in S_e , only take resultants $[f,g]_e$ for compatible $\{f,g\} \in C$
- in C_e , only pairs $[f,g]_e \longrightarrow [g,h]_e$ become compatible

Compatibility graphs

Keep track of compatibilities $C \subset \binom{S}{2}$ between polynomials:

- ullet start with the complete graph ψ —— φ
- in S_e , only take resultants $[f,g]_e$ for compatible $\{f,g\}\in C$
- in C_e , only pairs $[f,g]_e \longrightarrow [g,h]_e$ become compatible

 $z\bar{z}\alpha_1 + \alpha_2$ and $\alpha_1 + \alpha_2$ not compatible \Rightarrow no resultant $1 - z\bar{z}$ in $(S, C)_{3,2}$

Problem for multiple integrals

If some $\sigma_i(\alpha) - \sigma_j(\alpha)$ does not factorize linearly in α , the transformation to $G(\cdots; \alpha)$ introduces algebraic letters.

Definition

If for some order of variables (edges), all $S_{1,\dots,k}$ are linear in α_{k+1} , then S (the Feynman graph G with $S=\{\psi,\varphi\}$) is called linearly reducible.

Write
$$\mathcal{O}(S)=\mathbb{Q}[\vec{lpha},f^{-1}\colon f\in S]$$
 and

$$\mathsf{MPL}(S) = \mathcal{O}(S) \otimes \mathsf{lin}_{\mathbb{Q}} \left\{ \mathsf{iterated integrals of} \ \mathrm{d} \ \mathsf{log}(f) \mathsf{'s} \ (f \in S) \right\}.$$

Lemma (algorithmic)

If S is linearly reducible and $f_0 \in MPL(S)$, then

$$\int_0^\infty \cdots \int_0^\infty f_0 \, d\alpha_1 \cdots \alpha_N \in MPL(S_{1,\dots,N}) \otimes_{\mathbb{Q}} \mathbb{C}.$$

$$-G(0,-\alpha;1) = G(0,0;\alpha) - G(0,-1;\alpha) - \zeta_2$$

$$\operatorname{Li}_2(-1/\alpha) = \frac{1}{2} \log^2(\alpha) + \operatorname{Li}_2(-\alpha) - \zeta_2$$

$$\operatorname{Li}_2(-1/\alpha) = \frac{1}{2} \log^2(\alpha) + \operatorname{Li}_2(-\alpha) - \zeta_2$$

<u>Le</u>mma

All hyperlogarithms $G(\vec{\sigma}; \alpha)$, $\partial_{\alpha} \vec{\sigma} = 0$, are linearly independent over $\overline{\mathbb{C}(\alpha)}$.

$$\operatorname{Li}_{2}(-1/\alpha) = \frac{1}{2} \log^{2}(\alpha) + \operatorname{Li}_{2}(-\alpha) - \zeta_{2}$$

Lemma

All hyperlogarithms $G(\vec{\sigma}; \alpha)$, $\partial_{\alpha} \vec{\sigma} = 0$, are linearly independent over $\overline{\mathbb{C}(\alpha)}$.

The recursive algorithm (differentiation & integration & limits) solves

Problem: Bases for MPL

Given some MPL $G(\vec{\sigma}(\vec{\alpha}), z(\vec{\alpha}))$ or $\text{Li}_{\vec{n}}(\vec{z}(\vec{\alpha}))$ whose arguments $(\vec{\sigma}, z \text{ or } \vec{z})$ are rational functions of variables $\alpha_1, \ldots, \alpha_n$, write it in the basis

$$\sum_{\vec{\sigma}_1,\ldots,\vec{\sigma}_n} G(\vec{\sigma}_1(\alpha_2,\ldots,\alpha_n);\alpha_1) G(\vec{\sigma}_2(\alpha_3,\ldots,\alpha_n);\alpha_2) \cdots G(\vec{\sigma}_n;\alpha_n).$$

$$\operatorname{Li}_{2}(-1/\alpha) = \frac{1}{2} \log^{2}(\alpha) + \operatorname{Li}_{2}(-\alpha) - \zeta_{2}$$

Lemma

All hyperlogarithms $G(\vec{\sigma}; \alpha)$, $\partial_{\alpha} \vec{\sigma} = 0$, are linearly independent over $\overline{\mathbb{C}(\alpha)}$.

