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Abstract. We consider a family of non-compact manifolds Xε (“graph-like
manifolds”) approaching a metric graph X0 and establish convergence results
of the related natural operators, namely the (Neumann) Laplacian ∆Xε

and
the generalised Neumann (Kirchhoff) Laplacian ∆X0

on the metric graph. In
particular, we show the norm convergence of the resolvents, spectral projec-
tions and eigenfunctions. As a consequence, the essential and the discrete
spectrum converge as well. Neither the manifolds nor the metric graph need to
be compact, we only need some natural uniformity assumptions. We provide
examples of manifolds having spectral gaps in the essential spectrum, discrete
eigenvalues in the gaps or even manifolds approaching a fractal spectrum. The
convergence results will be given in a completely abstract setting dealing with
operators acting in different spaces, applicable also in other geometric situa-
tions.

1. Introduction

The aim of this article is to show that non-compact quasi-one-dimensional
spaces can be approximated by the underlying metric graph. A metric or quan-
tum graph is a graph considered as one-dimensional space where each edge is
assigned a length. A quasi-one-dimensional space consists of a family of graph-
like manifolds, i.e., a family of manifolds Xε shrinking to the underlying metric
graph X0. The family of graph-like manifolds is constructed of building blocks
Uε,v and Uε,e for each vertex v ∈ V and edge e ∈ E of the graph, respectively
(cf. Figure 1). The cross section of the edge neighbourhood Uε,e as well as the
boundary component of Uε,v, where Uε,e meet, consists of a manifold Fε with ra-
dius of order ε. The cross section could have a boundary resulting in a manifold
Xε with boundary. In addition, the vertex neighbourhoods Uε,v are assumed to
be small. The simplest example is the ε-neighbourhood Xε of a quantum graph
X0 embedded in R2. In this case, the cross section is Fε = (−ε, ε). A simple
boundaryless example is given by the surface of a pipeline network according to
the underlying graph X0 (cf. Figure 2). Here, the cross section consists of a circle
of radius ε.

On the graph-like manifold Xε we consider the Laplacian H̃ := ∆Xε
≥ 0

acting in the Hilbert space H̃ := L2(Xε). If Xε has a boundary, we impose
Neumann boundary conditions. On the graph, we choose the natural Laplacian
H := ∆X0

≥ 0, namely, the generalised Neumann (Kirchhoff) Laplacian acting
on each edge as a one-dimensional weighted Laplacian (cf. Eq. (2.2)). On each
vertex, we assume continuity and current conservation (cf. Eq. (2.3)). Note that
∆X0

acts on H := ⊕eL2(e) where each edge e is identified with the interval
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Figure 1. The associated edge and vertex neighbourhoods with
Fε = S1

ε, i.e., Uε,e and Uε,v are 2-dimensional manifolds with bound-
ary.
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Figure 2. On the left, we have the graph X0, on the right, the
associated family of graph-like manifolds. Here, Fε = S1

ε is the
transversal section of radius ε and Xε is a 2-dimensional manifold.

(0, `e) (0 < `e ≤ ∞) — in contrast to the discrete graph Laplacian acting as
difference operator on the space of vertices, `2(V ). For a relation between these
two operators see Section 3.3.

In this article, we concentrate on the spectrum of such systems. Our main
result is the following:

Main Theorem (Theorem 2.13). Suppose Xε is a family of (non-compact)
graph-like manifolds associated to a metric graph X0. If Xε and X0 satisfy some
natural uniformity conditions, then the resolvent of ∆Xε

converges in norm to
the resolvent of ∆X0

(with suitable identification operators) as ε → 0. In partic-
ular, the corresponding essential and discrete spectra converge uniformly in any
bounded interval. Furthermore, the eigenfunctions converge as well.
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The uniformity conditions are precisely stated in Section 2.4. For example we
need a global lower bound on the edge length `e ≥ `0 and a global upper bound
on the vertex degree deg v ≤ d0. In the case when the graph X0 is embedded in
R2 (cf. Section 3.1) the uniformity conditions mean in particular, that we need a
global bound on the curvature of an edge and a global lower bound on the angle
between two different edges at a vertex although both quantities do not enter into
the limit operator and space.

In contrast to previous articles (cf. [RS01, KuZ01, KuZ03, EP05]) we allow
here infinite structures, i.e., we drop the condition of compactness of Xε and X0.
Therefore, we cannot use the variational principle in order to characterise the dis-
crete spectrum. The appropriate substitute is an abstract convergence criterion
provided in Appendix A. The basic idea is to define a “distance” between the
operators ∆X0

and ∆Xε
with suitable identification operators (cf. Definition A.1).

We have formulated the abstract results fully in terms of this “distance” in order
to trace the parameter dependence on ε of the operator ∆Xε

, the Hilbert space
L2(Xε) and the identification operators between the graph and the manifold. The
“distance” can be calculated in terms of the associated sesquilinear forms which
makes the verification quite simple in our main model. As a consequence, we
show norm resolvent convergence which implies all other convergence results like
convergence of the spectral projections, convergence of the eigenfunctions and
convergence of the spectra. Note that in [RS01, KuZ01, KuZ03, EP05], only
convergence of eigenvalues has been established. Our results here show, that the
eigenvectors converge as well. We will show in a forthcoming paper that this
abstract convergence criterium has applications in other geometrical situations.

A related result on non-compact spaces has been established in [Sa00]. Saito
considered metric trees (allowing also arbitrary small edges, i.e., no lower bound
on `e) together with a suitable ε-neighbourhood, but showed only weak conver-
gence of the resolvents. In [EvS00] the authors prove exact relations (equality,
inclusion) of the essential spectrum of the Neumann Laplacian on a thickened
tree (for fixed ε in our notation) and the corresponding metric graph.

Our spectral convergence result has many applications in different situations:
First, we can consider graph-like manifolds as a kind of toolbox in order to
construct manifolds with prescribed spectrum, at least approximately. For ex-
ample, we are able to construct manifolds with gaps in the essential spectrum
(cf. Thms. 3.4, 3.5 ) also in the non-periodic case: Using the recent result on
graph decoration one can construct metric graphs with spectral gaps (cf. [AS00,
BEG03, BGL05, Ku05] and Section 3.2). Our spectral convergence result then
immediately states that an associated graph-like manifold also has gaps. In the
periodic case (i.e., on covering spaces with compact quotient), we have of course
the same result once we ensure the existence of gaps on the quantum graph. For
the existence of spectral gaps on periodic manifolds (not necessarily graph-like
in our sense) we refer to [P03b, LP04, LP05] and the references therein. The
periodic case can often be reduced to the spectral convergence on a compact
space.

An example with arbitrary many gaps in a compact spectral interval is given by
a fractal-like manifold in Theorem 3.10. The graph-like manifold is constructed
according to a Sierpiński graph. It was shown in [T98] that the discrete Laplacian
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on a Sierpiński graph has pure point spectrum which is purely essential and of
fractal nature. Using a nice relation between the spectrum of the discrete graph
Laplacian and the metric graph Laplacian with constant edge length `e = `
developed in [Ca97] (cf. Theorem 3.6, see also [E97]) we are able to construct a
family of graph-like manifolds Xε such that the spectrum of ∆Xε

approaches a
fractal set. In particular, the spectrum of ∆Xε

has an arbitrary (a priori finite)
number of spectral gaps in the compact interval [0,Λ] provided ε is small enough.
Such fractal manifolds have been constructed in [BCG01] in order to provide
examples of smooth spaces sharing properties of fractal spaces in large scales
(e.g. heat kernel estimates).

Finally, our result shows rigorously, that the physically intuition of model-
ing quasi-one-dimensional spaces by its singular limit is correct, also on infinite
structures. Graph models have a long history in modeling properties of net-
works, complicated organic molecules [RuS53] or quite recently, nanostructures,
i.e., structures, which are too small to be considered classically, but still too large
to be described on a conventional quantum level, see e.g. [AGHH05, KoS99, Ku02,
Ku04, Ku05]. On the one side quantum graphs provide a solvable model in quan-
tum mechanics in the sense that many quantities can be calculated explicitely
essentially by solving systems of ODEs. On the other side, the structure of a
metric graph is still rich enough in order to provide a good model for branched
structures. For example, a spectral gap corresponds to “forbidden modes”, i.e.,
a particle with an energy in the gap cannot propagate through the system. In
this sense, transport properties on Xε are approximately described by the quan-
tum graph X0. Furthermore, a bound state (of finite degeneracy) on Xε (i.e., an
eigenfunction corresponding to a discrete eigenvalue) can be approximated by its
(mostly explicitly known) eigenvector on X0 (cf. Theorem 3.5). In a forthcoming
paper [EP06] we will deal with the convergence of resonances, i.e., eigenvalues of
a suitable dilated Hamiltonian. The methods needed there differ from the ones
given in Appendix A since the dilated operators are no longer self-adjoint (even
not normal).

With our methods here, we consider the discrete and the essential spectrum
only since they can be characterised by the dimension of spectral projections. A
finer analysis of the spectrum needs more elaborated methods, such as scattering
theory. Our results presented here are considered as a first step in dealing with
the above-mentioned structures. We will concentrate on the relation between
scattering and transport properties on the two systems in a forthcoming paper.

The paper is organised as follows. In Section 2 we define properly graph-like
manifolds and metric graphs and show that the abstract convergence result can be

used in this situation for (H,H) = (∆X0
, L2(X0)) and (H̃, H̃) = (∆Xε

, L2(Xε)).
In Section 3 we discuss various examples of graph-like manifolds to which our
result applies. We also derive several consequences of the spectral convergence.
In Appendix A we develop the abstract framework in order to show the spectral

convergence for arbitrary pairs (H,H) and (H̃, H̃) being at a “distance” δ to each
other.
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2. Graph-like manifolds

In this section we apply the abstract setting developed in Appendix A to
the example of a family of manifolds Xε converging to a (metric) graph X0.
This situation has already been treated in a quite general way in [EP05] based
on [KuZ01, RS01] with the only restriction that the graph is compact (i.e., finite
and each edge has finite length) and each manifold Xε is compact. Under these
assumptions, the spectra of the operators considered are purely discrete (for a
precise definition see below). The main result in [EP05] states that the k-th
eigenvalue of the Laplacian ∆Xε

converges to the k-th eigenvalue of the limit op-
erator. The proof uses the min-max principle and comparison of the appropriate
Rayleigh quotients.

If the manifold and the metric graph are non-compact, more elaborated meth-
ods are needed. Namely, we establish in Appendix A norm resolvent convergence
from which all other convergence results follow. The norm resolvent convergence
is reduced to the verification of several natural conditions provided in Defini-
tion A.1. In order that these conditions are satisfied we need the uniformity as-
sumptions (G1)–(G7) in our model. The eigenvalue convergence already proven
in [EP05] appears as a special case (cf. Corollary A.15).

2.1. Metric graphs. Let us first describe the metric graph X0 and the family
of graph-like manifolds Xε; the necessary assumptions in order that the conver-
gence results hold will be given later. Suppose X0 = (V,E, ∂, `) is a countable,
connected metric graph, i.e., V denotes the set of vertices, E the set of edges
and ∂ : E −→ V × V , ∂e = (∂+e, ∂−e) denotes the pair of the end point and the
starting point of the edge e. For each vertex v ∈ V we denote by

E±
v := { e ∈ E | ∂±e = v }

the edges starting (−)/ending (+) at v. Let Ev := E+
v ] E−

v be the disjoint
union of all edges emanating at v. The degree of a vertex v is the number of
vertices emanating from v, i.e.,

deg v := |Ev| = |E+
v | + |E−

v |. (2.1)

We assume that X0 is locally finite, i.e., deg v ∈ N. Note that we allow loops,
i.e. edges e with ∂+e = ∂−e = v. A loop e will be counted twice in deg v and
occurs twice in Ev due to the disjoint union. In addition, we assume that ∂e
always consists of two elements, even if ∂−e = ∂+e = v for a loop e. We also
allow multiple edges, i.e., edges e1 6= e2 having the same starting and end points.

Finally, ` : E −→ (0,∞] assigns a length `e to each edge e ∈ E, making the
graph (V,E, ∂) a metric or quantum graph. Clearly, X0 becomes a metric space.
We identify each edge e with the interval (0, `e). In the case of an infinite edge,
a “lead”, (i.e., `e = ∞) we assume that there is only one vertex ∂e = ∂−e at the
end corresponding to 0, i.e., there is no vertex at ∞. For a general survey on
quantum graphs consult e.g. [Ku04, Ku05]. We stress that our graphs need by
no way to be embedded in some Euclidean space.

