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Abstract. The aim of the present paper is to introduce a first order approach to the abstract
concept of boundary triples for Laplace operators. Our main application is the Laplace operator
on a manifold with boundary; a case in which the ordinary concept of boundary triples does not
apply directly. In our first order approach, we show that we can use the usual boundary operators
also in the abstract Green’s formula. Another motivation for the first order approach is to give
an intrinsic definition of the Dirichlet-to-Neumann map and intrinsic norms on the corresponding
boundary spaces. We also show how the first order boundary triples can be used to define a usual
boundary triple leading to a Dirac operator. In memoriam Vladimir A. Geyler (1943-2007)

1. Introduction

The concept of boundary triples, originally introduced in [V63], has successfully be applied to the
theory of self-adjoint extensions of symmetric operators, for example on quantum graphs, singular
perturbations or point interactions on manifolds (see e.g. [BGP08]). For a general treatment of
boundary triples we refer to [BGP08, DHMdS06] and the references therein.

Our main purpose here is not to characterise all self-adjoint extensions of a given symmetric
operator, but to show that the concept of boundary triples can also be used in the PDE case,
namely to Laplacians on a manifold with boundary. The standard theory of boundary triples does
not directly apply in this case, since Green’s formula

∫

X

∆fg dx−
∫

X

f∆g dx =

∫

∂X

(∂nfg − f∂ng)↾∂X

does not extend to f, g in the maximal operator domain

dom∆max = { f ∈ L2(X) |∆maxf ∈ L2(X) (distributional sense) }

(cf. Remark 4.2 for details). A solution to overcome this problem is either to modify the boundary
operators (restriction of the function and the normal derivative onto ∂X) as e.g. in [BMNW07,
Pc07], or to introduce the concept of quasi boundary triples as in [BL07] (cf. also the references
therein for further treatments of boundary triples in the PDE case).

Here, we use a different approach: we start with first order operators, namely the exterior
derivative d taking functions (0-forms) to 1-forms and its adjoint, the divergence operator δ,
mapping 1-forms into functions, since the first order operator domains are simpler. The Laplacian
(on functions) is then defined as ∆0 := δd. Certainly, in our approach we do not cover all self-
adjoint extensions of the minimal Laplacian.

The abstract approach also allows to define the Dirichlet-to-Neumann map in an intrinsic man-
ner, and also the norm of G 1/2 = H

1/2(∂X) is defined intrinsicly. This might be a great advantage
when dealing with parameter-depending manifolds, as it is the case for graph-like manifolds (see
e.g. [EP07, P06]). We will treat this question in a forthcoming publication. Our approach is
related to the recent works of Arlinskii [A00], Behrndt and Langer [BL07], Posilicano [Pc07] and
Brown et al. [BMNW07], where also a PDE example is treated in the context of boundary triples.
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To precise our idea of the first order approach we sketch the construction here. The given data
are1

H0, H1, d: H0 99K H1, H
1

0 := dom d,

where Hp are Hilbert spaces (“p-forms”), and H 1
0 carries the graph norm. Guided by our main

application (a manifold with boundary), we call d an exterior derivative.
A boundary map (of order 0) is a bounded operator

γ0 : H
1

0 −→ G , G
1/2 := ran γ0

with dense range G 1/2 ⊂ G , where G is another Hilbert space (usually over the boundary).

For these data, we define d0 := d restricted to H̊ 1
0 := ker γ0 and the divergence operator δ := d∗

0

with domain H 1
1 := dom δ. Furthermore, we can define a natural norm on G 1/2 using γ0.

In addition, we have a boundary operator of order 1, namely, γ1 : H 1
1 −→ G , with the same

range ran γ1 = ran γ0 = G 1/2. Moreover, an abstract Green’s formula is valid, i.e.,

〈df0, g1〉 − 〈f0, δg1〉 = 〈γ0f0, γ1g1〉G 1/2 .

Finally, hp = βz
pϕ is the solution of the Dirichlet and Neumann problem

∆php = zhp, γphp = ϕ,

respectively; we call βz
p also a Krein Γ-field of order p.

The Krein Q-function is defined as

Qz
0ϕ := γ1dβ

z
0 ;

a bounded operator (on the boundary space G 1/2), closely related to the usual Dirichlet-to-
Neumann map Λ(z) on a manifold with boundary defined in Eq. (4.1).

The main idea here is to consider the Laplacian ∆0f0 := δdf0 on the space

H
2

0 := dom δd :=
{
f0 ∈ domd

∣∣ df0 ∈ dom δ
}

instead of the maximal domain dom ∆max
0 = { f0 ∈ H0 |∆0f0 ∈ H0 }. Although ∆0 is not closed

on H 2
0 , we can develop a suitable theory of boundary spaces. In particular, for a bounded and

self-adjoint operator B in G 1/2 we can show that the Laplacian ∆0 restricted to

dom∆B
0 := { f0 ∈ H

2
0 | γ1df0 = Bγ0f0 }

(Robin-type boundary conditions) is self-adjoint under a suitable condition on the domain of the
adjoint (fulfilled in our example of the Laplacian on a manifold with boundary). Our main result is
Krein’s resolvent formula for the resolvents of ∆B

0 and the Dirichlet Laplacian ∆D
0 ; and a spectral

relation between the operators ∆B
0 and Qz

0 −B, namely

σ(∆B
0 ) \ σ(∆D

0 ) = { z /∈ σ(∆D
0 ) | 0 ∈ σ(Qz

0 − B) }.
(see Theorem 2.30). The main advantage of our approach is that it can almost immediately be
applied to the case of the Laplacian on a manifold with boundary, using the standard boundary
operator (restriction of a function to the boundary and restriction of the normal component of a
1-form to the boundary).

The paper is organised as follows: In the next section, we develop the concept of first order
boundary triples. In Section 3 we show how this concept fits into the usual theory of boundary
triples. Section 4 contains our motivating example, namely, the Laplacian on a manifold with
boundary.

1Here and in the sequel, A : H0 99K H1 denotes a partial map, i.e., a map (a linear operator) which is defined
only on a subset domA ⊂ H0.
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2. First order approach

In this section, we develop the concept of boundary triples for operators acting in different Hilbert
spaces; guided by our main example of the exterior derivative on a manifold with boundary.