The recursive algorithm (differentiation & integration & limits) solves

Problem: Bases for MPL

Given some MPL $G(\vec{\sigma}(\vec{\alpha}), z(\vec{\alpha}))$ or $\text{Li}_{\vec{n}}(\vec{z}(\vec{\alpha}))$ whose arguments $(\vec{\sigma}, z \text{ or } \vec{z})$ are rational functions of variables $\alpha_1, \ldots, \alpha_n$, write it in the basis

$$\sum_{\vec{\sigma}_1,\ldots,\vec{\sigma}_n} G(\vec{\sigma}_1(\alpha_2,\ldots,\alpha_n);\alpha_1) G(\vec{\sigma}_2(\alpha_3,\ldots,\alpha_n);\alpha_2) \cdots G(\vec{\sigma}_n;\alpha_n).$$

- completely symbolic (no numerics)
- dependens on order of the variables $\alpha_1, \ldots, \alpha_n$
- in general not the shortest or "simplest" representation
- allows for symbolic verification of MPL identities

- Maple
- Manual.ws
- open source: https://bitbucket.org/PanzerErik/hyperint
- polynomial reduction
- integration of hyperlogarithms
- transformations of MPL to $G(\cdots; \alpha_1) \cdots G(\cdots; \alpha_N)$ -basis
- symbolic computation of constants (MZV and alternating sums)
- Feynman graph polynomials

Example

- > read "HyperInt.mpl":
- > hyperInt(polylog(2,-x)*polylog(3,-1/x)/x,x=0..infinity):
- > fibrationBasis(%);

$$\frac{8}{7}\zeta_2^3$$

computes $\int_0^\infty \text{Li}_2(-x) \, \text{Li}_3(-1/x) dx = \frac{8}{7} \zeta_2^3$.

Sometimes a linearly reducible order is obvious, like for

$$\int_{0 < t_1 < \dots < t_5 < 1} \frac{\mathrm{d} t_1 \cdots \mathrm{d} t_5}{(1 - t_1)(1 - t_2)t_3(t_4 - t_2)(t_5 - t_3)t_5} = \frac{6}{5} \zeta_2^2 = \frac{\pi^4}{30}$$

- > hyperInt(1/(1-t1)/(1-t2)/t3/(t4-t2)/(t5-t3)/t5, [t1=0..t2,t2=0..t3,t3=0..t4,t4=0..t5,t5=0..1]):
- > fibrationBasis(%);

$$\frac{6}{5}\zeta_2^2$$

In complicated cases, one first computes a polynomial reduction to check if a linearly reducible order exists. Both, polynomial reduction and integration can be parallelized manually.

$$\Phi\left(\begin{array}{c} & \\ & \\ \end{array}\right) = \frac{92943}{160}\zeta_{11} + \frac{3381}{20}\left(\zeta_{3,5,3} - \zeta_{3,5}\zeta_3\right) - \frac{1155}{4}\zeta_3^2\zeta_5 \\
& + 896\zeta_3\left(\frac{27}{80}\zeta_{3,5} + \frac{45}{64}\zeta_3\zeta_5 - \frac{261}{320}\zeta_8\right)$$

HyperInt: triangle

```
Graph polynomials:
> E:=[[1,2],[2,3],[3,1]]:
> M:=[[3,1],[1,z*zz],[2,(1-z)*(1-zz)]]:
> psi:=graphPolynomial(E):
> phi:=secondPolynomial(E,M):
Integration:
> hyperInt(eval(1/psi/phi,x[3]=1),[x[1],x[2]]):
> factor(fibrationBasis(%,[z,zz]));
          (G(z; 1) G(zz; 0) - G(z; 0) G(zz; 1) + G(zz; 0, 1)
           -G(zz; 1, 0) + G(z; 1, 0) - G(z; 0, 1))/(z - zz)
Polynomial reduction:
> L[{}]:=[{psi,phi}, {{psi,phi}}]:
> cgReduction(L):
> L[\{x[1],x[2]\}][1]:
                    \{-1+z, -1+zz, -zz+z\}
```


Linearly reducible families (fixed loop order)

■ all ≤ 4 loop massless propagators [Panzer]

Linearly reducible families (fixed loop order)

■ all ≤ 4 loop massless propagators [Panzer]

 $oldsymbol{0}$ all \leq 3 loop massless off-shell 3-point [Chavez & Duhr, Panzer]

Linearly reducible families (fixed loop order)

■ all ≤ 4 loop massless propagators [Panzer]

 $oldsymbol{0}$ all \leq 3 loop massless off-shell 3-point [Chavez & Duhr, Panzer]

3 all \leq 2 loop massless on-shell 4-point [Lüders]

• 3-constructible graphs [Brown, Schnetz, Panzer]

• 3-constructible graphs [Brown, Schnetz, Panzer]

Theorem [Panzer]

All ϵ -coefficients of these graphs (off-shell) are MPL over the alphabet $\{z, \bar{z}, 1-z, 1-\bar{z}, z-\bar{z}, 1-z\bar{z}, 1-z-\bar{z}, z\bar{z}-z-\bar{z}\}.$

3-constructible graphs [Brown, Schnetz, Panzer]

Theorem [Panzer]

All ϵ -coefficients of these graphs (off-shell) are MPL over the alphabet $\{z, \bar{z}, 1-z, 1-\bar{z}, z-\bar{z}, 1-z\bar{z}, 1-z-\bar{z}, z\bar{z}-z-\bar{z}\}.$

• minors of ladder-boxes (≤ 2 legs massive)

Theorem [Panzer]

All ϵ -coefficients of these graphs are MPL. For the massless case, the alphabet is just $\{x, 1+x\}$ for x=s/t.

