Tropical field theory

Erik Panzer

Royal Society University Research Fellow (Oxford)

15th November 2021 ESI Vienna

Perturbative Quantum Field Theory

Perturbative Quantum Field Theory

Perturbative Quantum Field Theory

Perturbative Quantum Field Theory Feynman graphs

- Feynman graph $G \mapsto$ Feynman integral $\Phi(G, \{m_i^2, \vec{p}_i \cdot \vec{p}_j\})$
- compute more graphs $\sum_G \Phi(G) \Rightarrow$ higher precision

Problems:

- \bullet $\Phi(G)$ extremely complicated
 - polylogarithms, iterated elliptic integrals, modular forms, K3 surfaces, Calabi-Yau manifolds, . . .
- ② $\sum_{G} \Phi(G) = \infty$ \Longrightarrow factorial growth $A \cdot n! \cdot c^{n} \cdot n^{\alpha}$, resummation, Borel transformation, resurgence, . . .

Problems:

- \bullet $\Phi(G)$ extremely complicated
 - polylogarithms, iterated elliptic integrals, modular forms, K3 surfaces, Calabi-Yau manifolds, . . .
- - factorial growth $A \cdot n! \cdot c^n \cdot n^{\alpha}$, resummation, Borel transformation, resurgence, . . .

perturbation series are very poorly understood in QCD, QED, ϕ^4

Problems:

- \bullet $\Phi(G)$ extremely complicated
 - polylogarithms, iterated elliptic integrals, modular forms, K3 surfaces, Calabi-Yau manifolds, . . .
- - factorial growth $A \cdot n! \cdot c^n \cdot n^{\alpha}$, resummation, Borel transformation, resurgence, . . .

perturbation series are very poorly understood in QCD, QED, ϕ^4

Simplifications:

- integrable models
 - $\Phi(G)$ simplify somewhat, full $\sum_G \Phi(G)$, convergent expansion
- 2 truncated Dyson-Schwinger equations
 - factorial growth possible, sums very restricted class of diagrams
- tropical limit
 - \Rightarrow all $\Phi(G)$ simplify drastically, asymptotics unchanged

Definition

A spanning tree $T \subset G$ is a spanning, simply connected subgraph.

$$ST\left(\begin{array}{c} \\ \\ \\ \end{array} \right), \begin{array}{c} \\ \\ \end{array} \right), \ldots$$

Definition

The graph polynomial $\mathcal U$ and Feynman period of G are

$$\mathcal{U} = \sum_{T \in \mathsf{ST}(G)} \prod_{e \notin T} x_e \qquad \text{and} \qquad \mathcal{P}(G) = \left(\prod_{e > 1} \int_0^\infty \! \mathrm{d} x_e \right) \frac{1}{\mathcal{U}^2|_{x_1 = 1}}$$

$$G = \bigoplus$$
 \Rightarrow $\mathcal{U} = x_1 + x_2$ and $\mathcal{P}\left(\bigoplus\right) = \int_0^\infty \frac{\mathrm{d}x_2}{(1+x_2)^2} = 1$

Definition

The graph polynomial \mathcal{U} and Feynman period of G are

$$\mathcal{U} = \sum_{T \in \mathsf{ST}(G)} \prod_{e \notin T} x_e \qquad \text{and} \qquad \mathcal{P}(G) = \left(\prod_{e > 1} \int_0^\infty \! \mathrm{d} x_e \right) \frac{1}{\mathcal{U}^2|_{x_1 = 1}}$$

$$G = \bigoplus$$
 \Rightarrow $\mathcal{U} = x_1 + x_2$ and $\mathcal{P}\left(\bigoplus\right) = \int_0^\infty \frac{\mathrm{d}x_2}{(1+x_2)^2} = 1$

- contribute to the β -function renormalization constants, running coupling, critical exponents
- very hard to compute, even numerically

Example

$$\mathcal{P}\left(\begin{array}{c} \\ \\ \end{array}\right)$$

$$= \int \frac{\mathrm{d}x_2 \mathrm{d}x_3 \mathrm{d}x_4 \mathrm{d}x_5 \mathrm{d}x_6}{\mathrm{d}x_4 \mathrm{d}x_5 \mathrm{d}x_6}$$

