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Many physical systems have branching structure of thin transversal diameter. One can
name for instance quantum wire circuits, thin branching waveguides, or carbon nano-
structures. In applications, such systems are often approximated by the underlying one-
dimensional graph structure, a so-called “quantum graph”. In this way, many properties
of the system like conductance can be calculated easier (sometimes even explicitly). We
give an overview of convergence results obtained so far, such as convergence of Schrödinger
operators, Laplacians and their spectra.

1 Introduction

In this note, we give an overview on convergence results of Laplace-like operators on shrinking
tubular neighbourhoods of a metric graph. We start with defining the notion “graph-like manifold”
and “thick graph”, as well as the associated Laplace-like operators on these spaces. We also review
some applications in Physics and Mathematics in Section 2. The current state of art of quantum
graph models is described in the recent proceedings volume [11] to which we refer for an extensive
bibliography. Section 3 is devoted to convergence results for the Neumann Lalacian as well as a general
convergence scheme for operators acting in different Hilbert spaces. Section 4 contains results for the
Dirichlet Laplacian on thick graphs, as well as operators on thick graphs converging to delta-couplings
on the underlying metric graph. Finally, in Section 5 we comment on some work in progress and
open problems.

2 Thick graphs

Roughly speaking, a thick graph is a family of neighbourhoods {Xε}ε>0 of a metric graphX0 embedded
in Rd, which shrinks to X0 if ε → 0. Sometimes, we also refer to a single member Xε of the family
{Xε}ε for a suitably small ε > 0 as a thick graph. We give a more formal definition below.

Thick graphs have a lot of different names in the literature, basically due to the intended appli-
cation. Thick graphs are also called fat graphs (cf. [9]), mesoscopic systems collapsing onto a graph
(cf. [23]), graph neighbourhoods (cf. [18]), graph-like (thin) manifolds (cf. [12], quasi-one-dimensional
spaces (cf. [31]), thin branched (quantum) waveguides (cf. [13]) or quantum networks modelled by
graphs (cf. [15]).
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2.1 Definition of a thick graph

2.1 Definition of a thick graph

2.1.1 Metric and quantum graphs

We give here a brief outline of the concept of metric and quantum graphs. We refer to [22] for more
details and further references.

Assume that X0 is a metric graph, i.e., a topological graph X0 with vertices V and edges E such
that each edge e ∈ E is associated a length ℓe > 0. In this way, we can identify an edge e with
the interval Ie := [0, ℓe] and the adjacent initial and terminal vertices ∂−e ∈ V and ∂+e ∈ V with
0 ∈ Ie and ℓe ∈ Ie. Note that we can view s ∈ Ie as a coordinate on the edge e, which introduces
an orientation on the graph X0. Moreover, the coordinate allows to integrate and differentiate a
function on the edge. We also allow edges of infinite length (so-called infinite leads), this edge is
assumed to have only one adjacent initial vertex ∂−e ∈ Ie = [0,∞).

Figure 1: Four examples of metric graphs: a compact one, a non-compact one with compact interior part
and one infinite lead, a non-compact Z

2-periodic metric graph and a self-similar non-compact example, the
Sierpiński graph.

Thus, the topological graph X0 can be turned into a metric measure space, by defining the distance
of two points x, y ∈ X0 to be the shortest distance of all Lipschitz continuous paths joining x and y,
where the length of a path is defined in the obvious way. The measure on X0 is determined by the
Lebesque measure on each edge Ie.

Associated to a metric graph, we have a natural Hilbert space, namely

H0 := L2(X0) :=
⊕

e

L2(Ie). (2.1)

Moreover, we can naturally define differential operators, like e.g. a Laplace-type operator (∆f)e =
−f ′′

e for a function f = {fe}e ∈ H2
max(X0), where Hk

max(X0) :=
⊕

e Hk(Ie). In order to turn ∆ into a
self-adjoint operator, we have to fix vertex conditions on the boundary values

fe(v) :=

{
fe(0), v = ∂−e

fe(ℓe), v = ∂+e
and f ′

e(v) :=

{
−f ′

e(0), v = ∂−e

f ′
e(ℓe), v = ∂+e

(2.2)
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2.1 Definition of a thick graph

of the function at a vertex v and its adjacent edges e ∈ Ev, the neighbouring edges of v. A prominent
example is given by the so-called free or Kirchhoff vertex conditions

fe1
(v) = fe2

(v) ∀e1, e2 ∈ Ev and
∑

e∈Ev

f ′

e(v) = 0. (2.3)