Definition 2.1. Let H = H0 ⊕ H1 and G be Hilbert spaces.

(i) Elements of Hp are referred to as p-forms.
(ii) A partial map d: H0 99K H1 is called an exterior derivative if d is a closed map with

dense domain H 1
0 := dom d ⊂ H0. We endow H 1

0 with the natural norm defined by

‖f0‖2
H 1

0

:= ‖f0‖2 + ‖df0‖2.

(iii) We call γ0 : H 1
0 −→ G a boundary map (of degree 0) associated to d iff γ0 is bounded

with dense image, and if H̊ 1
0 := ker γ0 ⊂ H 1

0 = dom d is dense in H0. The auxiliary
Hilbert space is also referred to as a boundary space. We say that γ0 is proper, if γ0 is not
surjective, i.e., if G 1/2 := γ0(H

1
0 ) ( G .

(iv) The data (H ,G , γ0) define a first order boundary triple for the exterior derivative d: H0 99K

H1 if γ0 a boundary map associated to d.

Definition 2.2. We set d0 := d↾
H̊ 1

0

, and call δ := d∗

0 : H1 99K H0 the divergence operator with

domain H 1
1 := dom δ and H̊ 1

1 := dom d∗ (clearly, H̊ 1
1 ⊂ H 1

1 , and H̊ 1
1 is dense in H1 since d is

densely defined). We endow H 1
1 with the natural norm

‖f1‖2
H 1

1

:= ‖f1‖2 + ‖δf1‖2.

Definition 2.3.

(i) We call ∆0 := δd the Laplacian of degree 0 with domain

H
2

0 := dom δd :=
{
f0 ∈ dom d

∣∣df0 ∈ dom δ
}

Similarly, ∆1 := dδ is called the (maximal) Laplacian of degree 1 with domain

H
2

1 := dom dδ :=
{
f1 ∈ dom δ

∣∣ δf1 ∈ dom d
}
.

We endow H 2
p with the norms

‖f0‖2
H 2

0

:= ‖f0‖2 + ‖df0‖2 + ‖δdf0‖2,

‖f1‖2
H 2

0

:= ‖f1‖2 + ‖δf1‖2 + ‖dδf1‖2.

We denote the eigenspaces by N z
p := ker(∆p−z) ⊂ H 2

p . For z = −1, we set Np := N −1
p .

(ii) We call

∆D
0 := d∗

0d0, ∆N
0 := d∗d,

∆D
1 := d0d

∗

0, ∆N
1 := dd∗

with the appropriate domains the Dirichlet Laplacian of degree p = 0, 1 and the Neumann
Laplacian of degree p = 0, 1, respectively. Clearly, all these operators are self-adjoint
and non-negative. We denote the corresponding resolvents by RD

p := (∆D
p + 1)−1 and

RN
p := (∆N

p + 1)−1.
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The following diagram tries to illustrate the two scales of Hilbert spaces associated to d, d∗ and
d0, d∗

0 = δ (dotted arrows). Note that only at order 1, 0 and −1, we have relations between the
two scales:

H̊
1

0

. . . - H
−1

0

(RN
0 )1/2

- H0
-

....
....
....
....
....
....
....
..

(R
D
0
)
1/

2 -

H
1

0

?

∩

- . . .

H̊
−1

0

66

....
....
....
....
....
....
....
..-

H
1

1

....
....
....
....
....
....
....
...-

�..............................

δ

. . . -....
....
....
....
....
....
....
....
..-

H̊
−1

1
-

�

d

H1
(RN

1 )1/2
-

�..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

d 0

�

d

�
d
∗

....
....
....
....
....
....
....
..-

�...............................δ

H̊
1

1

∪

6

-

�
d
∗

. . .

H
−1

1

??�..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

d 0

....
....
....
....
....
....
....
...

(R
D
1
)
1/

2

-

(2.1)

Remark 2.4.

(i) The spaces H 2
p are complete, i.e., Hilbert spaces with their natural norms.

(ii) Note that ∆p is a bounded operator on H
2

p . However, ∆p with dom ∆p = H
2

p is not
closed. Although we call ∆p the maximal Laplacian, it is not the maximal operator ∆max

p

in the usual sens (which is the operator closure of ∆p with domain

dom ∆max
p :=

{
fp ∈ Hp

∣∣ ∆pfp ∈ Hp

}
(2.2)

in the distributional sense). In general, H 2
p ( dom ∆max

p . This observation is one of the
motivations for our first order approach (see Section 4).

Lemma 2.5. We have H 1
p = H̊ 1

p ⊕ Np (orthogonal sum).

Proof. Let p = 0 and f0 ∈ H
1

0 . In this case, f0 ∈ (H̊ 1
0 )⊥ is equivalent to

0 = 〈f0, g0〉H 1

0
= 〈f0, g0〉H0

+ 〈df0, dg0〉H1
, ∀ g0 ∈ H̊

1
0 . (2.3)

However, by definition of the adjoint operator δ = d∗

0, we have h1 ∈ dom d∗

0 iff there exists h0 ∈ H0

such that
〈h1, d0g0〉H0

= 〈h0, g0〉H ∀ g0 ∈ H̊
1

0 . (2.4)

Choosing h0 = −f0, the orthogonality relation (2.3) reads h1 = df0 ∈ domd∗

0 and d∗

0df0 = −f0,
i.e., f0 ∈ N z

0 . The argument for p = 1 is similar. �

Lemma 2.6. The maps d: N0 −→ N1 and δ : N1 −→ N0 are unitary.

Proof. If f0 ∈ N0 then dδdf0 = −df0, i.e, df0 ∈ N1. Similarly, f1 ∈ N1 implies δf1 ∈ N0.
Furthermore, −δdf0 = f0 and d(−δf1) = f1 implies that −δ is the inverse of d. Finally, d is an
isometry because

‖df0‖2
H 1

1

= ‖df0‖2
H1

+ ‖δdf0‖2
H0

= ‖df0‖2
H1

+ ‖f0‖2
H0

= ‖f0‖2
H 1

0

.
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Since d is surjective, it is therefore unitary with unitary inverse −δ. �

Lemma 2.7. Assume that the boundary map γ0 is proper (i.e., G 1/2 = ran γ0 ( G ). Define
γ̂0 := γ0↾N0

, then γ̂0 is invertible and (γ̂0)
−1 : G 99K N0 is an unbounded operator with domain

dom(γ̂0)
−1 = G 1/2. Furthermore, (γ̂0)

−1ϕ = h0 is the (unique) solution of the Dirichlet problem

(∆0 + 1)h0 = 0, γ0h0 = ϕ.