Only one *infinite* family of periods is known in ϕ^4 :

Theorem (Brown & Schnetz 2012)

$$\mathcal{P}(ZZ_n) = 4 \frac{(2n-2)!}{n!(n-1)!} \left(1 - \frac{1 - (-1)^n}{2^{2n-3}}\right) \zeta(2n-3)$$

conjectured by Broadhurst & Kreimer

- ullet > 1000 periods are known in ϕ^4 [Broadhurst, Kreimer, Schnetz, Panzer]
- complete only up to 7 loops

Hepp bound

$$\mathcal{H}(G) = \left(\prod_{e>1} \int_0^\infty \!\! \mathrm{d} x_e\right) \frac{1}{\mathcal{U}_{\mathsf{max}}^2|_{x_1=1}} \quad \text{where} \quad \mathcal{U}_{\mathsf{max}} = \max_{T \in \mathsf{ST}} \prod_{e \notin T} x_e$$

Example:

$$\mathcal{H}\left(\bullet\right) = \int_0^\infty \frac{\mathrm{d}x_2}{\left(\max\{1, x_2\}\right)^2} = \int_0^1 \mathrm{d}x_2 + \int_1^\infty \frac{\mathrm{d}x_2}{x_2^2} = 2$$

Hepp bound

$$\mathcal{H}(G) = \left(\prod_{e>1}\int_0^\infty\!\!\mathrm{d}x_e
ight)rac{1}{\mathcal{U}_{\mathsf{max}}^2|_{x_1=1}}\quad \mathsf{where}\quad \mathcal{U}_{\mathsf{max}} = \max_{T\in\mathsf{ST}}\prod_{e
eq T}x_e$$

Example:

$$\mathcal{H}\left(\bullet\right) = \int_0^\infty \frac{\mathrm{d}x_2}{(\max\{1, x_2\})^2} = \int_0^1 \mathrm{d}x_2 + \int_1^\infty \frac{\mathrm{d}x_2}{x_2^2} = 2$$

Properties:

- $\mathcal{H}(G) > \mathcal{P}(G) > \mathcal{H}(G)/|\mathsf{ST}(G)|^2$ \Longrightarrow same asymptotics up to $\mathcal{O}(c^\ell)$
- $\mathcal{H}(G) \in \mathbb{Q}_{>0}$
- computable for all G
- correlates with $\mathcal{P}(G)$
- respects symmetries of $\mathcal{P}(G)$
- generalizes to $\Phi(G, m_e^2, p_i \cdot p_j)$

Theorem

$$\mathcal{H}(G) = \sum_{\substack{\gamma_1 \subset \gamma_2 \subset \cdots \subset \gamma_\ell = G \\ \mathsf{each} \; \gamma_i \; \mathsf{is} \; \mathsf{1PI}}} rac{|\gamma_1| \cdot |\gamma_2 \setminus \gamma_1| \cdots |G \setminus \gamma_{\ell-1}|}{\omega(\gamma_1) \cdots \omega(\gamma_{\ell-1})}$$

$$\mathcal{H}\left(\bigcirc\right) = 84$$

7 loops in ϕ^4 :

G	$\mathcal{P}(G \setminus v)$	$\mathcal{H}(G \setminus v)$
$P_{7,1}$	527.7	190952
$P_{4,1} \cdot P_{4,1}$	430.1	163592
$P_{3,1} \cdot P_{5,1}$	400.9	155484
$P_{7,2}$	380.9	149426
$P_{3,1} \cdot P_{3,1} \cdot P_{3,1}$	375.2	148176
$P_{7,3}$	336.1	136114
$\{P_{7,4}, P_{7,7}\}$	294.0	123260
$P_{7,6}$	273.5	116860
$\{P_{7,5}, P_{7,10}\}$	254.8	110864
$P_{7,9}$	216.9	98568
$P_{7,11}$	200.4	92984
P _{7,8}	183.0	87088

Michael Borinsky:

Tropical Monte Carlo quadrature for Feynman integrals

Symmetries

When is $\mathcal{P}(G_1) = \mathcal{P}(G_2)$?