Remark 2.1. Note that for a metric graph, the notion “compact” and “finite” have
a different meaning: A finite metric graph is a graph with finitely many vertices
and edges, whereas a compact graph must in addition have finite edge length for
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each edge. Therefore, a compact metric graph is finite but not vice versa (think
e.g. of a star-shaped metric graph with one vertex and a finite number of leads
attached to the vertex).

We also assign a density pe to each edge e ∈ E, i.e., a measurable function
pe : e −→ (0,∞). For simplicity, we assume that pe is smooth in order to obtain
a smooth metric in the graph-like manifold. The data (V,E, ∂, `, p), p = (pe)e
describe a weighted metric graph.

The Hilbert space associated to such a graph is

H := L2(X0) =
⊕

e∈E

L2(e)

which consists of all functions f with finite norm

‖f‖2 = ‖f‖2
X0

=
∑

e∈E

‖fe‖2
e =

∑

e∈E

∫

e

|fe(x)|2pe(x) dx.

We define the limit operator H via the quadratic form

h(f) :=
∑

e∈E

‖f ′
e‖2
e =

∑

e∈E

∫

e

|f ′
e(x)|2pe(x) dx

for functions f in

H1 := H
1(X0) := C(X0) ∩

⊕

e∈E

H
1(e).

Note that a weakly differentiable function on an interval e, i.e., fe ∈ H
1(e), is

automatically continuous. Therefore, the continuity is only a condition at each
vertex. Furthermore, h is a closed form, i.e., H1 together with the norm

‖f‖2
1 = ‖f‖2

1,X0
:= ‖f‖2

X0
+ h(f)

is complete.
The associated self-adjoint, non-negative operator H = ∆X0

is given by

(∆X0
f)e = − 1

pe

(
pe f

′
e

)′
(2.2)

on each edge e. If we assume the global lower bound (G2) (cf. page 9) on the
length `e of the edge e then the domain H2 of H = ∆X0

consists of all functions
f ∈ L2(X0) such that ∆X0

f ∈ L2(X0) (cf. e.g. [Ku04, Thm. 17]). Furthermore,
each function f satisfies the so-called (generalised) Neumann boundary condition
(sometimes also named Kirchhoff ) at each vertex v, i.e., f is continuous at v and

∑

e∈Ev

pe(v)f
′
e(v) = 0 (2.3)

for all vertices v ∈ V where the derivative is taken away from the vertex, i.e.
we set f ′

e(v) := f ′
e(0) if v = ∂−e and f ′

e(v) := −f ′
e(`e) if v = ∂+e (considering fe

as function on the interval (0, `e)). We will call ∆X0
the (generalised) weighted

Neumann Laplacian on X0. For details on operators on non-compact or infinite
metric graphs we refer e.g. to [Ku04, Ku05].
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2.2. Graph-like manifolds. Let X0 be a weighted metric graph as defined in
the previous section. The corresponding family of graph-like manifolds Xε is
given as follows: For each 0 < ε ≤ ε0 we associate with the graph X0 a connected
Riemannian manifold Xε of dimension d ≥ 2 with or without boundary equipped
with a metric gε to be specified below1. We suppose that Xε is the union of the
closure of open subsets Uε,e and Uε,v such that the Uε,e and Uε,v are mutually
disjoint for all possible combinations of e ∈ E and v ∈ V , i.e.,

Xε =
⋃

e∈E

U ε,e ∪
⋃

v∈V

U ε,v. (2.4)

We think of Uε,e as the thickened edge e and of Uε,v as the thickened vertex v (see
Figures 1 and 2). Note that Figure 2 describes the situation only roughly, since
it assumes that Xε is embedded in Rν. More correctly, we should think of Xε

as an abstract manifold obtained by identifying the appropriate boundary parts
of Uε,e and Uε,v via the connection rules of the graph X0. This manifold need
not to be embedded, but the situation when Xε is a submanifold of Rν (ν ≥ d)
can be viewed also in this abstract context; note that the ε-neighbourhood of
an embedded metric graph in Rd is also included as example (cf. [EP05] and
Section 3.1).

As a matter of convenience we assume that Uε,e and Uε,v are independent of
ε as manifolds, i.e., only their metrics gε depend on ε. This can be achieved in
the following way: for the edge regions we assume that Uε,e is diffeomorphic to
Ue := e×F for all 0 < ε ≤ ε0 where F denotes a compact and connected manifold
(with or without a boundary) of dimension m := d− 1. We fix a metric h on F
and assume for simplicity that volF = 1.

For the vertex regions we assume that the manifold Uε,v is diffeomorphic to an
ε-independent manifold Uv for 0 < ε ≤ ε0. Pulling back the metric to the diffeo-
morphic manifold Ue resp. Uv we may assume that the underlying differentiable
manifold is independent of ε. Therefore, Uε,e ∼= (Ue, gε,e) and Uε,v = (Uv, gε,v).

We use the obvious notation for functions u on Xε like ue and uv as restrictions
on Uε,e and Uε,v, respectively. The corresponding Hilbert space is then

H̃ := L2(Xε) =
⊕

e∈E

L2(Uε,e) ⊕
⊕

v∈V

L2(Uε,v)

which consists of all functions u with finite norm

‖u‖2 = ‖u‖2
Xε

=
∑

e∈E

‖ue‖2
Uε,e

+
∑

v∈V

‖uv‖2
Uε,v

=
∑

e∈E

∫

e×F

|ue|2 det g1/2
ε,e dx dy +

∑

v∈V

∫

Uv

|uv|2 det g1/2
ε,v dz

where y and z represent coordinates of F and Uv, respectively.

The operator H̃ we are considering will be the Laplacian on Xε, i.e., H̃ = ∆Xε
.

If F has non-trivial boundary, we assume Neumann boundary conditions on the

1The boundary of Xε (if there is any) need not to be smooth; we allow singularities on the
boundary of the vertex neighbourhood Uε,v, see e.g. Section 3.1 and Figure 3



8 OLAF POST

boundary part coming from ∂F . We define ∆Xε
via its quadratic form h̃ given

by

h̃(u) =

∫

Xε

| du|2gε
dXε (2.5)

for functions u ∈ H̃1 = H
1(Xε) where the latter space denotes the completion of

the space of smooth functions with bounded support w.r.t. the norm

‖u‖2
1 = ‖u‖2

1,Xε
:= ‖u‖2

Xε
+ h̃(u). (2.6)

2.3. Quasi-unitary operators. Let us fix the identification operators J : H −→
H̃ and J ′ : H̃ −→ H and their analogues on the quadratic form domains. Roughly
speaking, J extends the function f at x ∈ e constantly onto the cross section
Fε,e(x) := ({x} × F, hε,e) ⊂ (Ue, gε,e), where hε,e is the induced metric of the re-
striction, and J ′ is the transversal average of u at x, i.e., the Fourier coefficient of
u(x, ·) w.r.t. the first (constant) eigenfunction on Fε,e(x). We will first show what
estimates are necessary in order that J , J ′ and their quadratic form analogues
become quasi-unitary in the sense of Definition A.1. In a second step we provide
the necessary assumptions on the graph (Section 2.4) and on the manifold (Sec-
tion 2.5). Finally, we provide some necessary estimates (Section 2.6) and finish
the proof of quasi-unitarity.

We define the operator J : H −→ H̃ by

Jf(z) :=

{
ε−m/2fe(x) if z = (x, y) ∈ Ue,

0 if z ∈ Uv
(2.7)

and the operator J1 : H1 −→ H̃1 by

J1f(z) :=

{
ε−m/2fe(x) if z = (x, y) ∈ Ue,

ε−m/2f(v) if z ∈ Uv
(2.8)

Note that the latter operator is well-defined since functions in H1 are continuous
(cf. Lemma 2.4). For the operators in the opposite direction, we first introduce
the following averaging operators

(Neu)(x) := 〈ϕF,1, ue(x, ·)〉F =

∫

F

ue(x, y) dF (y),

Cvu := 〈ϕUv,1, uv〉Uv
=

1

volUv

∫

Uv

u dUv

for u ∈ H̃ = L2(Xε) giving the coefficient corresponding to the first (transversal)
eigenfunction ϕ1 on Ue resp. Uv. Note that these eigenfunctions are constant and
that volF = 1.

We define J ′ : H̃ −→ H by

(J ′u)e(x) := εm/2(Neu)(x), x ∈ e (2.9)

and the operator J ′
1 : H̃1 −→ H1 by

(J ′
1u)e(x) := εm/2

[
Neu(x)

+ ρ+
e (x)

[
C∂+eu−Neu(∂+e)

]
+ ρ−e (x)

[
C∂−eu−Neu(∂−e)

]]
(2.10)
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for x ∈ e. Here, ρ±e : R −→ [0, 1] are the continuous, piecewise affine functions
given by

ρ+
e (∂+e) = 1 and ρ+

e (x) = 0 for all dist(x, ∂+e) ≥ min{1, `e/2} (2.11)

and similarly for ρ−e and ∂−e. Note that (J ′
1u)e(v) = Cvu for v = ∂±e. In

particular, J ′
1u is a continuous function on X0. Again, the operator J ′

1 is only

defined on H̃1 = H1(Xε).
The closeness assumptions of Section A.3 now reads as follows:

‖Jf − J1f‖2 =
∑

v∈V

ε−m volUε,v|f(v)|2 (2.12)

‖J ′u− J ′
1u‖2 =

∑

e∈E

∑

v∈∂e

εm‖ρ±e ‖2
e |Cvu−Neu(v)|2 (2.12’)

|〈Jf, u〉 − 〈f, J ′u〉|

=
∣∣∣
∑

e∈E

∫

e×F

f(x)u(x, y) ε−m/2
[
dUε,e(x, y) − εm dF (y) pe(x) dx

]∣∣∣ (2.13)

|h̃(J1f, u) − h(f, J ′
1u)|

=
∣∣∣
∑

e∈E

∫

e×F

f
′
(x) ∂xu(x, y) ε

−m/2
[
gxxε,e dUε,e(x, y) − εm dF (y) pe(x) dx

]

−
∑

e∈E

∑

v∈∂e

ε−m/2(Cvu−Neu(v))〈f ′
e, (ρ

±
e )′〉e

∣∣∣

(2.14)

‖JJ ′u− u‖2 =
∑

e∈E

‖Neu− u‖2
Uε,e

+
∑

v∈V

‖u‖2
Uε,v

(2.15)

‖Jf‖2 =
∑

e∈E

∫

e×F

|f(x)|2ε−m dUε,e(x, y) (2.16)

‖J ′u‖2 ≤
∫

e×F

|u(x, y)|2 εm dF (y) pe(x) dx (2.16’)

Here, the sign in ρ±e is used according to v = ∂±e. Note that J ′Jf = f . From
the RHS we can deduce the necessary assumptions given precisely in the next
section. For example, from (2.12) it follows that we must have volUε,v = o(εm),
and from (2.13) and (2.14) we see that gε,e must be close to a product metric on
Ue = e× F .

2.4. Assumptions on the graph. We precise here the necessary assumptions
in order to estimate the RHS of (2.12)–(2.16) and (2.16’). For the graph data we
require that the degree is uniformly bounded, i.e., that there exists d0 ∈ N such
that

deg v ≤ d0, v ∈ V. (G1)

We assume in addition that there is a uniform lower bound on the set of length,
i.e., there exists `0 > 0 (without loss of generality `0 ≤ 1) such that

`e ≥ `0 for all e ∈ E. (G2)
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We assume that the density function pe is uniformly bounded, i.e., there exist
constants p± > 0 such that

p− ≤ pe(x), dist(x, ∂±e) ≤ min{1, `e/2}, e ∈ E,

pe(x) ≤ p+, x ∈ e, e ∈ E.
(G3)

Since re(x) := pe(x)
1/m will correspond to the radius of the cross section of Uε,e

at x ∈ e, we also denote r± := p
1/m
± the maximal/minimal radius. We want to

stress that we allow a sequence of edges en such that `en
→ ∞ or even external

edges (i.e., edges with infinite length). In both cases, we do not impose a global
lower bound on the density function pe = rme . E.g., a horn-like shape of radius
re(x) = re,0x

−β for the associated edge neighbourhood Uε,e is allowed for an
external edge e (cf. also Remark 3.3).

Definition 2.2. A uniform weighted metric graph is a weighted metric graph
X0 = (V,E, ∂, `, p) satisfying (G1)–(G3).