Linear reducibility: Forest functions

Minors of ladder boxes are closed under the operations

Example

Theorem,

All minors of ladder boxes (with $p_1^2 = p_2^2 = 0$) evaluate to MPL.

Summary

• hyperlogarithms are very suitable for computer algebra

- hyperlogarithms are very suitable for computer algebra
- Maple implementation HyperInt

- hyperlogarithms are very suitable for computer algebra
- Maple implementation HyperInt
- polynomial reduction

- hyperlogarithms are very suitable for computer algebra
- Maple implementation HyperInt
- polynomial reduction
- requires linear reducibility! Counterexample:

$$\int_0^\infty\!\int_0^\infty \frac{\mathrm{d} x \, \mathrm{d} y}{xyz + (1+x+y)(x+y+xy)}$$

- hyperlogarithms are very suitable for computer algebra
- Maple implementation HyperInt
- polynomial reduction
- requires linear reducibility! Counterexample:

$$\int_0^\infty \int_0^\infty \frac{\mathrm{d} x \, \mathrm{d} y}{xyz + (1+x+y)(x+y+xy)}$$

 possible extension: algebraic functions in the differential forms (root-valued letters)

- hyperlogarithms are very suitable for computer algebra
- Maple implementation HyperInt
- polynomial reduction
- requires linear reducibility! Counterexample:

$$\int_0^\infty\!\int_0^\infty \frac{\mathrm{d} x \, \mathrm{d} y}{xyz + (1+x+y)(x+y+xy)}$$

- possible extension: algebraic functions in the differential forms (root-valued letters)
- Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by "looking at the graph"

- hyperlogarithms are very suitable for computer algebra
- Maple implementation HyperInt
- polynomial reduction
- requires linear reducibility! Counterexample:

$$\int_0^\infty\!\int_0^\infty \frac{\mathrm{d} x \, \mathrm{d} y}{xyz + (1+x+y)(x+y+xy)}$$

- possible extension: algebraic functions in the differential forms (root-valued letters)
- Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by "looking at the graph"
 - extremely difficult

- hyperlogarithms are very suitable for computer algebra
- Maple implementation HyperInt
- polynomial reduction
- requires linear reducibility! Counterexample:

$$\int_0^\infty\!\int_0^\infty \frac{\mathrm{d} x \, \mathrm{d} y}{xyz + (1+x+y)(x+y+xy)}$$

- possible extension: algebraic functions in the differential forms (root-valued letters)
- Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by "looking at the graph"
 - extremely difficult
 - so far, only very few results

- hyperlogarithms are very suitable for computer algebra
- Maple implementation HyperInt
- polynomial reduction
- requires linear reducibility! Counterexample:

$$\int_0^\infty\!\int_0^\infty \frac{\mathrm{d} x \, \mathrm{d} y}{xyz + (1+x+y)(x+y+xy)}$$

- possible extension: algebraic functions in the differential forms (root-valued letters)
- Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by "looking at the graph"
 - extremely difficult
 - so far, only very few results
 - but some infinite families

- hyperlogarithms are very suitable for computer algebra
- Maple implementation HyperInt
- polynomial reduction
- requires linear reducibility! Counterexample:

$$\int_0^\infty\!\int_0^\infty \frac{\mathrm{d} x \, \mathrm{d} y}{xyz + (1+x+y)(x+y+xy)}$$

- possible extension: algebraic functions in the differential forms (root-valued letters)
- Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by "looking at the graph"
 - extremely difficult
 - so far, only very few results
 - but some infinite families

- hyperlogarithms are very suitable for computer algebra
- Maple implementation HyperInt
- polynomial reduction
- requires linear reducibility! Counterexample:

$$\int_0^\infty\!\int_0^\infty \frac{\mathrm{d} x \, \mathrm{d} y}{xyz + (1+x+y)(x+y+xy)}$$

- possible extension: algebraic functions in the differential forms (root-valued letters)
- Holy grail: Infer analytic structure of a FI from combinatorial structure, i.e. by "looking at the graph"
 - extremely difficult
 - so far, only very few results
 - but some infinite families

Thank you!