Proof. The operator γ̂0 is invertible since (ker γ0)
⊥ = (H̊ 1

0 )⊥ = N0 by Lemma 2.5. If (γ̂0)
−1 were

be bounded, then γ̂0 would be a topological isomorphism of N0 and ran γ0 = G 1/2, in particular,
G

1/2 would be closed in G , and by the density, we would have G
1/2 = G — a contradiction. The

last assertion is an immediate consequence of Lemma 2.5 and the definition of the inverse map
(γ̂0)

−1. �

Definition 2.8. We endow G
1/2 with the norm

‖ϕ‖G 1/2 := ‖(γ̂0)
−1ϕ‖H 1

0
.

Lemma 2.9. Assume that the boundary map γ0 is proper (i.e., G 1/2 = ran γ0 ( G ), then the
following assertions hold:

(i) We have ‖ϕ‖G ≤ ‖γ0‖‖ϕ‖G 1/2 for ϕ ∈ G
1/2.

(ii) The operator γ0γ
∗

0 ≥ 0 is invertible in G , and

Λ := (γ0γ
∗

0)
−1 = ((γ̂0)

−1)∗(γ̂0)
−1 ≥ 1

‖γ0‖2
.

We define the associated scale of Hilbert spaces by

G
s := dom Λs, ‖ϕ‖G s := ‖Λsϕ‖G

for s ≥ 0 (and the dual with respect to (·, ·)G for s < 0).
(iii) The operator ((γ̂0)

−1)∗ : N0 99K G is unbounded with domain

dom((γ̂0)
−1)∗ = { f0 ∈ N0 | γ0f0 ∈ dom Λ = G

1 }.
(iv) The operator γ∗0 : G −→ H 1

0 is bounded, and γ∗0ϕ = h0 is the unique Neumann solution,
i.e.,

(∆0 + 1)h0 = 0, γ0h0 ∈ G
1, Λγ0h0 = ϕ.

Remark 2.10. If γ0 is not proper (i.e., if γ0 is surjective, i.e., G 1/2 = G ), then all the above
assertions remain valid except for the fact that (γ̂0)

−1, ((γ̂0)
−1)∗ and Λ are bounded operators.

Proof. The first assertion follows from

‖ϕ‖G = ‖γ̂0(γ̂0)
−1ϕ‖G ≤ ‖γ0‖‖(γ̂0)

−1ϕ‖H 1 = ‖γ0‖‖ϕ‖G 1/2 .

To prove the second, note that γ0γ
∗

0 = γ̂0γ̂
∗

0 is bijective and

〈ϕ, ϕ〉G 1/2 = 〈(γ̂0)
−1ϕ, (γ̂0)

−1ϕ〉H 1 = 〈ϕ, ((γ̂0)
−1)∗(γ̂0)

−1ϕ〉G = 〈ϕ,Λϕ〉G
if (γ̂0)

−1ϕ ∈ dom((γ̂0)
−1)∗, i.e, ϕ ∈ dom Λ. Furthermore, ‖Λ−1‖ ≤ ‖γ0‖2.

The third assertion is a consequence of Lemma 2.7, and the domain characterisation can be seen
readily. To prove the fourth assertion, take h0 = γ∗0ϕ ∈ ran γ∗0 ⊂ (ker γ0)

⊥ = N0; in this case

〈h0, f0〉H 1

0
= 〈ϕ, γ0f0〉G

for all f0 ∈ H 1
0 . If f0 ∈ N0, then

〈h0, f0〉H 1

0
= 〈γ0h0, γ0f0〉G 1/2

by definition of the norm on G 1/2. But the latter term equals 〈Λγ0h0, γ0f0〉G if γ0h0 ∈ dom Λ, and
thus ϕ = Λγ0h0. �
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Remark 2.11. Note that G −1/2 is the completion of G with respect to the norm ‖ϕ‖G−1/2 =
‖γ0ϕ‖H 1

0
.

Definition 2.12. We define the boundary map of order 1 as

γ1 : H
1

1 −→ G , γ1 := −γ0δP1

where Pp is the orthogonal projection in H 1
p onto the subspace Np.

Lemma 2.13. We have ker γ1 = H̊
1

1 , and γ1 : H
1

1 −→ G is bounded with norm ‖γ1‖ = ‖γ0‖.
Furthermore, ran γ1 = G 1/2 and γ̂1 := γ1↾N1

is a unitary map from N1 onto G 1/2.

Proof. If f1 ∈ H̊ 1
1 = (N1)

⊥, then γ1f1 = 0 since P1f1 = 0. If f1 ∈ N1, then γ1f1 = −γ0δf1 = 0 iff
f1 = 0 since δ is unitary from N1 onto N0 = (ker γ0)

⊥.
The boundedness follows from

‖γ1f1‖G ≤ ‖γ0δP1f1‖G ≤ ‖γ0‖‖δP1f1‖H 1

0
= ‖γ0‖‖P1f1‖H 1

1
≤ ‖γ0‖‖f1‖H 1

1

by Lemma 2.6. Furthermore, for f0 ∈ N0 set f1 := df0, then γ1f1 = −γ0δdf0 = γ0f0. In particular,
‖γ1‖ = ‖γ0‖. Finally,

‖γ̂1f1‖G 1/2 = ‖γ0δf1‖G 1/2 = ‖δf1‖H 1

0
= ‖f1‖H 1

1

for f1 ∈ N1, since δf1 ∈ N0 and by Lemma 2.6.
�

Lemma 2.14. The (abstract) Green’s formula holds, namely,

〈df0, g1〉 − 〈f0, δg1〉 = 〈γ0f0, γ1g1〉G 1/2 = (γ0f0, γ̃1g1)G

where γ̃1 := Λγ1 : H 1
1 −→ G −1/2.

Proof. If f0 ∈ H̊ 1
0 , then the LHS vanishes since δ = d∗

0, and so is the RHS, since γ0f0 = 0.