From these assumptions we conclude the following estimates:

Lemma 2.3. Suppose that (a(v))v∈V is a family of non-negative numbers. Then
∑

e∈E

∑

v∈∂e

a(v) =
∑

e∈E

(
a(∂+e) + a(∂−e)

)
=

∑

v∈V

(deg v)a(v) ≤ d0

∑

v∈V

a(v) (2.17)

due to (G1). Furthermore,
∑

v∈V

∑

e∈Ev

be = 2
∑

e∈E

be (2.18)

for a family (be)e∈E.

Proof. Inequality (2.17) is clear, and from the disjoint union

E =
⊎

v∈V

E+
v =

⊎

v∈V

E−
v

the second equality follows immediately. �

The next lemma is needed in order to estimate f(v):

Lemma 2.4. We have ∑

v∈V

|f(v)|2 ≤ 4

`0p−
‖f‖2

1

for all f ∈ H1 = H
1(X0).

Proof. The estimate follows easily from

|f(0)|2 ≤ 2

p−
max

{1

`
, `

} ∫ `

0

(
|f(x)|2 + |f ′(x)|2

)
p(x) dx (2.19)

where f ∈ H1(0, `) and p− := inf0≤x≤` p(x) (cf. [Ku04, Lemma 8]) applied to
` := min{1, `e/2} together with (G2) and (G3). �

Finally, we can estimate the cut-off function ρ±e using (G2) and (G3):
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Lemma 2.5. The estimate

‖ρ±e ‖2
e ≤ p+ and ‖(ρ±e )′‖2

e ≤
2p+

`0
(2.20)

holds for all e ∈ E.

2.5. Assumptions on the manifold. Guided by the classical example of an
embedded graph (cf. Section 3.1 and (3.1)) we assume that the metric gε,e on the
edge neighbourhood Ue = e× F is given as a perturbation of the product metric

gε,e := dx2 + ε2 r2
e(x) h(y), (x, y) ∈ Ue = e× F (2.21)

with

re(x) := (pe(x))
1/m

where h is the fixed metric on F , m = dimF = d − 1 and pe is the density
function of the metric graph on the edge e.

We denote by Gε,e and Gε,e the d × d-matrices associated to the metrics gε,e
and gε,e with respect to the coordinates (x, y) and assume that the two metrics
coincide up to an error term as ε→ 0, more specifically

Gε,e = Gε,e +

(
o(1) o(ε)re
o(ε)re o(ε2)r2

e

)
=

(
1 + o(1) o(ε)re
o(ε)re (ε2H + o(ε2))r2

e

)
(G4)

uniformly on Ue. We also assume that these error estimates are uniform in e,
i.e., that o(εi) does not depend on the edge e ∈ E. As in [EP05, Lemma 4.3]
(replacing ε by εre ≤ εr+) we can show the following estimates

dUε,e(x, y) = (1 + o1(1))εm dF (y) pe(x) dx (2.22)

gxxε,e := (G−1
ε,e)xx = 1 + o2(1) (2.23)

| dxu|2 ≤ O3(1)| du|2gε,e
(2.24)

| dFu|2h ≤ o4(ε)| du|2gε,e
(2.25)

where dx and dF are the (exterior) derivatives with respect to x ∈ e and y ∈ F ,
respectively. Here, o1(1) and o2(1) depend only on o(εj) in (G4) whereas O3(1)
and o4(1) depend also on r+. The index i in oi(·) is added in order to trace the
error estimates in the formulas below. All the estimates are uniform on Ue and
uniform in e ∈ E as ε→ 0.

On the vertex neighbourhood Uv we assume that the metric gε,v satisfies

c−ε
2gv ≤ gε,v ≤ c+ε

2αgv (G5)

in the sense that there are constants c−, c+ > 0 independent of v such that

c−ε
2gv(z)(w,w) ≤ gε,v(z)(w,w) ≤ c+ε

2αgv(z)(w,w)

for all w ∈ TzUv and all z ∈ Uv where gv is the metric gε,v with ε = 1. The
number α in the exponent is assumed to satisfy the inequalities

d− 1

d
< α ≤ 1. (G6)

In addition, we assume that

cvol := sup
v∈V

volUv <∞ and λ2 := inf λN
2 (Uv) > 0 (G7)
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where λN
2 (Uv) denotes the second (i.e., the first non-zero) Neumann eigenvalue of

∆Uv
.

Definition 2.6. A family of graph-like manifolds Xε w.r.t. the uniform metric
graph X0 will be called uniform if (G4)–(G7) are satisfied.

We will discuss several examples of uniform metric graphs and graph-like man-
ifolds in Section 3. Let us just finish this subsection with a few comments on the
assumptions.

Remark 2.7. (1) The condition (G4) is motivated by the classical example of
a curved edge embedded in R2, cf. Section 3.1 and (3.1).

(2) We have assumed an upper bound of the density pe (i.e., the radius
function re) on the whole edge in (G3). A careful analysis of the proof
of (2.22)–(2.25) shows that the first two estimates remain globally true
even if pe has no global bound p+ on e. But the last two estimates need
the global bound pe(x) ≤ p+ for all x ∈ e and e ∈ E. Therefore, an infinite
edge cannot have a neighbourhood Uε,e with growing radius re(x) → ∞
such as a conical end. It is also forbidden that a sequence of edges en has
neighbourhoods with radius functions ren

unbounded in n.
(3) Note that the upper estimate in assumption (G5) does not apply to points

at the border of ∂Uv, since we still assume that gε,v is the restriction of a
global metric gε on Xε; and the cross-section on Uε,e has a metric of order
O(ε2)h. Nevertheless it is not excluded that gε,v scales differently away
from ∂Uv (for a detailed discussion of such scalings cf. [EP05, Sec. 6]).

(4) The reason for the critical exponent (d − 1)/d in (G6) is roughly the
following: If α satisfies (G6) then volUε,v ≤ O(εαd) decays faster than
volUε,e = O(εd−1). Other decay rates are discussed in [KuZ03, EP05].

(5) Assumption (G7) roughly assures that Uv remains small (as family in
v ∈ V ): Suppose that there is an infinite sequence (vn) ⊂ V such that
Uvn

= Uv0 as sets and that gvn
= ρ2

ng for a sequence ρn → ∞ of positive
numbers. This behaviour does not contradict (G5) since (G5) is only a
relative bound w.r.t. a fixed metric gv. But (G7) is no longer satisfied.

In addition, the eigenvalue estimate assures that Uε,v as well as (Uvn
)n

for a sequence (vn)n ⊂ V do not separate into two (or more) parts as ε→ 0
or n→ ∞, respectively. This could happen e.g. if Uε,v or (Uvn

)n consists of
two (or more) large parts joined by small cylinders which shrink as ε→ 0
resp. n → ∞. This could lead to a decoupling of the edges emanating
from such a vertex or such a sequence of vertices.

(6) We want to stress that Uv cannot either become too small as v → ∞
for some sequence of vertices. This is at first sight not obvious, since a
priori, (G5) is not a restriction of gv as family in v ∈ V and (G7) roughly
says that Uv remains small as family in v. But one has to take into
account that gε,e and gε,v are restrictions of a global smooth metric gε. In
particular, the metrics on the common boundary ∂eUv of Ue and Uv must
be the same; and therefore, the uniform estimates of gε,e in (G4) become
uniform estimates of gε,v (take e.g. a sequence ρn → 0 and argue as in the
previous remark).



SPECTRAL CONVERGENCE OF QUASI-ONE-DIMENSIONAL SPACES 13

Remark 2.8. Without loss of generality we can assume that ∂eUv has a collar
neighbourhood Ue,v = (0, `−) × F in which the metric gv on Uv has the form

ge,v = dx2 + hx

for (x, y) ∈ Ue,v, i.e., the collar neighbourhood has length `− for some global
constant 0 < `− < 1 (e.g., `− = `0/2, cf. also Figure 3 where `− < `0/2).
Here, ∂eUv is the part of the boundary (diffeomorphic to F ) where the edge
neighbourhood of e meets. In addition, we assume that estimates similar to
(2.22) and (2.24) are fulfilled (with ε = 1, x replaced by x and gε,e replaced by
ge,v).

If this condition is not satisfied, we just have to modify the decomposition of
the manifold into edge and vertex neighbourhoods in order that Uε,v has at least a
cylindrical part of length ε`− (taken from the edge neighbourhood). The desired
estimates (2.22) and (2.24) follow now from (G4) with the new variable x = x/ε.

2.6. Main result. We are now able to prove the following lemmas needed to
complete the proof of the closeness assumptions. Mainly, the estimates are al-
ready given in [EP05] but since there, we only considered compact graphs and
compact manifolds, a precise control of the constants was not necessary. We do
not repeat the proofs given there but we state the necessary results together with
their dependence on the constants given in the uniformity assumptions.

Lemma 2.9. We have

‖u‖2
∂eUv

≤ ctr
(
‖u‖2

Uv
+ ‖du‖2

Uv

)

for all u ∈ H1(Uv) where

ctr :=
2p+(1 + o1(1))(1 +O3(1))

p−(1 − o1(1))`−
.

Proof. The estimate is an immediate consequence of (2.19) and Remark 2.8. �

The following lemma roughly states that the transversal average on the bound-
ary ∂eUv is close to the total average on Uv. The proof is based on the fact that the
second Neumann eigenvalue of Uε,v tends to ∞ as ε→ 0 (cf. [EP05, Lemma 5.5]):

Lemma 2.10. The inequality

εm|Cvu−Neu(v)|2 ≤ c̃trε
2α−1‖du‖2

Uε,v

holds for all functions u ∈ H1(Uε,v) and v = ∂±e where

c̃tr :=
c2−

p−(1 − o1(1))cd+

( 1

λ2

+ 1
)
ctr.

Note that ε2α−1 → 0 as ε→ 0 since α > (d− 1)/d ≥ 1/2.
The next lemma assures that higher transversal modes does not contribute too

much (cf. [EP05, Lemmas 3.1 and 4.4]). Essentially, it is the observation, that
Neu− u is the projection onto the orthogonal complement of the first (constant)
eigenfunction on F :
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Lemma 2.11. We have

‖Neu− u‖2
Uε,e

≤ cedo4(ε)‖du‖2
Uε,e

for all u ∈ H1(Uε,e) where

ced :=
(1 + o1(1))

(1 − o1(1))λ2(F )
.

Finally, we need to assure that there is no concentration at the vertex neigh-
bourhoods in any bounded spectral interval (cf. [EP05, Corollary 5.8]):

Lemma 2.12. The estimate

‖u‖2
Uε,v

≤ cvxε
αd−m‖u‖2

1,bUε,v

holds for all u in H1(Ûε,v) where Ûε,v := Uε,v ∪
⋃
e∈Ev

Uε,e and cvx depends only
on `0, p±, o1(1), O3(1), c±, cvol, λ2 and c̃tr.

We are now able to estimate the RHS of the closeness assumptions (2.12)–(2.16)
and (2.16’). For the first one, we have

‖Jf − J1f‖2 ≤ 4c
d/2
+ cvol
`0p−

εαd−m‖f‖2
1

for f ∈ H1 using Lemma 2.4 and (G5). Note that εαd−m → 0 as ε → 0 due
to (G6). Next, we have

‖J ′u− J ′
1u‖2 ≤ p+c̃trε

2α−1
∑

e∈E

∑

v∈∂e

‖du‖2
Uε,v

≤ d0 p+c̃trε
2α−1 h̃(u)

using Lemma 2.10, Lemma 2.5 and Equation (2.17). The estimation of (2.13),
i.e.,

|〈Jf, u〉 − 〈f, J ′u〉| ≤ o1(1)‖f‖‖u‖
follows from (2.22). Similarly, the estimate (2.14) can be proven by

|h̃(J1f, u) − h(f, J ′
1u)| ≤

(
o(1) +

[2d0p+c̃tr
`0

]1/2

εα−1/2
)
h(f)1/2h̃(u)1/2

where o(1) depends on the errors in (G4). Again, we have used Lemma 2.10,
Lemma 2.5 and Equation (2.17). Estimate (2.15) follows from

‖JJ ′u− u‖2 =
∑

e∈E

‖Neu− u‖2
Uε,e

+
∑

v∈V

‖u‖2
Uε,v

≤ cedo4(ε)
∑

e∈E

‖du‖2
Uε,e

+ cvxε
αd−m

∑

v∈V

‖u‖2
1,bUε,v

≤ 3(cedo4(ε) + cvxε
αd−m)‖u‖2

1

where we also used (2.18) in the second estimate. Finally, Assumption (A.13)
follows from

‖Jf‖2 ≤ (1 + o1(1)‖f‖2 and ‖J ′u‖2 ≤ 1

1 − o1(1)
‖u‖2

and (2.22). We therefore have proven
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Theorem 2.13. Suppose that the metric graph X0 and the family of graph-like
manifolds Xε is given as below and satisfy the uniformity conditions (G1)–(G7).
Then the generalised weighted Neumann Laplacian on the graph (∆X0

, L2(X0))
and the (Neumann) Laplacian on the manifold (∆Xε

, L2(Xε)) are δ-close of order
1 where δ = o(1) as ε→ 0. In particular, all the results of Appendix A are true,
e.g., the convergence of eigenfunctions stated in Theorem A.12 or the spectral
convergence in Theorem A.13.