Product:

$$\mathcal{P}\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right) = \mathcal{P}\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) \cdot \mathcal{P}\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$$

Example

$$\mathcal{P}\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = \mathcal{P}\left(\begin{array}{c} \\ \\ \end{array}\right)^2 = (6\zeta(3))$$

② Planar duality: $\mathcal{P}(G) = \mathcal{P}(G^{\text{dual}})$

3 Completion: $\mathcal{P}(G \setminus v) = \mathcal{P}(G \setminus w)$

Example

Twist:

Fourier split:

Construct simpler graph invariants with those symmetries.

Goal:

 $P_{7,11}$

3 H.

point count

$$c_2(
ho) = rac{1}{
ho^2} \left| \left\{ ec{x} \in (\mathbb{Z}/
ho\mathbb{Z})^{N} \colon \ \mathcal{U}(ec{x}) = 0
ight\}
ight| \mod
ho$$

extended graph permanent

{minimal 6-cuts}

0(-2) symmetry factor

$$\frac{1}{2(p)}$$
 1 0 1

[Schnetz]

[Crump]

$$(\in \mathbb{Q})$$

 $(\in \mathbb{Z})$

Conjecture (ϕ^4)

$$\mathcal{H}(G_1) = \mathcal{H}(G_2) \qquad \Leftrightarrow \qquad \mathcal{P}(G_1) = \mathcal{P}(G_2)$$

Conjecture (ϕ^4)

$$\mathcal{H}(G_1) = \mathcal{H}(G_2) \qquad \Leftrightarrow \qquad \mathcal{P}(G_1) = \mathcal{P}(G_2)$$

Example:

- $\mathcal{H}(P_{8,30}) = \frac{1724488}{3} = \mathcal{H}(P_{8,36})$
- $\mathcal{P}(P_{8,30}) \approx 505.5 \approx \mathcal{P}(P_{8,36})$

(exact period unknown)

$$\mathcal{P}\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) = \mathcal{P}\left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

there are further symmetries of Feynman integrals

Spanning tree polytope and its polar (relevant for sector decomposition):

$$ec{\mathbf{v}}_T = ec{T} - ec{T^c} \in \{1, -1\}^{E_G}$$
 $\mathcal{N}_G = \operatorname{conv}\left\{ ec{\mathbf{v}}_T \colon \ T \in \operatorname{ST} \right\} \subset \mathbb{R}^{E_G}$
 $\mathcal{N}_G^\circ = \bigcap_{T \in \operatorname{ST}} \left\{ ec{a} \colon \ ec{a} \cdot ec{\mathbf{v}}_T \leq 1 \right\}$

The Hepp bound is the volume of the polar polytope

$$\mathcal{H}(G) = (E_G - 1)! \cdot \mathsf{Vol}\left(\mathcal{N}_G^\circ \cap \{a_1 = 0\}\right)$$

Spanning tree polytope and its polar (relevant for sector decomposition): $\vec{v}_{\mathcal{T}} = \vec{T} - \vec{T^c} \in \{1, -1\}^{E_G}$

$$ec{\mathsf{v}}_T = T - T^c \in \{1, -1\}^{E_G}$$
 $\mathcal{N}_G = \operatorname{conv}\left\{ ec{\mathsf{v}}_T \colon T \in \mathsf{ST} \right\} \subset \mathbb{R}^{E_G}$
 $\mathcal{N}_G^\circ = \bigcap_{T \in \mathsf{ST}} \left\{ \vec{a} \colon \vec{a} \cdot \vec{\mathsf{v}}_T \leq 1 \right\}$

The Hepp bound is the volume of the polar polytope

$$\mathcal{H}(G) = (E_G - 1)! \cdot \mathsf{Vol}\left(\mathcal{N}_G^{\circ} \cap \{a_1 = 0\}\right)$$

Facets of $\mathcal{N}_G/\mathrm{vertices}$ of \mathcal{N}_G° are indexed by subgraphs:

$$\{\gamma \subset G\colon \ \gamma \ ext{and} \ G/\gamma \ ext{are 2-vertex connected}\}$$

Factorisation of the facets:

$$\mathcal{N}_{G} \cap \{ \vec{\gamma} \cdot \vec{a} = \omega_{\gamma} \} \cong \mathcal{N}_{\gamma} imes \mathcal{N}_{G/\gamma}$$

Roughly, \mathcal{N}_G looks like a cube, and \mathcal{N}_G° is a cross-polytope: very "spikey" and all volume concentrated near the centre.