Similarly, if g1 ∈ H̊
1

1 = dom d∗, then the LHS vanishes since δg1 = d∗g1 and so is the RHS,
because γ1g1 = 0 by Lemma 2.13. For f0 ∈ N0 and g1 ∈ N1, we have

〈df0, g1〉 − 〈f0, δg1〉 = −〈df0, dδg1〉 − 〈f0, δg1〉
= −〈f0, δg1〉H 1

0
= 〈γ0f0,−γ0δg1〉G 1/2

by Definition 2.8. The last assertion is obvious. �

Corollary 2.15. We have

〈∆0f0, g0〉 − 〈f0,∆0g0〉 = 〈γ0f0, γ1dg0〉G 1/2 − 〈γ1df0, γ0g0〉G 1/2

= 〈γ0f0, γ̃1dg0〉G − 〈γ̃1df0, γ0g0〉G
for f0, g0 ∈ H

2
0 .

The following lemma shows that Λ = Λ(−1) is the Dirichlet-to-Neumann map for the operator
∆0 + 1:

Lemma 2.16. For ϕ ∈ G 1/2 and h0 := (γ̂0)
−1ϕ we have

Λϕ = γ̃1dh0.

Proof. By Lemma 2.14, we have

〈df0, dh0〉 − 〈f0,∆0h0〉 = (γ0f0, γ̃1dh0)G .

On the other hand, we have

〈df0, dh0〉 − 〈f0,∆0h0〉 = 〈f0, h0〉H 1

0
= 〈γ0f0, γ0h0〉G 1/2 = 〈γ0f0, ϕ〉G 1/2 = (γ0f0,Λϕ)G .

for f0, h0 ∈ N0. �
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Remark 2.17. The map γ̃1 is indeed the boundary map occuring in the applications (see Section 4).
Namely, the Green’s formula is usually formulated with a boundary integral given as an inner
product of G rather than G 1/2. In particular, γ̃1dh0 is the “normal derivative at the boundary”
(in the case of a manifold with boundary).

The boundary maps are also bounded as maps with target space G 1/2:

Lemma 2.18. The operators γp : H 1
p −→ G 1/2 are bounded with norm bounded by 1.

Proof. For p = 0, we have

‖γ0f0‖G 1/2 = ‖(γ̂0)
−1γ0f0‖H 1

0
= ‖(γ̂0)

−1γ0P0f0‖H 1

0
= ‖P0f0‖H 1

0
≤ ‖f0‖H 1

0
,

since γ0f0 = γ0P0f0. For p = 1, we obtain

‖γ1f1‖G 1/2 = ‖(γ̂0)
−1γ0δP1f1‖H 1

0
= ‖δP1f1‖H 1

0
= ‖P1f1‖H 1

1
≤ ‖f1‖H 1

1

using Lemmas 2.6–2.7. �

In order to define the Dirichlet-to-Neumann map also for other resolvent values z, we need to
provide results similar to those in Lemmas 2.5–2.7 for general z. Write

Σ0 := σ(∆D
0 ), Σ1 := σ(∆N

1 ). (2.5)

Lemma 2.19. For z /∈ Σp, we have H 1
p = H̊ 1

p +̇N z
p (topological direct sum). In particular,

γ̂z
p := γp↾N z

p
is a topological isomorphism from N z

p onto G 1/2.

Proof. For z /∈ σ(∆D
0 ), we define

P z
0 := 1 − ι0(∆

D
0 − z)−1(∆0 − z) : H

1
0 −→ H

1
0

where

∆0 = δd: H
1

0 −→ H̊
−1

0 , (∆D
0 − z)−1 = (δd0 − z)−1 : H̊

−1
0 −→ H̊

1
0

and ι0 : H̊
1

0 →֒ H
1

0 . A simple calculation shows that (1 − P z
0 )2 = (1 − P z

0 ), i.e., 1 − P z
0 and

therefore P z
0 are projections. Furthermore, f0 = P z

0 f0 is equivalent to ∆0f0 = zf0. In order to
show that f0 = P z

0 f0 ∈ N z
0 let us first show that f0 ∈ H 2

0 , i.e., that h1 := df0 ∈ H 1
1 = dom δ.

To this end, recall the definition of the domain dom δ = dom d∗

0 in (2.4). We have here

〈df0, d0g0〉 = 〈δdf0, g0〉 = 〈zf0, g0〉
by Lemma 2.14 (note that γ0g0 = 0) and the fact that δdf0 = zf0; we can choose h0 = zf0 and
therefore f0 ∈ H

2
0 . A straightforward calculation shows now that (∆0 − z)f0 = 0, and finally,

f0 ∈ N z
0 .

By the definition of P z
0 , it is also clear that ran(1 − P z

0 ) ⊂ H̊ 1
0 , and therefore H 1

0 splits into
the direct sum. The direct sum is also a topological sum, since 1−P z

0 and P z
0 are bounded maps.

Therefore f0 7→ ((1−P z
0 )f0, P

z
0 f0) is a bounded bijection, and also a topological isomorphism. The

argument for 1-forms is similar, using

P z
1 := 1 − ι1(∆

N
1 − z)−1(∆1 − z) : H

1
1 −→ H

1
1

where

∆1 = dδ : H
1

1 −→ H̊
−1

1 , (∆N
1 − z)−1 = (dd∗ − z)−1 : H̊

−1
1 −→ H̊

1
1

and ι1 : H̊ 1
1 →֒ H 1

1 .

For the last assertion, note that ker γp = H̊ 1
p and that ran γp = G 1/2 (see Lemma 2.13);

in particular, γ̂z
p is bijective. Furthermore, γ̂z

p is bounded as restriction of the bounded map

γp : H 1
p −→ G 1/2 (cf. Lemma 2.18), and therefore, γ̂z

p is a topological isomorphism. �
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Lemma 2.20. For z 6= 0, the maps d: N z
0 −→ N z

1 and δ : N z
1 −→ N z

0 are topological isomor-
phisms.