In particular, we have the following consequence of the convergence results of
Appendix A:

Remark 2.14. Due to Theorem A.10 and Thms. A.7, A.8, we can approximate the
complicated operator on the manifold ϕ(∆Xε

) by the simpler operator Jϕ(∆X0
)J ′

up to an error, where e.g. ϕ(λ) = (λ + 1)−1 (resolvent), ϕt(λ) = e−tλ (heat
operator) or ϕ =

�
I (spectral projection). Saito [Sa00] obtained a similar but

weaker assertion in the resolvent case.

3. Examples and applications of the spectral convergence

In this section we give several classes of examples for uniform graphs and mani-
folds. We also provide consequences of the above-mentioned spectral convergence.

3.1. Embedded graphs and graph-like manifolds. Let us start with an em-
bedded metric graph as an explicite example in order to illustrate the geometric
meaning of the uniformity assumptions (G1)–(G7). This situation has origi-
nally been treated in [KuZ01, RS01] on compact metric graphs (cf. also [EP05,
Ex. 4.2])), and on trees in [Sa00]:

Suppose that the weighted metric graph X0 = (V,E, ∂, `, p) is isometrically
embedded in R2 via the maps ψe : (0, `e) −→ R2. Then

Ψε,e(x, y) := ψe(x) + εre(x)yne(x), (x, y) ∈ (0, `) × [−1/2, 1/2] ∼= e× F

defines a weighted tubular neighbourhood of the edge e considered as subset of
R2. Here, ne is a unit vector field normal to the tangent vector field ψ̇e and re(x)
defines the radius of the neighbourhood. Let Xε be the union of the closures of
the range of all Ψε,e, e ∈ E. Denote by

κe := ψ̇1ψ̈2 − ψ̈1ψ̇2

the signed curvature of the embedded edge e. We assume that there are global
constants `0, β0, κ0, r±, ṙ0 > 0 such that

](e, e′) ≥ β0, tan(β0/2) > r+/`0 (E1)

|κe(x)| ≤ κ0, x ∈ e (E2)

`e ≥ `0, re(x) ≥ r−, d(x, ∂e) ≤ min{1, `e/2} (E3)

|ṙe(x)| ≤ ṙ0, re(x) ≤ r+, x ∈ e. (E4)

Here, ](e, e′) denotes the angle between the tangent vectors ψ̇e and ψ̇e′ of the
embedded edges at the vertex v for e, e′ ∈ Ev, e 6= e′.
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We claim that under these assumptions, Xε is a uniform family of graph-
like manifolds2 embedded in R2 associated to the uniform metric graph X0 with
weights pe := re:

Theorem 3.1. Under the assumptions (E1)–(E4) the metric graph X0 and the
associated weighted neighbourhood Xε satisfy (G1)–(G7) for ε small enough.
In particular, the generalised weighted Neumann Laplacian on the graph
(∆X0

, L2(X0)) and the Neumann Laplacian (∆N
Xε
, L2(Xε)) are δ-close of order 1

where δ = O(ε1/2) as ε→ 0, and therefore, the convergence results of Appendix A
are true.

Proof. The bounded degree assumption (G1) follows from (E1) with d0 = d2π/β0e.
(G2) and (G3) are clear. We decompose Xε into the edge and vertex neighbour-
hoods Uε,e and Uε,v, resp., in the way that

Uε,e = Ψε,e

(
(ε`0/2, `e − ε`0/2) × F

)

denotes the edge neighbourhood of e shortened by the amount ε`0 belonging to
the vertex neighbourhoods of ∂−e and ∂+e. A straightforward calculation now
shows that the metric of Uε,e ∼= (e× F, gε) is represented by

Gε =

(
[(1 + εκerey)

2 + ε2y2ṙ2
e ](1 − ε`0/`e)

2 ε2reṙey(1 − ε`0/`e)
ε2reṙey(1 − ε`0/`e) ε2r2

e

)
. (3.1)

The uniformity condition (G4) is fulfilled due to the curvature assumption (E2)
and due to (E4) and we obtain

o1(1) = 2r+ε(1 + εκ0r+)1/2, 1 + o2(1) = 1 + εC(κ0, r+),

O3(1) = C(κ0, r+, ṙ0), o4(ε) = 2r2
+ε

2

provided 0 < ε < ε0 = ε0(κ0, r+, ṙ0), where C(·) depend only on the indicated
constants, since, e.g.,

detG1/2
ε = εre(1 + ε`0/`e)|1 + εκerey|. (3.2)

A similar calculation on Uε,v ∩Ψε,e(e×F ), v ∈ ∂e, now using x = x/ε and y ∈ F
as coordinates (as far as possible on Uε,v) shows that (G5) and (G6) are satisfied
with α = 1 and c± depending only on κ0, r± and ṙ0. As unscaled set Uv we use
the “straightened” version of 1

ε
Uε,v, i.e., we replace the edge parts in 1

ε
Uv,ε by

their tangentials at v; the tubular neighbourhood has width re(0) (cf. Figure 3).
Next, the volume estimate of (G7) is satisfied due to the angle assumption (E1):

volUv ≤
∑

e∈Ev

re(v)`0/2 ≤ d0r+`0/2.

Due to (E1) we can place at each end of Uv a rectangle (denoted in dark grey
in Figure 3) of length `− = (`0 − r+ cot(β0/2))/2 > 0 and width re(0) ∈ [r−, r+].
These rectangles are the collar neighbourhoods mentioned in Remark 2.8. The
Neumann eigenvalues depend continuously on the angles ](e, e′) ≥ β0 and on the
widths re(0) ∈ [r−, r+], so (G7) follows. �

2Of course, there are other possibilities how to define Xε close to the vertices, which still
lead to a uniform graph-like manifold. One can e.g. smoothen the singularities at the boundary
∂Uε,v ∩ ∂Xε (cf. Figure 3). In our case, ∂Xε has singularities but this does not matter in the
proof of Theorem 2.13 and Theorem 3.1.
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e

Uv

re(0)

`0/2

`0/2

](e, e′)

re(x)

x

e′

Uε,v

Uε,e

Figure 3. Decomposition of the weighted neighbourhood Xε and
the unscaled vertex neighbourhood Uv. In dark grey we denoted
the collar neighbourhoods mentioned in Remark 2.8. Note that
these rectangles exists due to (E1).

Remark 3.2. Although the curvature κe of the edge and the angle ](e, e′) between
two adjacent edges are not detectable in the limit (at least not in our first order
approximation of an eigenvalue λ(ε) = λ(0) + o(1)), we nevertheless need the
uniform assumptions (E1) and (E2). Using the direct eigenvalue estimates of
Remark A.16 on compact spaces one can show that λk(ε) = λk(0) + O(ε1/2).
It would be interesting whether one can detect information on the curvature or
the angles between the edges via an asymptotic expansion of λ1(ε). For a curved
tubular neighbourhood with Dirichlet boundary conditions around a closed curve
of length ` with positive curvature in R3, the first eigenvalue expands as

λD
1 (ε) =

λ1

ε2
− 3

4L

∫ `

0

κ1(s)
2 ds +O(ε)

(cf. [KaP88, Thm. 4.1]) where λ1 is the first Dirichlet eigenvalue of the unit disc
and κ1 is the curvature of the curve.

Remark 3.3. Note that we do not need a global lower bound on the radius re,
i.e., infinite edges with a shrinking neighbourhood are allowed (e.g. horn-like
shapes as in [DaS92]. If the spectrum of the Laplacian on the corresponding
edge neighbourhood Uε,e is [0,∞), our analysis does not give new information.
More interesting cases are provided if the spectrum on Uε,e is purely discrete, e.g.

for radial functions decaying fast enough like re(x) = e−x
β

, β > 1 (cf. [EvHa89,
DaS92]). The weighted graph Laplacian on e now has the form (Hf)e = −f ′′

e +
mβxβ−1f ′

e. An example of a horn-like end with infinitely many spectral gaps in
the essential spectrum was constructed in [Lo01, Thm. 3]. In principle, these
results can be recovered with our analysis.

3.2. Examples constructed from a finite number of building blocks.
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Covering manifolds. An important class of examples satisfying the uniformity
conditions are coverings with a compact quotient: Clearly, a covering metric
graph X0 → M0 with compact quotient M0 is uniform. Similarly, an associated
family of graph-like covering manifold Xε → Mε with compact quotient Mε is
uniform once (G4)–(G6) are fulfilled.

For abelian covering groups (and for some classes of non-abelian groups,
cf. [LP04]) the spectral convergence on compact graphs and manifolds would
be enough: The Floquet theory allows to describe the spectrum on the covering
via a family of Laplacians on the compact quotient. Nevertheless our result here
is more general since we can treat an arbitrary covering.

More generally, the assumptions (G4)–(G7) are fulfilled if the number of iso-
morphism classes of Uv and Ue are finite, i.e., if we construct the graph-like mani-
fold out of a finite number of building blocks as in a plumber’s shop. An example
is given in Section 3.3 where we construct a graph-like manifold according to the
Sierpiński graph (cf. Figure 4). Here, only two different vertex neighbourhood
building blocks are necessary. Note that this manifold has a fractal structure,
not locally, but globally.

Spectral gaps and eigenvalues in gaps. Typically, operators on coverings have a
band-gap type spectrum, i.e., the spectrum is the locally finite union of compact
intervals (maybe reduced to a point). The spectral convergence ensures e.g. the
existence of spectral gaps as ε→ 0 once σ(∆X0

) has spectral gaps and ε is small
enough:

Theorem 3.4. Suppose that M0 is a compact graph with associated uniform
graph-like manifold Mε. Denote by X0 resp. Xε a covering of M0 resp. Xε such
that Xε is a graph-like manifold associated to X0. If the generalised Neumann
Laplacian on X0 has a spectral gap (a, b), i.e., σ(∆X0

) ∩ (a, b) = ∅, then the
Laplacian ∆Xε

has a spectral gap close to (a, b) provided ε is small enough.

Covering metric graphs X0 → M0 with spectral gaps are given e.g. in [EP05,
Sec. 9.4–9.6]; the simplest example is maybe the Cayley graph of the group Γ =
Z × Zp where Zp denotes the cyclic group of order p has a spectral gap iff p
is odd. A similar example consists of a regular rooted tree (cf. Theorem 3.7).
A different procedure of creating gaps in a metric graph is provided by the so-
called graph-decoration. Roughly speaking, the new graph X̂0 is obtained from a
given infinite graph X0 by attaching a fixed (compact) graph M0 to each vertex

v of X0. The Laplacian on X̂0 now has spectral gaps. This result has been
established for a discrete graph in [AS00]. The general case for quantum graphs
is announced in [Ku05] and proved in the case when X0 is a compact graph (in
the sense that there is no spectrum of the decorated graph near (certain parts)
of the spectrum of the decorating graph). For quantum graphs, there are related
examples leading to gaps (cf. [AEL94], [E95]). A similar effect by attaching a
single loop to each vertex of a periodic graph has been used in [EP05, Sec. 9].
The case of periodically arranged manifolds connected by line sements or through
points has been analysed in [BEG03, BGL05].

Finally, another class of examples is given by fractal metric graphs, i.e., graphs
arranged in a self-similar manner (cf. Theorem 3.10). The main point here is that
the metric graph spectrum has a fractal structure, so once, ε is small enough, the
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corresponding Laplacian on a graph-like manifold has an arbitrary (but a priori
finite) number of spectral gaps in the compact spectral interval [0,Λ].

Eigenvalues in gaps. Suppose that X0 is a uniform metric graph such that its
generalised Neumann Laplacian has a spectral gap, namely, σ(∆X0

) ∩ (a, b) = ∅.
By the previous example, a corresponding uniform graph-like manifold Xε has
also a spectral gap close to (a, b) provided ε is small enough.

