PERIODIC MANIFOLDS, SPECTRAL GAPS, AND
EIGENVALUES IN GAPS

OLAF POST

ABSTRACT. We investigate spectral properties of the Laplace operator on a
class of non-compact Riemannian manifolds. We prove that for a given number
N we can construct a periodic manifold such that the essential spectrum of
the corresponding Laplacian has at least N open gaps. Furthermore, by per-
turbing the periodic metric of the manifold locally we can prove the existence
of eigenvalues in a gap of the essential spectrum.

1. INTRODUCTION

There has been done many work in the analysis of periodic Schrédinger or
divergence type operators. It is well-known that the spectrum of a Schrédinger-
operator with periodic potential has band-gap structure under certain conditions
(see e.g. [HH95]), i.e., the spectrum is the locally finite union of compact intervals
and there exist an interval (a,b) not lying in the spectrum but with essential
spectrum above and below the interval. Here, we want to give an example for
a periodic Laplacian on a manifold without potential which has spectral gaps.
Therefore we obtain the same qualitative results only by the periodic geometry.
As in the Schrodinger case a decoupling procedure is responsible for the gaps.
Related results can be found in [DH87] and [G97].

FIGURE 1. Construction of the periodic manifold M,

We start our construction of a periodic manifold with spectral gaps from a
compact Riemannian manifold X (for simplicity without boundary). We choose
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two different points x1, 29 € X and attach to x; resp. x5 a cylindrical neighbour-
hood A! resp. A? (cf. Figure 1) where the “free” boundary of A is isometric to a
sphere of radius € > 0. We call the resulting manifold M.. By glueing together Z
copies of the period cell M, we obtain a Z-periodic manifold M,. Our first main
result is the following:

Theorem 1.1. For each N € N there exist al least N gaps in the spectrum of
the Laplacian on the periodic manifold M, provided € is small enough.

The proof basically uses Floquet Theory for which we refer to the next section.
More examples of periodic manifolds with spectral gaps can be found in [P00].

Next, we locally perturb the metric of a periodic manifold M with a spec-
tral gap (a,b) to produce eigenvalues in the gap. Again, such effects are well
studied in the case of Schriodinger or divergence type operators (see e.g. [DH86],
[AADH94] or [HB00]). To simplify the notation, we only allow a conformal per-
turbation supported on a compact subset. More general settings (i.e., infinite
range perturbations and non-conformal perturbations) can be found in [P00].

Here, the perturbation is a blow-up of some compact area, i.e., the manifold
M is perturbed by conformal factors p, : M —]0, co[ starting from the constant
function 1 for 7 = 0 and growing up to infinity only on a compact area as
7 — oo (outside this area nothing is changed). The Decomposition Principle (see
Theorem 4.2) assures that a spectral gap (a,b) of Ay, remains a spectral gap
in the essential spectrum of Ay, for all 7 > 0. Our second main result is the
following:

Theorem 1.2. Let A € (a,b) be in a spectral gap. Then an infinite number of
pairs (T,u) with 7 > 0 and u # 0 such that Apyu = Au exist.

The idea of the proof is quite simple (see [AADH94| or [HB00]). We show that
the eigenfunctions of the full problem on M can be approximated by eigenfunc-
tions of an approximating problem on M™ (consisting of n copies of the period cell
M), see Theorem 4.3. On the compact manifold M™ we can apply the Min-max
Principle to assure the existence of eigenfunctions of the approximating problem
(Theorem 4.8).

2. PERIODIC MANIFOLDS AND FLOQUET THEORY

For a Riemannian manifold M (compact or not) we denote by Ly (M) the usual
Ly-space of square integrable functions on M with respect to the volume measure
on M. The corresponding norm will be denoted by ||-||as. For u € C® (M), the
space of compactly supported smooth functions, we set

()= | Jauf”

Here du denotes the exterior derivate of u, which is a section of the cotangent
bundle over M. The Laplacian Ay (for a manifold without boundary) is defined
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via the (closure of the) quadratic form, i.e., gar(u) = (Apu,u) for u € C*(M)
(for details on quadratic forms see e.g. [RS80]). We therefore obtain a self-adjoint
operator with spectrum lying in [0, ool.

If M is a compact manifold with (piecewise) smooth boundary M # () we can
define the Laplacian with Dirichlet resp. Neumann boundary conditions in the
same way. Here, we start from the (closure of the) quadratic form ¢, defined
on C¥(M), the space of smooth functions with support away from the bound-
ary, resp. on C*®(M), the space of smooth functions up to the boundary. The
corresponding operator will be denoted by AP, resp. AY,.