Proof. If f0 ∈ N z
0 then dδdf0 = zdf0, i.e, df0 ∈ N z

1 . Similarly, f1 ∈ N z
1 implies δf1 ∈ N z

0 .
Furthermore, 1

z
δdf0 = f0 and d(1

z
δf1) = f1 implies that 1

z
δ is the inverse of d. Finally, d is bounded

on N z
0 , since

‖df0‖2
H 1

1

= ‖df0‖2
H1

+ ‖δdf0‖2
H0

= ‖df0‖2
H1

+ |z|2‖f0‖2
H0

≤ (1 + |z|2)‖f0‖2
H 1

0

and therefore a topological isomorphism. The assertion for δ follows similarly. �

Definition 2.21. We call z 7→ βz
0 := (γ̂z

0)
−1, z /∈ Σ0 the Dirichlet solution map or the Krein

Γ-field of order 0 associated to the first order boundary triple (H ,G , γ0). Similarly, we call
z 7→ βz

1 := (γ̂z
1)

−1, z /∈ Σ1 the Neumann solution map or the Krein Γ-field of order 1.

Remark 2.22.

(i) We prefer to use the symbol β instead of γ for the Krein Γ-field in order to avoid confusion
with our boundary maps γp.

(ii) The maps βz
p : G 1/2 −→ N z

p ⊂ H 1
p are topological isomorphisms, since the inverses γ̂z

p

are.
(iii) The names “Dirichlet/Neumann solution map” are due to the following fact: The p-form

hp := βz
pϕ is the solution of (∆p − z)hp = 0, and γphp = ϕ. For p = 0, this is the solution

of the “Dirichlet problem” (γ0h0 prescribed), and for p = 1, the solution of the “Neumann
problem” (γ1h1 prescribed). We will see in Lemma 3.7 that the Krein Γ-fields are related
to a Krein Γ-field in the sense of an ordinary boundary triple.

(iv) The map βz
0 : G 1/2 −→ H 1

0 regarded as an operator βz
0 : G 1/2 −→ H0 into H0 is bounded,

as well as its adjoint, denoted by (βz
0)

∗ : H0 −→ G 1/2.

Lemma 2.23. We have γ1df0 = (βz
0)

∗(∆0 − z)f0 for f0 ∈ dom ∆D
0 = H 2

0 ∩ H̊ 1
0 where (βz

0)
∗ is the

adjoint of βz
0 as operator βz

0 : G
1/2 −→ H0. Furthermore, ran(βz

0)
∗ = G

1/2.

Proof. The assertion follows from (see also [BGP08, Thm. 1.23 (2d)])

〈ϕ, (βz
0)

∗(∆0 − z)f0〉G 1/2 = 〈βz
0ϕ, (∆0 − z)f0〉H

= 〈(∆0 − z)βz
0ϕ, f0〉H + 〈γ0β

z
0ϕ, γ1df0〉G 1/2 − 〈γ1dβ

z
0ϕ, γ0f0〉G 1/2

= 〈ϕ, γ1df0〉G 1/2

by Corollary 2.15 for the second equality. As far as the third equality is concerned, note that the
first term vanishes since βz

0ϕ solves the eigenvalue equation; the same holds for the third term

since γ0f0 = 0 for f0 ∈ H̊ 1
0 . For the second term, we have γ0β

z
0ϕ = ϕ by the definition of βz

0 .
The last assertion follows from ran(βz

0)
∗ = (ker βz

0)
⊥ and from the fact that βz

0 : G
1/2 −→ H0 is

injective. �

We can now define the Dirichlet-to-Neumann map and a closely related map for arbitrary resol-
vent values z:

Definition 2.24. The Krein Q-function associated to the first order boundary triple (H ,G , γ0)
is the map

z 7→ Qz
0 := γ1d(γ̂z

0)
−1 = γ1dβ

z
0 , z /∈ Σ0 = σ(∆D

0 ).

For z /∈ Σ0, the abstract Dirichlet-to-Neumann map at z is defined by

Λ(z) := ΛQz
0 = Λγ1dβ

z
0 = γ̃1dβ

z
0 : G

1/2 −→ G
−1/2.
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Remark 2.25.

(i) We shall see in Section 3 that Qz
0 is indeed a Krein Q-function for an ordinary boundary

triple. Note that Qz
0 : G 1/2 −→ G 1/2 is a bounded map (cf. Lemmas 2.18–2.20). In

addition, we have

Q−1
0 = γ1d(γ̂0)

−1 = −γ0δP1d(γ̂0)
−1 = γ0(γ̂0)

−1 = idG 1/2

at z = −1.
(ii) Note that Λ(z) is indeed the Dirichlet-to-Neumann map: We solve the Dirichlet problem

h0 = βz
0ϕ, i.e,

∆0h0 = zh0, γ0h0 = ϕ;

and the Dirichlet-to-Neumann map is the “normal derivative at the boundary” of h0

(cf. Remark 2.17), i.e., Λ(z)ϕ = γ̃1dh0.

Let us now define self-adjoint restrictions of ∆0.

Definition 2.26. Let B be a bounded operator in G 1/2. We set

dom ∆B
0 := { f0 ∈ H

2
0 | γ1df0 = Bγ0f0 }

dom ∆B
1 := { f1 ∈ H

2
1 | γ1f1 = Bγ0δf1 }

and denote by ∆B
p the restriction of ∆p onto dom ∆B

p .

Lemma 2.27. Assume that dom(∆B
0 )∗ ⊂ H 1

0 , then the operator ∆B
0 is self-adjoint iff B is self-

adjoint in G 1/2.

Remark 2.28. The domain condition does not seem to follow from abstract (“soft”) arguments; in
our manifold example, it follows from elliptic regularity (“hard” arguments). Note that in general,
dom ∆max

0 defined in (2.2) is even not a subset of H 1
0 (see Remark 2.4 (ii) and Remark 4.2).

Proof. The graph of the operator (∆B
0 )∗ is given as

graph(∆B
0 )∗ =

{
(f0,∆0f0)

∣∣ f0 ∈ dom∆max
0 ,

∀ g0 ∈ dom ∆B
0 : 〈∆max

0 f0, g0〉 = 〈f0,∆
max
0 g0〉

}
⊂ H

1
0 × H0,

and the latter inclusion holds by our assumption on the domain of the adjoint. In particular,
f0, g0 ∈ H 2

0 and we can apply Corollary 2.15, namely,

〈∆max
0 f0, g0〉 − 〈f0,∆

max
0 g0〉 = 〈γ0f0, γ1dg0〉G 1/2 − 〈γ1df0, γ0g0〉G 1/2

= 〈γ0f0, Bγ0g0〉G 1/2 − 〈Bγ0f0, γ0g0〉G 1/2 ,

and the latter equality follows from f0, g0 ∈ dom ∆B
0 . The assertion is now obvious. �

The self-adjointness of B in G 1/2 can be shown as follows:

Lemma 2.29. Let B̃ be a bounded and self-adjoint operator on G . In this case, B := Λ−1B̃ is
bounded and self-adjoint as operator on G 1/2.

