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o Feynman graph G +~ Feynman integral ®(G,{m?,p; - p;})
@ compute more graphs Y- ®(G) = higher precision



Problems:
Q@ o(G) extremely complicated

Zﬁ) polylogarithms, iterated elliptic integrals, modular forms,
K3 surfaces, Calabi-Yau manifolds, . ..

Q > ;9(G)=00
= factorial growth A - nl - c" - n®, resummation,
Borel transformation, resurgence, . ..
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Simplifications:

@ integrable models
= ®(G) simplify somewhat, full 3" ; ®(G), convergent expansion

@ truncated Dyson-Schwinger equations
zj) factorial growth possible, sums very restricted class of diagrams

© tropical limit
=D all ®(G) simplify drastically, asymptotics unchanged
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not spanning not connected has a loop

Definition
A spanning tree T C G is a spanning, simply connected subgraph.




Definition

The graph polynomial ¢ and Feynman period of G are

U= > J]x and P(G):(

TEST(G) e¢T

G_@ ~ U=x+x and 7><<>>_/0 Troy =1




Definition

The graph polynomial ¢/ and Feynman period of G are

U= > J]x and P(G):(

TeST(G) e¢T

o o N o0 dX2 N
G_G = U=xi+x and P(©>_/O Troy =1

@ contribute to the S-function
ﬁ) renormalization constants, running coupling, critical exponents

@ very hard to compute, even numerically

P =

/ dxodxzdxadxsdxe
RS (x1x2x3 + 15 more terms)?|,, —1

<1
= 6((3) =6 —
n=1




Only one infinite family of periods is known in ¢*:

Theorem (Brown & Schnetz 2012)

P(22,) = 4% (- 232 czn - 3)

conjectured by Broadhurst & Kreimer
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@ > 1000 periods are known in ¢* [Broadhurst, Kreimer, Schnetz, Panzer]

@ complete only up to 7 loops



Hepp bound

1(G) = (

H/ dxe where  Umax = max H Xe

e>1 > max’X1 1 e¢T

Example:

" <G> B /0OO (max{l x2})? / b +/ dX2 B



Hepp bound

H(G) = <H/ dxe> ——— where Unax = max H Xe
e>1 max|X1 1

e¢T

Example:

" <Q> B /0oo (max{l x2})? / b +/ dX2 B

Properties:
o H(G) > P(G) > H(G)/|ST(G ):j} same asymptotics up to O(c?)
H(G) € Q>0
computable for all G
correlates with P(G)

respects symmetries of P(G)

generalizes to ®(G, m2, p; - p;)



w(ye) = |yl —2¢

|71

v\l |G\ vl

NCY2CCye=G
each ~; is 1PI

w(y1) - - w(ye-1)

summand # >
321
=H <®> =84
411
S =2 6 12




7 loops in ¢*:

G P(G\v) H(G\v)
P71 527.7 190952
Pa1 - Paz 430.1 163592
P31 Ps1 400.9 155484
P72 380.9 149426
P31-Ps31- P31 375.2 148176
P73 336.1 136114
{P7.4,P77} 204.0 123260
P76 273.5 116860
{P75,P710} 254.8 110864
P79 216.9 98568
P7.11 200.4 02084

Prg 183.0 87088
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Michael Borinsky:
Tropical Monte Carlo quadrature for Feynman integrals

):) numeric evaluation at large loop orders




When is P(G1) = P(Gp)? I







© Completion: P(G\v) =P(G\w)




Construct simpler graph invariants with those symmetries. I

@ point count [Schnetz]

o (p) = plz {7 € @/p2)": uz)=0}| mod p

@ extended graph permanent [Crump]

p 2 3 5 7 11 13 17 19 23

op) 1 01 1 1 -1 1 -1 1

Perm(p) 01 1 1 11 5 0 22
O H (e Q)
Q # {minimal 6-cuts} (e z)

@ O(—2) symmetry factor (e Z)



Conjecture (¢*)
H(G1) = H(G2) & P(G1) = P(G2)




Conjecture (¢*)
H(G1) = H(G2) & P(G1) = P(G2)

Example:
o H(Pg30) = 1725% = H(Ps 36)
@ P(Pg30) ~ 505.5 ~ P(Ps36) (exact period unknown)
P = P ?

ﬁ) there are further symmetries of Feynman integrals



Spanning tree polytope and its polar (relevant for sector decomposition):

Vr=T—Tece{l,-1}F
Ng=conv{Vr: T ST} c RFe
Ne= ) {53 3-vr<1}

TeST

The Hepp bound is the volume of the polar polytope
H(G) = (Eg — 1)!- Vol (Ng N {a1 = 0})
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TeST

The Hepp bound is the volume of the polar polytope
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Facets of N¢/vertices of V¢ are indexed by subgraphs:
{y C G: v and G/ are 2-vertex connected}
Factorisation of the facets:
NeN{7-d=w} =N, x/\/’G/V

Roughly, N looks like a cube, and N¢ is a cross-polytope: very “spikey”
and all volume concentrated near the centre.



Multivariate version & canonical form

Now consider arbitrary indices:

(el;[l / X2~ 1dxe>

The dimension is fixed by w(G) = Y, ae —

D2,

max |><1 1

(D/2) - £(G) = 0.

Example
The flag formula generalizes to this case, e.g.

(a1 + a2 + a3)as

1
H 4:3 | = L x{

dijdodisaa

(a1 + a2 + as)a3

al+az+a3—D/2

(a3 + as)(a1 + a2)

at+a+ar—DJ2

az+as— D/2

}

v




Consider the Hepp bound #(G:; 3):
@ it is a rational function in 3
@ it has simple poles

@ at hyperplanes w(+y) = 0 for 1Pl subgraphs

Factorization of residues

Reio’H(G; a) = H(y: ay)‘w(v):o -H(G/v; aG/'y)‘w(

(v G/v)=0

| E
T
\

Example: edge contraction

Res 4(G; 3) = H(G/ei 3c/e)

v

@ it is the volume of a polytope:
H(G;3) = (E—1)!-Vol (Mo + (3 1)) n{a =0})

= canonical form



@ There is a rational version of Feynman periods.
@ It captures identities and gives numeric estimates.
@ Volume of a polytope with factorizing residues.

@ Generalizes to matroids.

@ add kinematics

dimensional regularization
renormalization
tropical field theory

asymptotics

numerics for Feynman integrals

.




Theorem (Brown & Schnetz)

P(ZZ0) = 4% <1 — %) ¢(2n—3) ~ n%.

e R - TP

Theorem (Panzer)

The Hepp bound of 77, is the coefficient of x" in the power series
5x + 28 2 1 /1-09x 5 5
— - = — 4x“ log(1 — x°).
3 1+x x l—X] x“log(1 —x7)

37 9" 9"

1
(1 — x)(5x + 3)

Asymptotics:

H(ZZn)



Hepp-Period correlation
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