If M is compact the spectrum of Ay, (with any boundary condition if M # ()
is purely discrete. We denote the corresponding eigenvalues by A;(M) (resp.
AP (M) or AJ(M) in the Dirichlet or Neumann case) written in increasing order
and repeated according to multiplicity. The Min-maz Principle allows us to
express the k-th eigenvalue of A, in terms of the quadratic form ¢y, i.e.,

. ()
A (M) =inf sup , (1)
L uerazo [[ulli

where the infimum is taken over all k-dimensional subspaces L of the domain of
the (closed) quadratic form gps (see e.g. [D96]). Of course, the same is true for
the Laplacians with boundary conditions.

A d-dimensional (non-compact) Riemannian manifold M will be called T'-
periodic if I' = Z" acts properly discontinously, isometrically and cocompactly,
i.e., the quotient M /T is a d-dimensional compact Riemannian manifold such that
the quotient map is a local isometry. Throughout this article we study manifolds
of dimension d > 2.

A closed (compact) subset M of M is called period cell if M is the closure of
a fundamental domain D, i.e., M = D, D is open and connected, D is disjoint
from any translate vD for all v € I', v # 0, and the union over all translates yM
is equal to M.

Floquet theory allows us to analyse the spectrum of the Laplacian on M by
analysing the spectra of Laplacians with quasi-periodic boundary conditions on a
period cell M. In order to do this, we define #-periodic boundary conditions. Let
0 be an element of the dual group I' = Hom(T', T') of I' = Z", which is isomorphic
to the r-dimensional torus T" = {# € C"; |§;| = 1 for all i}. Denote by A%, the
operator corresponding to the quadratic form ¢, defined on the space of smooth
functions v on M satisfying

u(yz) = 0(7) u(z)

for all z € OM and all v € T such that yz € M. Again, AY, has purely discrete
spectrum denoted by AJ(M). The eigenvalues depend continuously on . From
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Floquet theory we obtain
spec Ay = U spec Ab, = U By (M)

gel keN

where B, = By(M) = {\(M); 6 € T'} is a compact interval, called k-th band
(see e.g. [RST78], [D81]). In general, we do not know whether the intervals B
overlap or not. But we can show the existence of gaps by proving that A (M)
does not vary too much in 6.

3. CONSTRUCTION OF A PERIODIC MANIFOLD

Suppose that X is a compact Riemannian manifold of dimension d > 2 (for
simplicity without boundary). We want to construct a Z"-periodic manifold. We
choose 2r distinct points z1, ..., Ts,. For each point z;, denote by B! the open
geodesic ball around x; of radius € > 0. Suppose further that Bio are pairwise
disjoint, where 9 > 0 denotes the injectivity radius of X. Denote by B, the
union of all balls Bg. Let X, := X \ By for 0 < 2¢ < ¢y with metric inherited
from X.

We now define the modified metric. For simplicity, we assume that the metric
g is flat on B,,, i.e., g is given in polar coordinates (s, o) €]0,&o[xS?! around z;
by

g = ds® + s°do?,
where do? denotes the standard metric on the (d — 1)-dimensional sphere S%~1.
For a more general setting see [P00]. Let 7. be a smooth monotone function with
re(s) = € in a neighbourhood of s = 0 and r.(s) = s for 2¢ < s < gy. We denote
the completion of X \ {z1,...,xo,} together with the modified metric
gt == ds® + r.(s)*do?

near z° by M,. Note that X, is embedded in M, and that the boundary of M, has
2r disjoint components Z!, each of them isometric to the sphere of radius €. Let
A? be the part of the manifold M, near z; given in coordinates by [0, 2¢] x S¢1.
Denote by A, the union of all A*, i =1,..., 2r.

Let vM, be an isometric copy of M, with identification x — -~z for each
v € T. We construct a new (noncompact) manifold M, by identifying vZ2~!
with e;7Z% for each vy € T and ¢« = 1,...,7. Here, e; denotes the i-th generator
(0,...,1,...,0) of I' = Z". Since in a neighbourhood of Z’! the manifold is
isometric to a cylinder of radius €, we can choose a smooth atlas and a smooth
metric on the glued manifold M,. We therefore obtain a (non-compact) Z'-
periodic manifold ]\Zfs and M, is a period cell for ]\Zfs.

Now we are able to state the following theorem (Theorem 1.1 follows via Flo-
quet Theory):

Theorem 3.1. We have the convergence \J(M.) — \(X) as e — 0 uniformly
infel.
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Therefore, the k-th band By(M.) reduces to the point {\;(X)} as ¢ — 0.
Note that the convergence is not uniform in £ (see the discussion in [CF81]). We
therefore could not expect that an infinite number of gaps occur.