Proof. We have

‖B‖B(G 1/2) = ‖Λ1/2BΛ−1/2‖B(G ) = ‖Λ−1/2B̃Λ−1/2‖B(G ) ≤ ‖Λ−1‖B(G )‖B̃‖B(G ),

so that B is bounded on G 1/2, and

〈Bϕ, ψ〉G 1/2 = 〈Λ1/2Bϕ,Λ1/2ψ〉G = 〈Λ−1/2B̃ϕ,Λ1/2ψ〉G = 〈B̃ϕ, ψ〉G ;

and the self-adjointness follows from the self-adjointness of B̃ and a similar expression with B and
B̃ in the second argument. �
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We can now formulate our main result. For brevity, we restrict ourselves here to 0-forms. Similar
results hold also for 1-forms.

Theorem 2.30. Let B be a self-adjoint and bounded operator in G 1/2, ∆D
0 the self-adjoint Lapla-

cian with Dirichlet boundary conditions (cf. Definition 2.3) and ∆B
0 the self-adjoint restriction of

the Laplacian (cf. Definition 2.26). Assume that dom(∆B
0 )∗ ⊂ H 1

0 .

(i) For z /∈ σ(∆D
0 ) we have ker(∆B

0 − z) = βz
0 ker(Qz

0 − B).
(ii) For z /∈ σ(∆B

0 ) ∪ σ(∆D
0 ) we have 0 /∈ σ(Qz

0 −B) and Krein’s formula

(∆D
0 − z)−1 − (∆B

0 − z)−1 = βz
0(Q

z
0 − B)−1(βz

0)
∗

is valid, where (βz
0)

∗ is the adjoint of βz
0 as operator βz

0 : G
1/2 −→ H0.

(iii) We have

σ(∆B
0 ) \ σ(∆D

0 ) = { z /∈ σ(∆D
0 ) | 0 ∈ σ(Qz

0 − B) }.
Proof. The proof is again closely related to the proof for ordinary boundary triples (cf. [BGP08,
Thm. 1.29]). For the first assertion, take ϕ ∈ ker(Qz

0 − B) and set f0 = βz
0ϕ. By the definition of

the solution map βz
0 , we have (∆0 − z)f0 = 0 and γ0f0 = ϕ. Furthermore, Qz

0ϕ = Bϕ is equivalent
to γ1df0 = Bγ0f0 by the definition of Qz

0. However, the last equation shows that f0 ∈ dom ∆B
0 ,

i.e., f0 ∈ ker(∆B
0 − z). The opposite inclusion follows similarly.

To prove the second assertion, take h0 ∈ H0 and f0 := (∆B
0 −z)−1h0 ∈ dom ∆B

0 . By Lemma 2.19

we can decompose f0 = f z
0 +̇ gz

0 ∈ H̊ 1
0 +̇N z

0 . Since f0, g
z
0 ∈ H 2

0 we also have f z
0 ∈ H 2

0 and

h0 = (∆B
0 − z)f0 = (∆0 − z)f0 = (∆0 − z)f z

0 = (∆D
0 − z)f z

0 ,

i.e., f z
0 = (∆D

0 − z)−1h0. Furthermore, γ0f
z
0 = 0, therefore γ0f0 = γ0g

z
0, i.e., gz

0 = βz
0γ0f0 and we

have
(∆B

0 − z)−1h0 = f0 = f z
0 + gz

0 = (∆D
0 − z)−1h0 + βz

0γ0f0. (2.6)

Now we apply γ1d to the decomposition of f0 ∈ dom ∆B
0 and obtain

Bγ0f0 = γ1df0 = γ1df
z
0 + γ1dβ

z
0γ0f0

= (βz
0)

∗(∆0 − z)f z
0 +Qz

0γ0f0 = (βz
0)

∗h0 +Qz
0γ0f0.

using the definition of Qz
0 (cf. Definition 2.24) and Lemma 2.23 for the third equality. In particular,

(Qz
0 − B)γ0f0 = (βz

0)
∗h0, (2.7)

and the RHS covers the entire space G 1/2 since h0 covers H0 (see again Lemma 2.23). In particular,
(Qz

0 − B) is surjective. By (i), this operator is also injective, i.e., 0 /∈ σ(Qz
0 − B). Krein’s formula

now follows from (2.6)–(2.7). The last assertion is a consequence of (ii). �

Returning to the original boundary space G and the Dirichlet-to-Neumann map Λ(z) = ΛQz
0 —

regarded as an unbounded operator in G —, we obtain the following result:

Theorem 2.31. Let B̃ be a self-adjoint and bounded operator in G and ∆
eB
0 the corresponding

self-adjoint restriction of the Laplacian with domain

dom∆B
0 := { f0 ∈ H

2
0 | γ̃1df0 = B̃γ0f0 }

(Robin type boundary conditions). Assume that dom(∆B
0 )∗ ⊂ H

1
0

(i) For z /∈ σ(∆D
0 ) we have ker(∆B

0 − z) = βz
0Λ

−1 ker(Λ(z) − B).

(ii) For z /∈ σ(∆B
0 ) ∪ σ(∆D

0 ) we have 0 /∈ σ(Λ(z) − B̃) and Krein’s formula

(∆D
0 − z)−1 − (∆B

0 − z)−1 = βz
0(Λ(z) − B̃)−1(β̃z

0)
∗

is valid, where (β̃z
0)

∗ is the adjoint of βz
0 : G 1/2 −→ H0 considered as an unbounded operator

β̃z
0 : G 99K H0 with domain G 1/2.
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(iii) We have

σ(∆B
0 ) \ σ(∆D

0 ) = { z /∈ σ(∆D
0 ) | 0 ∈ σ(Λ(z) − B̃) }.