Now if we change the metric graph locally, e.g. by attaching a loop of length `1
at a fixed vertex v1 ∈ V (call the perturbed graph X̂0) then the generalised Neu-

mann Laplacian on X̂0 has additional eigenvalues λk = (2πk/`1)
2 with eigenfunc-

tions located on the loop and vanishing at v1 and on the rest of the graph (maybe

there are more additional eigenvalues). For example, if 2π/
√
b < `1 < 2π/

√
a

then the ground state of the loop lies in (a, b). Note that the essential spectrum

of X0 and the perturbed metric graph X̂0 are the same since the perturbation is
compact; in particular, only discrete eigenvalues occur in the spectral gap. Due
to the spectral convergence Theorem 2.13, a corresponding (uniform) graph-like
manifold now must have (at least) an eigenvalue in (a, b). Furthermore, if the
corresponding eigenvalue of the quantum graph is simple (i.e., there are no other

eigenvalues of the looped graph X̂0 at λ1 = (2π/`0)
2), then there is a unique

eigenvalue close to λ1 of multiplicity 1, and the corresponding eigenfunction of
the graph-like manifold is close to the eigenfunction of the metric graph in the
sense of Theorem A.12. More generally, we have:

Theorem 3.5. Suppose that ∆X0
has a discrete eigenvalue λ of multiplicity m

and σ(∆X0
) ∩ I = {λ}. Let Xε be a graph-like manifold associated to X0. Then

∆Xε
has m eigenvalues (not all necessarily distinct) converging to λ as ε→ 0 and

the eigenprojections converge in norm, i.e., ‖J ′PεJ − P0‖ → 0 as ε → 0 where
Pε is the eigenprojection of ∆Xε

onto the interval I, ε ≥ 0.
If in particular, λ is a simple eigenvalue with eigenfunction ϕ, then there exists

an eigenfunction ϕε of ∆Xε
such that ‖Jϕ− ϕε‖ → 0.

Roughly speaking, the theorem says, that an eigenfunction on the graph-like
manifold is approximately given by the corresponding eigenfunction on the graph,
extended constantly in the transversal direction (and set to 0 in the vertex neigh-
bourhood).

Eigenvalues in gaps have been discussed e.g. in [AADH94, P03a] (see also the
references therein). One can interprete such a local perturbation as an impurity of
a periodic structure, say, a crystal or a semi-conductor. The additional eigenvalue
in the gap now corresponds to an additional energy level and a bound state. Note
that in [P03a] it was assumed that Xε is a covering manifold and that it fulfilled
a gap condition in the sense that there is a fundamental domain D such that
λD
k (D) < λN

k+1(D) for some k (Dirichlet and Neumann eigenvalues on D). This is
in general a stronger condition than just the assumption that ∆Xε

has a spectral
gap. Here, we only need to know that the generalised Neumann Laplacian ∆X0

on the graph has a spectral gap which is often easy to show.

3.3. Equilateral metric graphs and discrete graphs. In this subsection we
will analyse the special case when all length of the metric graph X0 = (V,E, ∂, `)
are the same, say `e = `. Under these assumptions, there is a nice relation between
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the spectrum of the metric graph Laplacian ∆X0
(with weights pe = 1) acting on

L2(X0) = ⊕eL2(0, `) and the discrete Laplacian ∆G of the graph G = (V,E, ∂).
Roughly speaking, the spectrum of ∆X0

consists of infinitely many (distorted)
copies of the spectrum of ∆G arranged in a row. This relation allows us to profit
from the vast literature on ∆G and to carry over calculations of spectra of the
discrete to the continuous graph Laplacian.

The discrete Laplacian is given by

(∆Ga)(v) := − 1

deg v

∑

w∼v

(a(w) − a(v)), a ∈ `2(V ) (3.3)

where w ∼ v means that v and w are joined by an edge. The discrete Laplacian
acts in the weighted space `2(V ) consisting of all sequences a = (av)v with finite
weighted norm

‖a‖`2(V ) :=
∑

v∈V

deg v|a(v)|2.

This operator is bounded and has spectrum in [0, 2].
In [Ca97] (cf. [E97] for more general boundary conditions on the metric graph)

one can find the following nice relation between the spectrum of the generalised
Neumann Laplacian ∆X0

and the discrete Laplacian ∆G. The Dirichlet spectrum
ΣD = { (kπ/`)2 | k ∈ N } of an individual edge e ∼= (0, `) always plays a special
role. Since we are only interested in qualitative results (e.g. the fractal example
in Theorem 3.10) we exclude the Dirichlet spectrum here. A more detailed dis-
cussion on the Dirichlet spectrum can be found in [Ku05] and [Ca97]. We set

g(λ) = 1 − cos(`
√
λ). Note that ΣD = g−1{0, 2}.

Theorem 3.6. Assume that G = (V,E, ∂) is a countable, connected graph with
deg v ∈ {2, 3, . . . , d0}, v ∈ V , and without self-loops then

σ•(∆X0
) \ ΣD = g−1

(
σ•(∆G) \ {0, 2}

)
,

i.e., for λ 6= ΣD, we have λ ∈ σ•(∆X0
) iff g(λ) ∈ σ•(∆G). Here • ∈

{p, c, ∅, pp, disc, ess} denotes either the point spectrum (the set of eigenvalues σp),
the complement of the eigenvalues3 (σc = σ\σp), the entire spectrum (σ), the pure
point spectrum (the closure of the set of eigenvalues, i.e., σpp = σp), the discrete
or the essential spectrum. Furthermore, the eigenvalue λ of ∆X0

has multiplicity
m iff the eigenvalue g(λ) of ∆G has multiplicity m.

Proof. The assertion has been proved for the point spectrum and its complement
in [Ca97] and therefore also for the entire spectrum. Since g is a local homeomor-
phism on the complement of ΣD, the statement on σpp also follows. In addition,
note that

Uλ : Eg(λ)(∆G) −→ Eλ(∆X0
),

(Uλa)e(x) :=

√
`√

2 sin(`
√
λ)

(
a(∂−e) sin((`− x)

√
λ) + a(∂+e) sin(x

√
λ)

)

is an isometry from the eigenspace of ∆G w.r.t. the eigenvalue g(λ) onto the
eigenspace of ∆X0

w.r.t. the eigenvalue λ /∈ ΣD. In particular, multiplicities of
eigenvalues are preserved. Furthermore, λ is isolated in σ(∆X0

) iff g(λ) is isolated

3Note that σc does in general not coincide with the continuous spectrum, cf. [RS80].
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in σ(∆G), so the statement on the discrete spectrum follows. For the essential
spectrum note that we already have the statement for the entire spectrum and
for the discrete spectrum, and that σess = σ \ σdisc. �

Since the spectrum of the discrete Laplacian has been explored in many cases,
the previous theorem allows us to determine the corresponding spectrum of the
equilateral metric graph leading to interesting examples of graph-like manifolds.
For simplicity, we fix the edge length to ` = 1.

Homogeneous trees. Let G be a homogeneous routed tree of degree d0 ≥ 3, then

σp(∆G) = ∅ and σc(∆G) =

[
1 − 2

√
d0 − 1

d0

, 1 +
2
√
d0 − 1

d0

]
. (3.4)

Theorem 3.6 now describes σc(∆X0
). Since σ(∆G) = σc(∆G) ( [0, 2], the metric

graph Laplacian has spectral gaps (i.e., no spectrum at) I0 := (0, ω2
0) and

Ik :=
(
(kπ − ω0)

2, (kπ)2
)
∪

(
(kπ)2, (kπ + ω0)

2
)
, k ∈ N,

where ω0 = arccos(2
√
d0 − 1/d0). A more detailed analysis done in [Ca97] shows

that σp(∆X0
) = ΣD. All eigenvalues have infinite multiplicity, so σ(∆X0

) is
purely essential and has band-gap structure with gaps exactly at Ik, k ∈ N0. In
particular, inf σ(∆X0

) = ω2
0 > 0 and we have:

Theorem 3.7. Suppose Xε is a family of uniform graph-like manifolds asso-
ciated to the regular tree of degree d0 ≥ 3 with equal edge lengths. Then the
Laplacian on Xε has spectral gaps and its essential spectrum is non-empty near
any λ ∈ σess(∆X0

) provided ε is small enough (cf. Corollary A.14). Furthermore,
Σ0(Xε) := inf σ(∆Xε

) → ω2
0 as ε → 0 and in particular, Σ0(Xε) ≥ c > 0 for ε

small enough.

Remark 3.8. Note that if Xε would be a Riemannian covering of a compact
manifold Mε

∼= Xε/Γ, then the non-amenability of Γ (if e.g. Γ contains the
non-abelian free group Z∗2 as subgroup) implies Σ0(Xε) > 0 (cf. [Br81a]). An
unrooted tree of degree d0 can be considered as unoriented Cayley graph of the
group Z∗d0

2 (free product of d0 groups of order 2) with respect to the generators
γi, i = 1, . . . , d0. But the elements of order 2 act on a corresponding graph-like
manifold as reflections. In particular, these elements have fixed points and the
quotient is no longer a smooth manifold so we cannot use the covering argument
here in order to show Σ0(Xε) > 0.

Remark 3.9. There is a nice upper estimate for Σess(X) := inf σess(∆X): Denote
by

µ(X) := lim
r→∞

1

r
log voldB(x0, r)

the growth rate of a ball of radius r in X. It can be easily seen that µ(X) is
independent of x0. Brooks [Br81b] showed that if vold(X) = ∞ then

Σess(X) ≤ 1

4
µ(X)2.

A priori, this estimate is not sharp as there are amenable groups π of exponential

growth (cf. [M68]): For the universal cover M̃ of a compact manifold M with

amenable fundamental group π1(M) = π we have Σess(M̃) = 0 but µ(M̃) > 0.
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In our case, we can easily calculate µ(Xε) approximately: If x0 is a point in the
root vertex neighbourhood then an increase of r by `0 = 1 encounters another
generation in the tree. Therefore voldB(x0, r) ≈ vold Ûε,v((d0 − 1)r − 1) for large

r where Ûε,v is a (sample) vertex neighbourhood together with the d0 adjacent
half edge neighbourhoods. We obtain µ(Xε) ≈ log(d0 − 1) and in particular, our
estimate shows

Σ0(Xε) = Σess(Xε) ≈ arccos2
(2

√
d0 − 1

d0

)
<

1

4
log2(d0 − 1) ≈ 1

4
µ(Xε)

2

if d0 ≥ 3. The inequality provides an (approximative) lower bound on µ(Xε) and
the difference of the LHS and RHS is e.g. smaller than 1% if d0 = 3). For further
estimates of this type using isoperimetric constants we refer to [Br81b]. We only
want to mention here that isoperimetric constants on graph-like manifolds can
quite easily be calculated.

Sierpiński graphs. Let us give another interesting example admitting a fractal
spectrum. Let G1 be the complete graph with three vertices. Suppose Gn =
(Vn, En) has already been constructed. Then Gn+1 is obtained from three disjoint

copies G
(i)
n (i = 1, 2, 3) of Gn and the equivalent relation ∼, i.e., Gn+1 := G

(1)
n ]

G
(2)
n ] G

(3)
n /∼ where ∼ identifies the vertex vi(G

(j)
n ) with vj(G

(i)
n ), i 6= j, i, j =

1, 2, 3. Here, v1(Gn) denotes the lower left vertex of degree 2, v2(Gn) the lower
right vertex of degree 2 and v3(Gn) the upper vertex of degree 2 (cf. Figure 4).
Note that each Gn has exactly three vertices of degree 2, the other have degree
4. Furthermore, |Vn| = (3n + 1)/2 and |En| = 3n. Now, Gn embeds into Gn+1

via Gn = G
(1)
n ↪→ Gn+1. Finally, the Sierpińksi graph is given by G :=

⋃
n∈N

Gn

(cf. Figure 4). Note that G has one vertex of degree 2, all other vertices have
degree 4. The nature of the spectrum of the discrete Laplacian ∆G was calculated
by [T98, Thm. 2]: We have

σ(∆G) = J ∪D, D :=
{3

2

}
∪

∞⋃

n=0

p−n
{3

4

}
, J := D, (3.5)

where p(z) := z(5 − 4z). and p−n is the n-th pre-image, i.e., p−n{3/4} = { z ∈
R | p◦n(z) = 3/4 }. The spectrum of ∆G is pure point, each eigenvalue has mul-
tiplicity ∞, so the spectrum is also purely essential. The set D consists of the
isolated eigenvalues and the set J is a Cantor set of Lebesgue measure 0 (the
Julia set of the polynomial p). Due to Theorem 3.6 the spectrum of the metric
graph Laplacian ∆X0

(with ` = 1) is pure point and purely essential. It is given
by

σ(∆X0
) \ ΣD = g−1(D) ∪ g−1(J \ {0}).