The proof of Theorem 3.1 is based on the following two lemmas. The idea is to
compare the f-periodic eigenvalues on M, with Dirichlet and Neumann eigenval-
ues on X,. The crucial point is, that the corresponding f-periodic eigenfunctions
on M, do not concentrate on A,, i.e., on the cylindrical ends. This will be shown
in the following lemma:

Lemma 3.2. There exists a positive function w(e) converging to 0 as e — 0 such

that
/A uf? < w(e) / (Iuf? + |duf?), 2)

for all u in the domain of the quadratic form with 6-periodic boundary conditions
on M,.

Proof. Without loss of generality, we can assume that u € C*(M,). Suppose
furthermore that u(eg, o) = 0 for all o € S4~1. First we show an Lo-estimate over
Al = {s} x S* ! C Al with its induced metric 7.(s)*do?.

Applying the Cauchy-Schwarz Inequality yields

€o 2 €0 £0
‘“(5’0”2:‘ / Opu(t,0) dt| < / re(t)'~¢dt / |Bpu(t, )| re ()" dt.

If we integrate over o € S*! we obtain

/ uf :/Sdl\“(sﬂaﬂzrs(s)dlda
< rg(s)d_l/:o rs(t)l—ddt/E |du?. 3)

If 0 < s < 2¢ we have r(s)4 1 < (2¢)% 1. Furthermore, the integral over ¢ can
be split into an integral over s <t < 2¢ and 2¢ <t < gg. The first integral can
be estimated by £27¢, the second by [;°¢'7¢d¢. Therefore we have an estimate
of the order O(e) if d > 3 resp. O(g|ln¢l) if d = 2. Finally, if we integrate the
integral on the LHS of (3) over s € [0, 2¢] we obtain the desired Estimate (2). If
u(gg,0) # 0 we choose a cut-off function. O

Remark 3.3. Note that w(e) only depends on the geometry of X near z;, not on
u or on 6. The argument in the proof is due to [A87].

The following lemma is proven in [CF78] resp. [A87].
Lemma 3.4. We have A\ (X.) = M\p(X) resp. MY (X)) — \(X).

Now we show Theorem 3.1:
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Proof. From the Min-max Principle (1) we conclude
AR (Xo) > N(M.)

since the domains of the quadratic forms obey the opposite inclusions. In par-
ticular, \%(M.) is bounded in @ and ¢ by some constant ¢, > 0. To prove the
opposite inequality we estimate

ax.(u)  qm.(u) 1 qu.(u) 2 2
[, ™ TulR,, < TR, T, (P~ )
[Jull3, ck(1 + cr)
= ull, 1—w(e)(1+ck)
for u € L, where L denotes the space generated by the first k eigenvalues of A}”V[&_.

Note that dx(¢) — 0 as ¢ — 0 by Lemma 3.2 which we have used twice. Since
0k () is independent of u € L the Min-max Principle implies

A (M) w(e) (1 + A(M,)) < wle)

= (Sk(é‘)

)‘E(Xs) - 5k(8) < )‘Z(Ms) (4)
Note that L [x. is still k-dimensional (by Lemma 3.2). Together with Lemma 3.4
we have proven Theorem 3.1. O

4. KIGENVALUES IN GAPS

In this section we discuss a simple example how to produce eigenvalues in a
spectral gap by locally perturbing the metric. Suppose that M, is a periodic
metric as in the previous section with period cell M,. Let (I'"), be an exhaustive
sequence, i.e., a monotone sequence with [J, I'" = I'. Denote by M the union
of all yM, with v € T'™. Furthermore, we assume that M" and M \ M are
connected. B

Let (p;)r be a family of smooth, strictly positive functions on M, such that
T+ p, is continuous with respect to the C'-topology. Suppose further that

po=1 on M, (5)
pr=1 on M, \ M for all 7 (6)
pr=¢€" on the period cell M, for all 7. (7)

Finally we denote by M,.(r) the manifold M, together with the metric p?g, if
J. denotes the metric of ]\;[5. Similar notations are understood in the same way.
Note that all domains dom qy(,;) and Hilbert spaces Ly(M(7)) are the same as
vector spaces if 7 varies. We choose Dirichlet boundary conditions on M in
order to have the inclusion dom qp» C dom U C dom gy for the domains of
the (closed) quadratic forms if n < n'.

First, we guarantee that no eigenvalue of the approximating problem lies in
the gap; the boundary of M, resp. M is so small such that boundary conditions
almost have no influence on the eigenvalues:



PERIODIC MANIFOLDS, SPECTRAL GAPS, AND EIGENVALUES IN GAPS 7

Lemma 4.1. If \;(X) < A\g11(X) then there exist numbers a, b such that A\ (X) <
a <b < Xy1(X) and such that the interval I = (a,b) is a common gap, i.e.,

INspecAy =0 and INspecApm =0 (8)
for all e > 0 small enough.

The lemma follows from the Dirichlet-Neumann bracketing and the Min-max
Principle (see [RS78] or [P00]). Note that AP (M.), Ay (M.) — A\x(X) as in Theo-
rem 3.1 with the same error estimate (4).