Multivariate version & canonical form

Now consider arbitrary indices:

$$\mathcal{H}(G; \vec{a}) := \left(\prod_{e>1} \int_0^\infty x_e^{a_e - 1} \mathrm{d}x_e\right) \frac{1}{\mathcal{U}_{\mathsf{max}}^{D/2}|_{\mathsf{x}_1 = 1}}$$

The dimension is fixed by $\omega(G) = \sum_{e} a_{e} - (D/2) \cdot \ell(G) \stackrel{!}{=} 0$.

Example

The flag formula generalizes to this case, e.g.

$$\mathcal{H}\left(\underbrace{3}_{2}\right) = \frac{1}{a_{1}a_{2}a_{3}a_{4}} \times \left\{ \frac{(a_{1} + a_{2} + a_{3})a_{4}}{a_{1} + a_{2} + a_{3} - D/2} + \frac{(a_{1} + a_{2} + a_{4})a_{3}}{a_{1} + a_{2} + a_{4} - D/2} + \frac{(a_{3} + a_{4})(a_{1} + a_{2})}{a_{3} + a_{4} - D/2} \right\}$$

Consider the Hepp bound $\mathcal{H}(G; \vec{a})$:

- it is a rational function in \vec{a}
- it has simple poles
- ullet at hyperplanes $\omega(\gamma)=0$ for 1PI subgraphs γ

Factorization of residues

$$\operatorname{Res}_{\omega(\gamma)=0} \mathcal{H}(G; \vec{a}) = \mathcal{H}(\gamma; \vec{a}_{\gamma}) \Big|_{\omega(\gamma)=0} \cdot \mathcal{H}(G/\gamma; \vec{a}_{G/\gamma}) \Big|_{\omega(G/\gamma)=0}$$

Example: edge contraction

$$\operatorname{Res}_{a_e=0} \mathcal{H}(G; \vec{a}) = \mathcal{H}(G/e; \vec{a}_{G/e})$$

• it is the volume of a polytope:

$$\mathcal{H}(\mathit{G}; ec{\mathit{a}}) = (\mathit{E}-1)! \cdot \mathsf{Vol}\left(\left(\mathcal{N}_{\mathit{G}} + (ec{\mathit{a}} - ec{1})\right)^{\circ} \cap \{\mathit{a}_{1} = 0\}\right)$$

⇒ canonical form

Summary

- There is a rational version of Feynman periods.
- It captures identities and gives numeric estimates.
- Volume of a polytope with factorizing residues.
- Generalizes to matroids.

Outlook

- add kinematics
- dimensional regularization
- renormalization
- tropical field theory
- asymptotics
- numerics for Feynman integrals

Theorem (Brown & Schnetz)

$$\mathcal{P}(\mathrm{ZZ}_n) = 4 \frac{(2n-2)!}{n!(n-1)!} \left(1 - \frac{1 - (-1)^n}{2^{2n-3}} \right) \zeta(2n-3) \sim \frac{4^n}{n\sqrt{\pi n}}.$$

Theorem (Panzer)

The Hepp bound of ZZ_n is the coefficient of x^n in the power series

$$\frac{1}{(1-x)(5x+3)}\left[\frac{5x+28}{3}-\frac{2}{1+x}-\frac{1}{x}\sqrt{\frac{1-9x}{1-x}}\right]-4x^2\log(1-x^2).$$

Asymptotics:

$$\mathcal{H}(\mathrm{ZZ}_n) \sim \frac{3^7}{2^{10}\sqrt{2\pi}} \frac{9^n}{n^{3/2}} \approx 0.852 \frac{9^n}{n^{3/2}}.$$

Hepp-Period correlation