Since g(λ) = 1 − cos
√
λ is a local homeomorphism mapping measure 0 set into

measure 0 sets and vice versa, g−1(D) consists of isolated eigenvalues of ∆X0
of

infinite multiplicity and g−1(J \ {0}) is a Cantor set of measure 0 (away from
ΣD).

Now our spectral convergence result on graph-like manifolds leads to an exam-
ple of a family of smooth manifolds approaching a fractal spectrum:

Theorem 3.10. Suppose Xε is a family of uniform graph-like manifolds associ-
ated to the Sierpiński graph with equal edge lengths. Then the essential spectrum
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v1(G3)

v3(G3)

v2(G4)

v2(G3)

= v1(G4)

v3(G4)

Figure 4. The first four generations G4 of the infinite Sierpiński
graph, each edge having unit length. The graph G3 is denoted with
thick edges and is naturally embedded into G4.

of the Laplacian on Xε approaches the fractal spectrum of ∆X0
in any fixed in-

terval [0,Λ]. The discrete spectrum of ∆Xε
is either empty or merges into the

essential spectrum as ε → 0 (cf. Corollary A.14). In particular, σ(∆Xε
) has an

arbitrary large number of spectral gaps in the compact interval [0,Λ] provided ε
is small enough.

3.4. The decoupling case. We obtain similar convergence results on non-
compact graph-like manifolds Xε with slower decay of volUε,v (i.e., large vertex
neighbourhoods Uε,v) as discussed in the compact case in [KuZ03] and [EP05,
Sec.5–8]. If for example the vertex volume volUε,v decays slower than the edge
volume volUε,e then the Laplacian on Xε converges also in the non-compact case
to the decoupled limit operator H :=

⊕
eHe ⊕ 0 acting in the enlarged Hilbert

space H := L2(X)0 ⊕ CV . Here, He is the Dirichlet operator on the interval
(0, `e) ∼= e and 0 is the null operator on CV . Therefore, the limit operator has
pure point spectrum

σ(H) =
{
λk(e) :=

π2k2

`2e

∣∣∣ e ∈ E, k ∈ N0

}
(3.6)

and the multiplicity of λ is |V | if λ = 0 and |{ e ∈ E |λ = λk(e) }| if λ > 0.
We omit the details here since the proof is rather similar to the non-decoupling
case treated below. Note that we need here some uniformity assumptions on the
vertex neighbourhood Uε,v ensuring that Uε,v does not become too small, e.g., we
need a lower bound on volU−

ε,v. Here U−
ε,v is the subset of Uε,v where the metric

satisfies gε,v ∼= ε2αgv and 0 < α < (d− 1)/d (cf. Remark 2.7.3 and 2.7.4).
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Theorem 3.11. Suppose that Xε is a graph-like manifold with large vertex neigh-
bourhoods associated to a metric graph X0 with edge length (`e)e. Then the Lapla-
cian on Xε (with Neumann boundary conditions, if ∂Xε 6= ∅) approaches the de-
coupled operator H. In particular, its spectrum converges to the set σ(H) given
in (3.6) in any compact spectral interval.

In a similar way, the case of Dirichlet boundary conditions and small junctions
as in [P05] can be extended to the non-compact case. The Laplacian on Xε with
Dirichlet boundary conditions has to be shifted by λD

1 (F )/ε2 where λD
1 (F ) is the

first Dirichlet eigenvalue of the cross section. The limit operator also decouples
and consists of the Dirichlet eigenvalues only.

Since the graph structure is no more visible in the limit due to the decoupling,
we just give a simple example of a graph consisting of a half-line with one vertex
of degree 1 at 0 and the others of degree 2. We label the edges by n ∈ N.
By an appropriate choice of the length `e we can construct a manifold with
certain spectral properties. If we consider e.g. `n :=

√
n/π then λk(n) = k2/n.

Since every rational number r can be written in the form r = k2/n (r = p/q =
p2/(pq)), the operator H has dense point spectrum consisting of all non-negative
rational numbers. Therefore the spectrum of H is [0,∞) and purely essential.
Our analysis here is too weak to say anything more on the nature of the Laplacian
on the graph-like manifold Xε with large vertex neighbourhoods than it is purely
essential in any bounded spectral interval. We expect that ∆Xε

also has pure
point spectrum, but one needs arguments from scattering theory to prove this.

Other choices of the length are possible, e.g., a set of rationally independent
length `e, e ∈ E. Once one is able to determine σ(H) by number theoretical
arguments one has a Laplacian ∆Xε

with a spectrum close to this set.

A. Appendix

In the appendix we prove our main technical tool, the convergence results for
arbitrary pairs of self-adjoint non-negative operators and Hilbert spaces (H,H)

and (H̃, H̃) being close to each other (cf. Definition A.1). Although most of the
techniques are standard, we repeat the arguments here since usually, one has a
fixed Hilbert space and a careful analysis of the dependence on some parameter
entering in the operator and Hilbert space is not necessary. We do not men-
tion the parameter explicitely but express all convergence results in terms of a
“distance” δ of (H,H) and (H̃, H̃).

A.1. Scale of Hilbert spaces associated with a non-negative operator.

To a Hilbert space H with inner product 〈·, ·〉 and norm ‖·‖ together with a
non-negative, unbounded, operator H, we associate the scale of Hilbert spaces

Hk := dom(H + 1)k/2, ‖u‖k := ‖(H + 1)k/2u‖, k ≥ 0. (A.1)

For negative exponents, we define

H−k := H∗
k. (A.2)

Note that H = H0 embeds naturally into H−k via u 7→ 〈u, ·〉 since

‖〈u, ·〉‖−k = sup
v∈Hk

|〈u, v〉|
‖v‖k

= sup
w∈H0

|〈Rk/2u, w〉|
‖w‖0

= ‖Rk/2u‖0,
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where

R := (H + 1)−1 (A.3)

denotes the resolvent of H ≥ 0. The last equality used the natural identification
H ∼= H∗ via u 7→ 〈u, ·〉. Therefore, we can interprete H−k as the completion of
H in the norm ‖·‖−k. With this identification, we have

‖u‖−k = sup
v∈Hk

|〈u, v〉|
‖v‖k

, for all k ∈ R. (A.4)

For a second Hilbert space H̃ with inner product 〈·, ·〉 and norm ‖·‖ together

with a non-negative, unbounded, operator H̃, we define in the same way a scale
of Hilbert spaces H̃k with norms ‖·‖k.

Guided by the classical application H = ∆X in H = L2(X) for a complete
manifold X, we call k the regularity order. In this case, Hk corresponds to the
k-th Sobolev space Hk(X).

A.2. Operators on scales. Suppose we have two scales of Hilbert spaces Hk,
H̃k associated to the non-negative operatorsH, H̃ with resolvents R := (H+1)−1,

R̃ := (H̃ + 1)−1, respectively. The norm of an operator A : Hk −→ H̃−ek is

‖A‖k→−ek := sup
u∈Hk

‖Au‖−ek

‖u‖k
= ‖R̃ek/2ARk/2‖0→0. (A.5)

The norm of the adjoint A∗ : H̃ek −→ H−k is given by

‖A∗‖ek→−k = ‖A‖k→−ek. (A.6)

Furthermore,

‖A‖k→−ek ≤ ‖A‖m→−em provided k ≥ m, k̃ ≥ m̃ (A.7)

since

‖A‖k→−ek = ‖R̃ek/2ARk/2‖0→0 = ‖R̃(ek− em)/2R̃ em/2ARm/2R(k−m)/2‖0→0 ≤ ‖A‖m→−em

and ‖R‖, ‖R̃‖ ≤ 1.

A.3. Closeness assumption. In this section we state our main assumptions on

the two operators H and H̃ acting in the Hilbert spaces H and H̃. We think of

(H̃, H̃) being a perturbation of (H,H), or that (H,H) describes a simplified model
(say, on a metric graph X0) which is close to a more complicated model given by

(H̃, H̃) (say, on a graph-like manifold Xε). We want to state assumptions under

which (H,H) and (H̃, H̃) are close in a sense to be specified in Definition A.1.
Let us explain the following concept of quasi-unitary operators in the case

of unitary operators (cf. also Example A.2): Suppose we have a unitary opera-

tor J : H −→ H̃ with inverse J ′ = J∗ : H̃ −→ H respecting the quadratic form

domains, i.e. J1 := J�H1
: H1 −→ H̃1 and J ′

1 = J∗� eH1
: H̃1 −→ H1. If

J ′∗
1 H = H̃J1

then H and H̃ are unitarily equivalent and have therefore the same spectral
properties. The main point here is that J respects the quadratic form domain
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and therefore, J ′
1
∗ : H−1 −→ H̃−1 is an extension of J : H −→ H̃. In this sense,

the above equality says that J is an intertwining operator.
We want to lessen the assumption such that the spectral properties are not the

same but still at close quarters. We now start with the definition of δ-closeness:

Definition A.1. Suppose we have linear operators

J : H −→ H̃, J ′ : H̃ −→ H
J1 : H1 −→ H̃1, J ′

1 : H̃1 −→ H1.
(A.8)

Let δ > 0 and k ≥ 1. We say that (H,H) and (H̃, H̃) are δ-close with respect to
the quasi-unitary maps (J, J1) and (J ′, J ′

1) of order k iff the following conditions
are fulfilled:

‖J − J1‖1→0 ≤ δ, ‖J ′ − J ′
1‖1→0 ≤ δ (A.9)

‖J − J ′∗‖0→0 ≤ δ, (A.10)

‖H̃J1 − J ′∗
1 H‖k→−1 ≤ δ, (A.11)

‖ � − J ′J‖1→0 ≤ δ, ‖ � − JJ ′‖1→0 ≤ δ (A.12)

‖J‖0→0 ≤ 2, ‖J ′‖0→0 ≤ 2. (A.13)

Note that all operators make sense on the given domains, e.g.,

(H̃J1 − J ′∗
1 H)�Hk

= (H̃J1 − J ′∗
1 H)

�
k→1 : Hk −→ H̃−1

where
�
k→1 : Hk −→ H1 is the natural inclusion map. Strictly speaking, we

should also write J
�

1→0 − ˜�
1→0J1 in (A.9) and (

�
0→0 − J ′J)

�
1→0 in (A.12), e.g.,

but we refrain from it in order to keep the notation readable.
We can interprete (A.11) in the sense that J1 and J ′

1 are quasi-intertwining
operators. Since (A.9) assures the closeness of J and J1 resp. J ′ and J ′

1 we call J
resp. J ′ also quasi-intertwining. Furthermore, (A.12) together with (A.10) says
that J and J ′ are quasi-unitary. In our application of a graph-like manifold
converging to a metric graph, cf. Section 2), the regularity order k equals 1. In

this case, the assumptions are symmetric in H and H̃, but we will also meet
situations in a forthcoming paper where k > 1 is needed.

For concrete applications, the following equivalent characterisation of (A.9)–
(A.13) will be useful:

‖Jf − J1f‖0 ≤ δ‖f‖1, ‖J ′u− J ′
1u‖0 ≤ δ‖u‖1 (A.9’)

|〈Jf, u〉 − 〈f, J ′u〉| ≤ δ‖f‖0‖u‖0 (A.10’)

|h̃(J1f, u) − h(f, J ′
1u)| ≤ δ‖f‖k‖u‖1 (A.11’)

‖f − J ′Jf‖0 ≤ δ‖f‖1, ‖u− JJ ′u‖0 ≤ δ ‖u‖1 (A.12’)

‖Jf‖0 ≤ 2‖f‖0, ‖J ′u‖0 ≤ 2‖u‖0 (A.13’)

for all f, u in the appropriate spaces. Here, h and h̃ denote the sesquilinear forms
associated to H and H̃, i.e., h(f, g) = 〈H1/2f,H1/2g〉 for f, g ∈ H1 and similarly

for h̃.
Let us illustrate the above abstract setting in the following example of norm

resolvent convergence in a fixed Hilbert space:
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Example A.2. Suppose that H̃ = H, J = J ′ =
�
, J1 = J ′

1 =
�
, k = 1 and

δ = δn → 0 as n → ∞. Assume in addition that the quadratic form domains of

H and H̃ = Hn agree. Now the only non-trivial assumption in Definition A.1 is
Equation (A.11), which is equivalent to

‖Hn −H‖1→−1 = ‖R1/2
n (Hn −H)R1/2‖0→0 → 0

whereas Hn → H in norm resolvent convergence means

‖Rn − R‖0→0 = ‖Rn(Hn −H)R‖0→0 = ‖Hn −H‖2→−2 → 0

as n → ∞. Therefore, we see that our assumption (A.11) implies the norm
resolvent convergence but not vice versa.