Proof. The proof follows from Theorem 2.30 because Λ(z)−B̃ = Λ(Qz
0−B) and (β̃z

0)
∗ = Λ(βz

0)
∗. �

3. Boundary triples

In this section we show how the first order approach of the last section fits into the setting of
boundary triples in the usual sense. We only sketch the ideas here; for more details on boundary
triples, we refer to [BGP08, DHMdS06] and the references therein.

Definition 3.1. Let H be a Hilbert space with a closed operator D in H . Assume furthermore

that G̃ is another Hilbert space, and Γ0,Γ1 : domD −→ G̃ are two linear maps. We say that

(G̃ ,Γ0,Γ1) is an (ordinary) boundary triple for D iff

〈Df, g〉H − 〈f,Dg〉H = 〈Γ0f,Γ1g〉 eG
− 〈Γ1f,Γ0g〉 eG

, ∀ f, g ∈ domD (3.1a)

Γ0

/

⊕ Γ1 : domD −→ G̃ ⊕ G̃ , f 7→ Γ0f ⊕ Γ1f is surjective (3.1b)

ker(Γ0

/

⊕ Γ1) = ker Γ0 ∩ ker Γ1 is dense in H . (3.1c)

Lemma 3.2. Let H := H0 ⊕ H1 and (H ,G , γ0) be a first order boundary triple as in Defini-
tion 2.1. Write

D :=

(
0 δ

d 0

)
, domD := H

1 := H
1

0 ⊕ H
1

1 , ‖f‖2
H 1 = ‖f‖2

H
+ ‖Df‖2

H
,

and Γpf := γpfp for f = f0 ⊕ f1 ∈ H 1. Then (G 1/2,Γ0,Γ1) is an ordinary boundary triple for D.

Proof. The Green’s formula (3.1a) follows from

〈Df, g〉H − 〈f,Dg〉H = 〈df0, g1〉H1
− 〈f0, δg1〉H0

+ 〈δf1, g0〉H0
− 〈f1, dg0〉H1

= 〈γ0f0, γ1g1〉G 1/2 − 〈γ1f1, γ0g0〉G 1/2

by Lemma 2.14. The second condition (3.1b) follows from Γ0

/

⊕ Γ1 = γ0 ⊕ γ1 and the surjectivity

of γp : H 1
p −→ G 1/2. The last condition (3.1c), i.e., the density of H̊ 1 := H̊ 1

0 ⊕ H̊ 1
1 in H , is a

consequence of Definition 2.1 (iii). �

The next lemma can be proved readily:

Lemma 3.3. Set N
w := ker(D − w). If w 6= 0 then ψw

p : N
w2

p −→ N
w with

ψw
0 f0 :=

1√
2

(
f0

1
w
df0

)
, ψw

1 f1 :=
1√
2

(
1
w
δf1

f1

)

are topological isomorphisms. In particular, for w = ±i, they are unitary.

Corollary 3.4. The operator D has zero defect index, i.e., N i = ker(D− i) and N −i = ker(D+i)
are isomorphic.

The next lemma is a well known fact; we give a proof for completeness.

Lemma 3.5. If w 6= 0 then H 1 = H̊ 1 +̇N w +̇ N −w (topological direct sum), and the projection
Pw onto N w is given by

Pw =
1

2

(
Pw2

0
1
w
δPw2

1
1
w
dPw2

0 Pw2

1

)
.

If w = ±i, then we have H 1 = H̊ 1 ⊕N i ⊕N −i (orthogonal direct sum), and P±i are orthogonal
projections (in H 1).
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Proof. Recall that P z
p is the projection onto N z

p = ker(∆p − z). Denote by P̊p := 1 − P z
p the

projection onto H̊ 1
p and set P̊ := P̊0 ⊕ P̊1. Then we can decompose f ∈ H 1 as

f = P̊ f + Pwf + P−wf,

since Pw + P−w = Pw2

0 ⊕ Pw2

1 and P̊ + (Pw2

0 ⊕ Pw2

1 ) = 1. A simple calculation shows that
DPw = wPw, i.e., that Pwf ∈ N w; in addition, (Pw)2 = Pw, i.e., Pw is a projection; and

P̊ f ∈ H̊ 1.
The sum of eigenspaces associated to different eigenvalues is direct, and N

w +̇N
−w =

N w2

0 ⊕ N w2

1 (Lemma 3.3). Since in addition, H 1
p = H̊ 1

p +̇N w2

p , it follows that the sum

H 1 = H̊ 1 +̇ N w +̇N −w is direct. The direct sum is also topological since the projections
are bounded operators. The orthogonality for w = ±i can be checked easily. �

Lemma 3.6. Let Dmin be the restriction of D onto domDmin = H̊ 1 := H̊ 1
0 ⊕H̊ 1

1 = ker(Γ0

/

⊕ Γ1).
Then (Dmin)∗ = D.

Proof. We refer to [BGP08, Thm. 1.13 (1)⇒(4)] for a proof. Note that D has self-adjoint restric-
tions since the defect index is 0 by Corollary 3.4. �

We write DD := D↾ker Γ0
, the Dirichlet Dirac operator, and DN := D↾ker Γ1

, the Neumann
Dirichlet operator. Note that (DD)2 = ∆D

0 ⊕ ∆D
1 and (DN)2 = ∆N

0 ⊕ ∆N
1 .

Lemma 3.7. Let w /∈ σ(DD). The operator Γ0↾N w : N w −→ G 1/2 has a bounded inverse βw, and
w 7→ βw is a Γ-Krein field, i.e.,

βw : G
1/2 −→ N

w is a topological isomorphism and (3.2a)

βw1 = Uw1,w2βw2, w1, w2 /∈ σ(DD), (3.2b)

where

Uw1,w2 := (DD − w2)(D
D − w1)

−1 = 1 + (w1 − w2)(D
D − w1)

−1.

Furthermore, βw =
√

2ψw
0 β

w2

0 , where βz
0 is the Krein γ-function of order 0 associated with the first

order boundary triple (H ,G , γ0) (cf. Definition 2.21) and ψw
0 is defined in Lemma 3.3.