From now on we fix ¢ > 0 and I = (a,b) such that (8) is satisfied. We omit
the index ¢, e.g., M = M, or M = M.. Furthermore, we choose )\ € I.

Next, we use the Decomposition Principle (see [DL79]) to prove that the es-
sential spectrum remains invariant under the perturbation:

Theorem 4.2. We have essspec A, = essspec AM(T) for all > 0.

In particular, A,; and AM(T) have the same spectral gap. In a spectral gap
of the unperturbed Laplacian, the perturbed Laplacian can only have discrete
eigenvalues (possibly accumulating at the band edges). It is essential here that
the perturbation is localized on a compact set.

Now we prove that eigenfunctions of the approximating problem converge to
eigenfunctions of the full problem:

Theorem 4.3. Suppose that 7, — 7 and that
Alnraytin = Min, [l Jare = 1.

Then there exists a function u in the domain of AM(T) such that u,, — u weakly

in Lo(M) and strongly in Laoc(M). Furthermore, u # 0 and
Agprnt = Au (9)

To prove the theorem we need the following two lemmas. The next lemma can
be shown straight forward:

Lemma 4.4. For each 7,7' > 0, the (squared) norms |||,y and ||{3,. are
equivalent. In particular, the constants depend continuously on 7 and 7'. The
same 1is true for the quadratic forms qu(r) and qur(r).

From the last lemma and the Rellich-Kondrachov Compactness Theorem we
conclude the following lemma:

Lemma 4.5. Let u, be the approximating eigenvalue functions of Theorem 4.3.
Then there exists a subsequence of (u,) (also denoted by (uy)) such that u, — u

weakly in Ly(M) and strongly in Lo oc(M). Furthermore, Equation (9) is valid.

Now we prove Theorem 4.3. We only have to show that u # 0 which is the
main difficulty.
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Proof. Suppose that u = 0. Since ) lies in a spectral gap, we have
(A — N |lam > (b — a)||un||a» > const > 0. (10)

by the spectral calculus. On the other hand, we estimate

(AR — Ntn | am
< [[(ARr = Alar))tunllarm\aamo + | AR tin || armo + Mltn|[arme - (11)
for n > ng where the first term on the RHS is equal to 0 (note that the per-

turbation of the metric is localized on M™). The second term can be estimated
to

[ARntnllarmo < const ([[unllarm + | AR, yunllam) < const [[un || am

for some appropriate n; > ny and all n > n; by regularity theory. Since (u,)

converges strongly to u = 0 in Lgoc(M), the LHS of (11) converges to 0 which
contradicts (10). a

In order to show the existence of eigenfunctions of the approximating problem
we define the eigenvalue counting function

Noor(@Q(),2) =) dimker(Q(r') — ).

This function counts the number of eigenvalues A (with multiplicity) of the family
(Q(7"))r<r<r. Note the difference to the eigenvalue counting function of a single
operator () > 0 counting the number of eigenvalues below A, i.e.,

dimy(Q) := Y dimker(Q — \).
0<N <A

The next lemma follows from the fact that the eigenvalue branches 7 —
AP (M™(7)) are continuous and that the number of eigenvalue branches coming
from above is a lower bound for the number how often the eigenvalue branches
cross the level A\. Note that the eigenvalue branches could oscillate several times
around A.

Lemma 4.6. We have
NTO,T(AM"(-)a )\) Z dlm)\(A%n (T)) - dlm)\(A]I?/[n (7'0)).

The proof of the following lemma is essentially the same as the proof of
Lemma 4.1:

Lemma 4.7. For n > ny we have
dlm,\(A?/[n (T)) — dlm,\(A?/[n (7'0)) = dim)\(AIJ\)JnO (7')) — dim)\(A%no (7'())).

Finally we prove the existence of approximating eigenfunctions. Together with
Theorem 4.2 and Theorem 4.3 we conclude Theorem 1.2.
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Theorem 4.8. There exist an infinite number of sequences (1,) and (u,) such
that 7, = T as n — oo and such that u, is an eigenfunction of the Dirichlet-
Laplacian on M™(1,) with eigenvalue \.

Proof. The Min-max Principle yields
0 < AP (M™ (7)) < A (M(7)) = e *"A (M) — 0

and therefore dim,\(A?/[no(T)) — 00 as 7 — oo. From the last two lemmas we
conclude Ny, - (AR (), A) — oo uniformly in n € N as 7 — co. If the counting
number increases by 1 at the parameter 7 we can choose a sequence (73,), 7o <
Tn < T converging to some number 7. To this sequence corresponds a sequence

of eigenvalues (u,). In the next step we let 7 be the old value of 7. We raise 7
until the counting number increases again by 1 and so forth. O
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