Remark A.3. We have expressed the closeness of certain quantities in dependence

on the initial closeness data δ > 0. Although, in our applications, (H̃, H̃) will
depend on some parameter ε > 0 with δ = δ(ε) → 0 as ε → 0 we prefer
to express the dependence only in terms of δ. In particular, an assertion like

‖JR− R̃J‖ ≤ 4δ means that it is true for all (H,H) and (H̃, H̃) being δ-close

with respect to (J, J1) and (J ′, J ′
1). In this sense, (H,H) and (H̃, H̃) should be

considered as “variables” being close to each other.

We deduce the following simple estimates:

Lemma A.4. Suppose that Assumption (A.10), (A.12) and (A.13) are fulfilled,
then

‖f‖0 − δ′‖f‖1 ≤ ‖Jf‖0 ≤ ‖f‖0 + δ′‖f‖1 with δ′ :=
√

3δ (A.14)

and similarly for J ′.

Proof. We calculate
∣∣‖Jf‖2 − ‖f‖2

∣∣ =
∣∣〈(J∗J − �

)f, f〉
∣∣ ≤

∣∣〈(J∗ − J ′)Jf, f〉
∣∣ +

∣∣〈(J ′J − �
)f, f〉

∣∣
≤ ‖J∗ − J ′‖0→0‖Jf‖0‖f‖0 + ‖J ′J − � ‖1→0‖f‖1‖f‖0 ≤ 3δ‖f‖2

1

and the result follows. �

A.4. Resolvent convergence and functional calculus. In this section we
prove our result on resolvent convergence. More precisely, we estimate the errors
in terms of δ. All the results below are valid for pairs of non-negative operators

and Hilbert spaces (H,H) and (H̃, H̃) which are δ-close of order k. We set

m := max{0, k − 2} (A.15)

as regularity order for the resolvent difference. Note that m = 0 if k = 1 (as in
our application) or k = 2.

Theorem A.5. Suppose (A.9), (A.10) and (A.11), then

‖R̃J − JR‖m→0 = ‖JH − H̃J‖2+m→−2 ≤ 4δ, (A.16)

‖R̃jJ − JRj‖m→0 ≤ 4jδ (A.17)

for all j ∈ N.
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Proof. We start with the equation

JH − H̃J = (J − J ′∗)H + (J ′ − J ′
1)

∗H + (J ′∗
1 H − H̃J1) + H̃(J1 − J)

considered as bounded operator from H2+m to H̃−2. Using (A.6) and (A.7) yields

‖R̃J − JR‖m→0 = ‖R̃(JH − H̃J)R‖m→0 = ‖JH − H̃J‖2+m→−2

≤ ‖J − J ′∗‖m→−2 + ‖J ′ − J ′
1‖2→−m + ‖J ′∗

1 H − H̃J1‖2+m→−2 + ‖J1 − J‖2+m→0

≤ ‖J − J ′∗‖0→0 + ‖J ′ − J ′
1‖1→0 + ‖J ′∗

1 H − H̃J1‖k→−1 + ‖J1 − J‖1→0 ≤ 4δ,

i.e., the assertion (A.16). For the second estimate we use the resolvent identity

R̃jJ − JRj =

j−1∑

i=0

R̃j−1−i(R̃J − JR)Ri,

and conclude

‖R̃jJ − JRj‖m→0 ≤
j−1∑

i=0

‖R̃j−1−i‖0→0‖R̃J − JR‖m→0‖Ri‖m→m ≤ 4jδ

using the estimate for j = 1. Note that ‖R‖m→m ≤ 1 for any m and similarly for

R̃. �

Remark A.6. Observe that we cannot obtain a better result using the quasi-
unitary operator J although we loose regularity order at some stages. The best
what we can expect (in the case k = 1) is the estimate

‖R̃J ′∗
1 − J1R‖−1→1 ≤ 4δ (A.18)

which follows from

(H̃ + 1)1/2(R̃J ′∗
1 − J1R)(H + 1)1/2

= R̃1/2
[
(J ′∗

1 H − H̃J1) + (J ′∗
1 − J ′∗) + (J ′∗ − J) + (J − J1)

]
R1/2

and the assumptions.

On the other hand, if we assume that ‖JH − H̃J‖2+m→−2 ≤ δ̃, i.e.,

|〈JHf, u〉 − 〈Jf, H̃u〉| ≤ δ̃‖f‖2+m‖u‖2 (A.19)

for all f ∈ H2+m, u ∈ H̃2 then we directly obtain the resolvent estimate (A.16)

with δ̃ = 4δ. Although Assumption (A.19) is weaker than (A.9)–(A.11) (cf.
Example A.2) it is often easier in our applications to deal with the quadratic
form domains, even if one needs the additional operators J ′, J1 and J ′

1 and the
stronger estimates (A.9)–(A.11).

We want to extend our results to more general functions ϕ(H) of the operator

H and similarly for H̃. We start with continuous functions on R+ := [0,∞)
such that limλ→∞ ϕ(λ) exist, i.e., with functions continuous on R+ := [0,∞]. We
denote this space by C(R+).

Theorem A.7. Suppose that (A.9), (A.10), (A.11) and (A.13) are fulfilled, then

‖ϕ(H̃)J − Jϕ(H)‖m→0 ≤ ηϕ(δ) (A.20)

for all ϕ ∈ C(R+) where ηϕ(δ) → 0 as δ → 0.
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Proof. Let p(λ) :=
∑n

j=0 aj(λ+ 1)−j be a polynomial in (λ+ 1)−1. Then

‖ϕ(H̃)J − Jϕ(H)‖m→0

≤ ‖(ϕ− p)(H̃)‖0→0‖J‖m→0 + ‖J‖0→0‖(ϕ− p)(H)‖m→0

+

n∑

j=0

|aj|‖R̃jJ − JRj‖m→0 ≤ 4‖ϕ− p‖∞ +

n∑

j=0

|aj|4jδ =: ηϕ(δ, p)

using (A.7), the spectral calculus, (A.13) and (A.17). Here, ‖ϕ‖∞ denotes the
supremum norm of ϕ.

Suppose η > 0. By the Stone-Weierstrass theorem there exists a polynomial p
such that ‖p− ϕ‖∞ ≤ η/8. If

0 < δ ≤ η

8
∑n

j=0 |aj|j
then ηϕ(δ) := ηϕ(δ, p) ≤ η/2 + η/2 = η and therefore ηϕ(δ) → 0 as δ → 0. �

In a second step we extend the previous result to certain bounded measurable
functions ψ : R+ −→ C.

Theorem A.8. Suppose that U ⊂ R+ and that ψ : R+ −→ C is a measurable,
bounded function, continuous on U such that limλ→∞ ψ(λ) exist. Then

‖ψ(H̃)J − Jψ(H)‖m→0 ≤ ηψ(δ) (A.21)

for all pairs of non-negative operators and Hilbert spaces (H,H) and (H̃, H̃) which
are δ-close provided

σ(H) ⊂ U or σ(H̃) ⊂ U.

Furthermore, ηϕ(δ) → 0 as δ → 0.

Proof. Let χ1 be a continuous function on R+ satisfying 0 ≤ χ1 ≤ 1, χ1 = 1 on

σ(H)∪ {∞} (resp. χ1 = 1 on σ(H̃)∪ {∞} if U is a neighbourhood of σ(H̃)) and
suppχ1 ⊂ U . Then χ1ψ and χ2 = 1 − χ1 are continuous functions on R+ and

‖ψ(H̃)J − Jψ(H)‖m→0

≤ ‖(χ1ψ)(H̃)J − J(χ1ψ)(H)‖m→0 + ‖(χ2ψ)(H̃)J − J(χ2ψ)(H)‖m→0.

In the case that U is a neighbourhood of σ(H) we can estimate the norm with
χ2 by

‖ψ‖∞‖χ2(H̃)J − Jχ2(H)‖m→0

using the fact that (χ2ψ)(H) = χ2(H) = 0 since χ2 = 0 on σ(H).

In the case that U is a neighbourhood of σ(H̃) and if m ≥ 1 then we can
estimate the norm with χ2 by

‖J(χ2ψ)(H)‖m→0 ≤ ‖J‖0→0‖(χ2ψ)(H)‖m→0 ≤ 2‖ψ‖∞‖χ2(H)‖m→0

again using the fact that (χ2ψ)(H̃) = χ2(H̃) = 0 since χ2 = 0 on σ(H̃). Now

‖χ2(H)‖m→0 ≤ ‖ � − J ′J‖1→0‖χ2(H)‖m→1 + ‖J ′‖0→0‖Jχ2(H) − χ2(H̃)J‖m→0.
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Note that ‖χ2(H)‖m→1 ≤ 1 since m ≥ 1. If m = 0 then use the fact that

‖ψ(H̃)J − Jψ(H)‖0→0 = ‖ψ(H)J∗ − J∗ψ(H̃)‖0→0

and argue as in the case where σ(H) ⊂ U with the roles of H and H̃ interchanged.
Applying the preceding theorem twice (in each of the above cases), we have

the error estimate

ηψ(δ) := ηχ1ψ(δ) + 2‖ψ‖∞(2ηχ2
(δ) + δ).

�

Example A.9. Consider ψ =
�
I with an interval I such that ∂I ∩ σ(H) = ∅ or

∂I ∩ σ(H̃) = ∅ then the spectral projections satisfy

‖ �
I(H̃)J − J

�
I(H)‖m→0 ≤ η �

I
(δ). (A.22)

Finally we show the following estimates from the ones already considered:

Theorem A.10. Suppose that (A.10), (A.12), (A.13) and

‖ϕ(H̃)J − Jϕ(H)‖m→0 ≤ η

for some function ϕ and some constant η > 0. Then we have

‖ϕ(H)J ′ − J ′ϕ(H̃)‖0→−m ≤ 2‖ϕ‖∞δ + η (A.23)

‖ϕ(H) − J ′ϕ(H̃)J‖m→0 ≤ Cδ + 2η (A.24)

‖ϕ(H̃) − Jϕ(H)J ′‖0→0 ≤ 5Cδ + 2η (A.25)

provided m = 0 for the last estimate. Here, C := ‖ϕ‖∞ if m ≥ 1 and C > 0 is a
constant satisfying |ϕ(λ)| ≤ C(λ+ 1)−1/2 for all λ if m = 0.

Proof. The first estimate follows from

‖ϕ(H)J ′ − J ′ϕ(H̃)‖0→−m ≤ 2‖ϕ‖∞‖J ′ − J∗‖0→0 + ‖ϕ(H)J∗ − J∗ϕ(H̃)‖0→−m

and (A.6); the second from

‖ϕ(H) − J ′ϕ(H̃)J‖m→0

≤ ‖ � − J ′J‖1→0‖ϕ(H)‖m→1 + ‖J ′‖0→0‖Jϕ(H) − ϕ(H̃)J‖m→0

and the third from

‖ϕ(H̃) − Jϕ(H)J ′‖0→0

≤ ‖ � − JJ ′‖1→0‖ϕ(H̃)‖0→1 + ‖J‖0→0‖J ′ϕ(H̃) − ϕ(H)J ′‖0→0

together with (A.23). �
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A.5. Spectral convergence. We now prove some convergence results for spec-
tral projections and (parts) of the spectrum.

Theorem A.11. Let I be a measurable and bounded subset of R. Then there
exists δ0 = δ0(I, k) > 0 such that for all δ > 0 we have

dimP = dim P̃

for all pairs of non-negative operators and Hilbert spaces (H,H) and (H̃, H̃) which
are δ-close of order k provided

∂I ∩ σ(H) = ∅ or ∂I ∩ σ(H̃) = ∅.
Here, P :=

�
I(H) and dimP := dimP (H), similarly for H̃.