Proof. For the proof of the first assertion, we refer again to [BGP08, Thm. 1.23 (2a–b)]. The
relation with βw2

0 follows from the fact that Γ0 = γ0π0, where π0 : H 1 −→ H 1
0 , f 7→ f0; and the

inverse of
√

2ψw
0 is π0 (restricted to the appropriate subspaces). �

Lemma 3.8. The operator Qw := Γ1β
w : G 1/2 −→ G 1/2 defines the Krein Q-function w 7→ Qw,

i.e.,

Qw1 − (Qw2)∗ = (w1 − w2)(β
w2)∗βw1 w1, w2 /∈ σ(DD).

Furthermore, Qw = 1
w
Qw2

0 , where Qz
0 is the Krein Q-function associated to the first order boundary

triple (H ,G , γ0) (cf. Definition 2.24).

Proof. For the proof of the first assertion, we refer again to [BGP08, Thm. 1.23 (2c)]. The other
follows straightforward. �

Further results like Krein’s resolvent formula or the spectral relation for self-adjoint restrictions
DB of D can be found e.g. in [BGP08]. In particular, if B is bounded and self-adjoint in G 1/2 then
the restriction of D to

domDB := { f ∈ H
1 |Γ1f = BΓ0f } = { f ∈ H

1 | γ1f1 = Bγ0f0 }
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defines a self-adjoint operator DB. The Laplacian (DB)2 acts on each component as the Laplacian
∆pfp, but with domain

dom(DB)2 = { f ∈ domDB |Df ∈ domDB }
= { f ∈ H

2 | γ1f1 = Bγ0f0, γ1df0 = Bγ0δf1 }.
Note that this domain is different from dom ∆B

0 ⊕ dom ∆B
1 (cf. Definition 2.26) since the two

components in dom(DB)2 are coupled.

4. Manifolds with boundary

In this section we present our main example and show how it fits into the abstract setting of
first order boundary triples of Section 2 (see also [A00]).

Let X be a compact Riemannian manifold with boundary ∂X equipped with their natural
volume measures. Denote the cotangential bundle (or bundle of 1-forms) by T ∗X. The data we
need to fix are the following:

H0 := L2(X), H
1

0 := H
1(X),

H1 := L2(T
∗X), d: H

1(X) −→ L2(T
∗X),

where L2(X) and L2(T
∗X) are the spaces of square-integrable functions and sections over the

cotangent (1-form) bundle, and where d stands for the usual exterior derivative with domain
H 1

0 := H
1(X), the Sobolev space of functions f ∈ L2(X) such that |df | ∈ L2(X) (or df ∈ L2(T

∗X),
what is the same).

For the boundary map, we need to fix the boundary space G := L2(∂X), and we define

γ0 : H
1(X) −→ L2(∂X), γ0f := f↾∂X .

Note that the norm of γ0 depends on the local geometry of X near ∂X. The range of γ0 is
G

1/2 = H
1/2(∂X) together with the intrinsic norm defined in Section 2, namely

‖ϕ‖2
H1/2(∂X) := ‖f0‖2

H1(X) = ‖f0‖2
L
2
(X) + ‖df0‖2

L
2
(X),

where f0 is the solution of the Dirichlet problem (∆0 + 1)f0 = 0 and γ0f0 = ϕ. Since H
1/2(∂X) 6=

L2(∂X), the boundary map γ0 is proper.

After defining these data, we obtain H̊ 1
0 = H̊

1(X) = ker γ0 and d0 := d↾
H̊1(X). Furthermore,

δ = d∗

0 is the divergence operator. Comparing the abstract Green’s formula in Lemma 2.14 with
Green’s formula ∫

X

〈df, η〉x dx−
∫

X

f δη dx =

∫

∂X

(f ηn)↾∂X ,

where ηn stands for the normal component of the 1-form η near ∂X, we see that

γ̃1η = ηn↾∂X

Remark 4.1. Note that H 1
1 := dom δ ⊂ L2(T

∗X) is not the Sobolev space of order 1 on 1-
forms, defined locally via charts. Therefore, γ̃1 : dom δ −→ H

−1/2(∂X), and γ̃1 does not map into
H

1/2(∂X), as one could naively guess.

The Dirichlet-to-Neumann map in this case is

Λ(z)ϕ = ∂nh0, where ∆0h0 = zh0, h0↾∂X = ϕ (4.1)

for ϕ ∈ H
1/2(∂X) and z /∈ σ(∆D

0 ) (cf. Definition 2.24).
Self-adjoint boundary conditions of the Laplacian on 0-forms like Robin boundary conditions are

now given as follows: Let B̃ be a smooth, real-valued function on ∂X and set B := Λ−1B̃. Then
B is bounded and self-adjoint on G 1/2 (Lemma 2.29) and

dom(∆B
0 )∗ = { f0 ∈ ∆max

0 | ∂nf0↾∂X = B̃f0↾∂X }
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is a subset of H 1
0 = H

1(X) since a priori, ∂nf0↾∂X ∈ H
−3/2(∂X), but by the smoothness of B̃

and f0↾∂X ∈ H
−1/2(∂X), we conclude that ∂nf0↾∂X ∈ H

−1/2(∂X). By a theorem of Lions and
Magnenes (see [G68, Prop. III.5.2] or [LM72, Thm. 7.4]), it follows that f ∈ H

1(X). In particular,
the domain condition is fulfilled, and the above domain defines a self-adjoint Laplace operator
(cf. Lemma 2.27).

Note that in general, the Robin boundary conditions cannot be expressed as (DB)2 where DB is a
self-adjoint restriction of the Dirac operator (cf. the end of Section 3). This is another justification
of our first order approach (instead of directly starting from an ordinary boundary triple as in
Section 3).

Remark 4.2. The first order approach to boundary triples enables us to use the natural boundary
maps γ0f = f↾∂X and γ̃1η = ηn↾∂X , in contrast to the second order approach using the Laplacian
as e.g. in [BMNW07, Pc07]. In the second order approach, the maximal domain of the Laplacian

dom ∆max = { f ∈ L2(X) |∆f ∈ L2(X) }
is not a subset of the Sobolev space H

1(X). In particular, f↾∂X is not in L2(∂X), but only in
H

−1/2(∂X); and ∂nf↾∂X ∈ H
−3/2(∂X) (see e.g. [G68, G06, LM72]). In particular, Green’s formula

(cf. (3.1a)) fails to hold with the natural boundary maps.
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