Proof. Let us first show the inequality dimP ≤ dim P̃ : Suppose f ∈ P (H). Then
‖f‖m ≤ CI,m‖f‖0 with

CI,m := sup
λ∈I

(1 + λ)m/2 <∞

since I is bounded. Furthermore,

‖P̃ Jf‖0 ≥ ‖JPf‖0 − ‖(P̃ J − JP )f‖0

≥ ‖Jf‖0 − ‖P̃ J − JP‖m→0‖f‖0 ≥ (1 − δ′CI,1 − η �
I
(δ))‖f‖0

using Lemma A.4 and Theorem A.8. Since δ′ → 0 and η �
I
(δ) → 0 as δ → 0 there

exists δ0 > 0 such that

‖P̃ Jf‖0 ≥
1

2
‖f‖0 (A.26)

provided 0 < δ ≤ δ0. Therefore, P̃ J�P (H) is injective. If f1, . . . , fd are linear

independent in P (H), the same is true for P̃ Jf1, . . . , P̃ Jfd in P̃ (H̃). If P (H) is

infinite dimensional so is P̃ (H̃). Thus we have shown dimP ≤ dim P̃ .
The other inequality is more difficult due to the asymmetry in the norm con-

vergence ‖·‖m→0 if m > 0. Suppose that u ∈ P̃ (H̃) and that χi ∈ C(R+) with
χ1 + χ2 + χ3 = 1. Suppose in addition that suppχ1 and suppχ2 are compact,
that suppχ1 and suppχ3 are disjoint and that suppχ2 ∩ I = ∅. Then

‖PJ∗u‖−m ≥ ‖J∗P̃u‖−m − ‖(P̃ J∗ − J∗P̃ )u‖−m
≥ ‖χ1(H)J∗u‖−m − ‖χ2(H)J∗u‖−m − ‖χ3(H)J∗u‖−m − ‖P̃ J − JP‖m→0‖u‖0

≥ C ′
I,m‖J∗P̃u‖0 − ‖(χ2(H)J∗ − J∗χ2(H̃))P̃u‖−m − η �

I
(δ)‖u‖0

by Theorem A.8 and the fact that χ2(H̃)P̃ = (χ2
�
I)(H̃) = 0 since the support

of χ2 and I are disjoint. Here,

C ′
I,m := inf

{λ |χ1(λ)=1 }
(1 + λ)−m/2 − sup

λ∈suppχ3

(1 + λ)m/2

by the spectral calculus. Since χ1 and χ3 have disjoint support, C ′
I,m > 0. Next,

the norm involving χ2 can be estimated from above by

ηχ2
(δ)‖u‖0
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using Theorem A.7. Furthermore,

‖J∗u‖0 ≥ ‖J ′u‖0 − ‖(J∗ − J ′)u‖0 ≥ (1 − CI,1δ
′ − δ)‖u‖0

by Lemma A.4 and (A.10). Finally, we have shown that

‖PJ∗u‖−m ≥
(
C ′
I,m(1 − CI,1δ

′ − δ) − ηχ2
(δ) − η �

I
(δ)

)
‖u‖0.

The inequality dimP ≥ dim P̃ follows as before. �

In the case of 1-dimensional projections we can even show the convergence of
the corresponding eigenvectors. Note that generically, the eigenvalues are simple
(cf. [U76]):

Theorem A.12. Suppose that ϕ is a normalised eigenvector of H with eigenvalue
λ and that dim

�
I(H) = 1 for some open, bounded interval I ⊂ [0,∞) containing

λ. Then there exists δ0 = δ(I, k) > 0 such that H̃ has only one eigenvalue λ̃

of multiplicity 1 in I for all (H̃, H̃) being δ-close of order k to (H,H) and all
0 < δ < δ0.

In addition, there exist a unique eigenvector ϕ̃ (up to a unitary scalar factor
close to 1) and functions η1,2(δ) → 0 as δ → 0 depending only on λ and k such
that

‖Jϕ− ϕ̃‖ ≤ η1(δ), ‖J ′ϕ̃− ϕ‖ ≤ η2(δ).

Proof. Denote the corresponding eigenprojections by P resp. P̃ . The first asser-
tion follows from Theorem A.11. For the second, note that

ϕ̃ =
1

〈P̃ Jϕ, Jϕ〉
P̃ Jϕ

since P̃ is a 1-dimensional projection. Note in addition that

〈P̃ Jϕ, Jϕ〉 = ‖P̃ Jϕ‖2 ≥ 1

4
‖ϕ‖2 =

1

4
, 0 < δ < δ0

for some δ0 = δ0(I, k) due to (A.26). Now,

‖Jϕ− ϕ̃‖ =
∥∥∥JPϕ− 1

〈P̃ Jϕ, Jϕ〉
P̃ Jϕ

∥∥∥

≤ ‖(JP − P̃ J)ϕ‖ +
∣∣∣1 − 1

〈P̃ Jϕ, Jϕ〉

∣∣∣‖P̃ Jϕ‖

≤ η �
I
(δ) + 8

∣∣〈(P̃ J − JP )ϕ, Jϕ〉 + ‖Jϕ‖2 − ‖ϕ‖2
∣∣ ≤ 17η �

I
(δ) + 3δ =: η1(δ)

since ϕ = Pϕ and ‖ϕ‖ = 1 using (A.13) and (A.14). The second estimate follows
immediately from

‖J ′ϕ̃− ϕ‖ ≤ ‖J ′(ϕ̃− Jϕ)‖ + ‖(J ′J − �
)ϕ‖ ≤ 2η1(δ) + δ(1 + λ) =: η2(δ).

All estimates are valid for 0 < δ < δ0. Note that δ0 and ηi(δ) depend also on I
and therefore on λ. �

We now show that the spectrum of the resolvents R = (H + 1)−1 and R̃ =

(H̃ + 1)−1 are close in the Hausdorff distance defined by

d(A,B) := max
{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

(A.27)
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for subsets A,B of R where d(a, B) := infb∈B |a− b|. Furthermore, we set4

d(A,B) := d((A+ 1)−1, (B + 1)−1) (A.28)

for closed subsets of [0,∞) (cf. also [HeN99, Appendix A], where an equivalent
characterisation of the convergence d(An, A) → 0 as n→ ∞ is given).

Theorem A.13. There exists η(δ) > 0 with η(δ) → 0 as δ → 0 such that

d
(
σ•(H), σ•(H̃)

)
≤ η(δ)

for all pairs of non-negative operators and Hilbert spaces (H,H) and (H̃, H̃) which
are δ-close. Here, σ•(H) denotes either the entire spectrum, the essential or the
discrete spectrum of H.

Furthermore, the multiplicity of the discrete spectrum is preserved, i.e., if λ ∈
σdisc(H) has multiplicity m > 0 then dim

�
I(H̃) = m for I := (λ− η(δ), λ+ η(δ))

provided δ is small enough.

Proof. We start with the discrete spectrum. Let η > 0 and z = (λ + 1)−1 > 0,
λ ∈ σdisc(H). By the definition of the discrete spectrum, there exists an open
interval I containing λ such that I ∩ σ(H) = {λ} and 0 < dim

�
I(H) < ∞.

Without loss of generality, we assume that I ⊂ (λ−η, λ+η). From Theorem A.11

it follows that dim
�
I(H) = dim

�
I(H̃) provided 0 < δ < δz for some δz > 0. In

particular, the multiplicity is preserved and there exists λ̃ ∈ I ∩ σdisc(H̃), i.e.,

d(z, S̃) ≤ |z − z̃| ≤ |λ− λ̃| < η (A.29)

where S̃ = (σdisc(H̃) + 1)−1 and z̃ = (λ̃+ 1)−1. Now let δ(η) be the minimum of
all δz where z runs through the finite set S ∩ [η, 1] with S := (σdisc(H) + 1)−1.
Then (A.29) holds for all z ∈ S ∩ [η, 1] and 0 < δ < δ(η). If σdisc(H) is finite,

we just have to assure that η < inf S. If σdisc(H) is infinite, so is σdisc(H̃) and

in particular, S̃ ∩ (0, η) 6= ∅ for all η > 0. Therefore, if z ∈ (0, η) ∩ S then

d(z, S̃) ≤ η. Finally, (A.29) holds for all z ∈ S and 0 < δ < δ(η).

Interchanging the roles of H and H̃ leads to the inequality d(z̃, S) ≤ η for

all z̃ ∈ S̃ and therefore d(σdisc(H), σdisc(H̃)) ≤ η(δ) where η(δ) is the smallest

constant satisfying the previous estimate for all (H,H), (H̃, H̃) being δ-close.
For the essential spectrum we argue similarly: Let η > 0 and z = (λ+1)−1 > 0

with λ ∈ σess(H). Let I be an open interval with λ ∈ I and ∂I∩σ(H) = ∅. If I can

be chosen in such a way that I ⊂ (λ−η, λ+η) then ∞ = dim
�
I(H) = dim

�
I(H̃)

for all pairs (H̃, H̃) being δ-close, 0 < δ < δz for some fixed δz > 0 due to

Theorem A.11. In particular, I ∩ σess(H̃) 6= ∅ and therefore d(z, S̃) < η as

in (A.29) where now S̃ = (σess(H̃) + 1)−1.
If no such interval I exist, then there is 0 < η0 < η such that I0 := (λ− η0, λ+

η0) ⊂ σess(H). We want to show that in this case, I0 ⊂ σess(H̃) and in particular,

d(z, S̃) ≤ η0 < η provided 0 < δ < δz for some fixed δz: Suppose that this is

not true. Then there were λ̃ ∈ I0 and an open interval J containing λ̃ which is

disjoint from the closed set σess(H̃) for all δ > 0 and all (H̃, H̃) being δ-close.

4Strictly speaking, (σ(H) + 1)−1 = σ(R) \ {0}, but the point 0 plays no special role since
d(A, B) = d(A, B).
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But then, Theorem A.11 implies 0 = dim
�
J(H̃) = dim

�
J(H) contradicting the

fact that J ⊂ σess(H).
A compactness argument shows that there exists δ(η) > 0 such that (A.29) is

true for all z in the compact set S ∩ [η, 1] and all (H̃, H̃) being δ-close, δ < δ(η)
where S = (σess(H)+1)−1. If σess(H) is bounded (from above) then S∩ [η, 1] = S
provided η < inf S and we are done. If σess(H) is unbounded, a similar reasoning

as before shows that the same is true for σess(H̃). In particular, (0, η) ∩ S̃ 6= ∅
and d(z, S̃) < η for z ∈ (0, η) ∩ S, i.e., (A.29) holds for all z ∈ S. The assertion
follows as in the discrete case by symmetry.

The case of the entire spectrum can be shown similarly. �

We have the following immediate consequences when σdisc(H) = ∅ resp.
σess(H) = ∅:
Corollary A.14. Suppose that H has purely essential spectrum. Then for each

λ ∈ σess(H) there is essential spectrum close to λ for H̃ being δ-close to H. Either

H̃ has no discrete spectrum or the discrete spectrum merges into the essential
spectrum as δ → 0.

Corollary A.15. Suppose that H has purely discrete spectrum denoted by λk
(repeated according to multiplicity). Then the infimum of the essential spectrum of

H̃ tends to infinity (if there where any) and there exists ηk(δ) > 0 with ηk(δ) → 0
as δ → 0 such that

|λk − λ̃k| ≤ ηk(δ) (A.30)

for all (H̃, H̃) being δ-close. Here, λ̃k denotes the discrete spectrum of H̃ (below
the essential spectrum) repeated according to multiplicity.

Note that the convergence ηk(δ) → 0 is not uniform in k. The convergence
of the eigenvalues can also be seen by a direct argument using the min-max
principle:

Remark A.16. If we assume that

h(f) ≥ h̃(J1f) − δ‖f‖2
1, h̃(u) ≥ h(J ′

1u) − δ‖u‖2
1, (A.31)

‖f‖2 ≥ ‖J1f‖2 + δ‖f‖2
1, ‖u‖2 ≥ ‖J ′

1u‖2 + δ‖u‖2
1 (A.32)

we obtain the more concrete eigenvalue estimate

|λk − λ̃k| ≤
(
λk + 2 + (λk+2)2

1−δ(λk+1)
δ
)2

1 − δ
(
λk + 1 + (λk+2)2

1−δ(λk+1)
δ
) · δ = O(δ)

using the min-max principle where O(δ) depends on λk (cf. [EP05, Lemma 2.1]).
Note that the assumptions (A.31) and (A.32) are equivalent to the estimates

H − J∗
1 H̃J1 + δ(H + 1) ≥ 0, H̃ − J ′∗

1 HJ
′
1 + δ(H̃ + 1) ≥ 0, (A.31’)

J∗
1J1 −

�
+ δ(H + 1) ≥ 0, J ′∗

1 J
′
1 −

�
+ δ(H̃ + 1) ≥ 0 (A.32’)

in the sense that A : H1 −→ H−1 ≥ 0 iff 〈Af, f〉 ≥ 0 for all f ∈ H1 and

similarly on H̃. Note that (A.31) and (A.32) do not follow from the closeness
assumptions (A.9)–(A.13); e.g. for (A.32) one needs in addition that ‖J1‖1→1 ≤ C
for some constant C > 0 and similarly for J ′

1. The estimates (A.31)–(A.32) have
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been used e.g. in [EP05, KuZ01, RS01] in the graph model and the verification
of (A.31)–(A.32) is quite similar to the proof of the closeness assumptions (A.9)–
(A.13) as we have seen in Section 2.
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