The first condition in (2.3) is referred to as continuity of the function f viewed as function on the
topological space X0, the second is a flux condition on the derivative viewed as vector field onX0. The
free or Kirchhoff Laplacian ∆X0

on the metric graph X0 is now the operator acting as (∆f)e = −f ′′
e

for functions f ∈ H2
max(X0) fulfilling (2.3). We will see in a moment that if we have a uniform lower

positive bound on the edge length, i.e.,
inf
e∈E

ℓe > 0, (2.4)

then ∆X0
is self-adjoint. We will give further examples of self-adjoint vertex conditions in Section 4.3.

Let us remark that the Kirchhoff Laplacian ∆X0
is associated with the quadratic form

dX0
(f) :=

∑

e

∫ ℓe

0

|f ′

e|2 ds, dom dX0
:= H

1(X0), (2.5)

where H1(X0) is the subspace of those functions f ∈ H1
max(X0) such that f is continuous at each

vertex. It follows from (2.4) that H
1(X0) is a closed subspace in H

1
max(X0), and that dX0

is a closed
non-negative quadratic form. Moreover, the associated operator is precisely ∆X0

, which shows in
particular that ∆X0

is self-adjoint (see [22] for details and further references).
A quantum graph is a metric graph X0 together with a self-adjoint differential operator H0 acting

on X0. The most prominent example is a metric graph X0 together with its Kirchhoff Laplacian ∆X0

just defined.

2.1.2 Graph-like manifolds and thick graphs

Let us now give an abstract definition of — what we call in this review — a graph-like manifold. Let
ε > 0 and let X0 be a metric graph.

A graph-like manifold (associated to X0) is a family of d-dimensional manifolds Xε (d ≥ 2) which
can be decomposed into

Xε =
⋃

e∈E

Xε,e ∪
⋃

v∈V

Xε,v (2.6)

such that the closed sets Xε,e and Xε,v are disjoint or intersect only in submanifolds of dimension
d−1. The so-called edge and vertex neighbourhoods Xε,e and Xε,v are supposed to have the following
structure (cf. Figure 2):

• The edge neighbourhood Xε,e is a cylinder, i.e., Xε,e := Ie × εYe, where Ye is a compact
Riemannian manifold (with or without boundary) with metric he, called transversal manifold,
and where εYe denotes the ε-homothetically scaled Riemannian manifold, i.e., the manifold Ye

with metric hε,e := ε2he. In particular, Xε carries the metric ge = ds2 + ε2he.

• The vertex neighbourhood Xε,v is ε-homothetic to a fixed Riemannian manifold Xv with metric
gv, i.e., Xε,v carries the metric gε,v = ε2gv. Moreover, we assume that the boundary ∂Xv of Xv

contains a subset ∂̊Xv which is isometric to the disjoint union of Ye, e adjacent to v.

Let us give now an important example, which is a graph-like manifold in the sense above only in an
approximate sense: Let X̃ε denote the (closed) ε-neighbourhood of a metric graph X0 embedded in Rd

(such that the edges in a vertex meet non-tangentially), then a decomposition similar to (2.6) yields
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Xε,e

e

Xε,v

v

ε

ε

Figure 2: An edge and an vertex neighbourhood associated to an edge e and a vertex v with three adjacent
edges.

edge neighbourhoods X̃ε,e with are only approximate cylinders of length ℓe, and vertex neighbourhoods

X̃ε,v, which are only approximately ε-homothetic to a fixed manifold Xv.
First, this is due to the fact that the vertex neighbourhood needs some space, so that the length

of the cylinder is only ℓe − 2ε. Second, the embedded edge need not to be straight. In both cases,
one can show that the error made by introducing the coordinates (s, y) ∈ Ie ×Ye on the approximate

cylinder X̃ε,e yields a metric g̃ε,e which is close to gε,e up to some ε-depending errors. We call a

space X̃ε which is a graph-like manifold only up to small ε-depending errors a thick graph. A more
detailed discussion of these errors can be found e.g. in [34, Secs. 5.3–5.6 and 6.7]. For simplicity, we
call graph-like manifolds also thick graphs.

At first sight, the definition of a graph-like manifold looks pretty abstract in comparison with the
concrete definition of a thick graph. The main reason for using the spaces Xε,e and Xε,v is to have
ε-independent coordinates (s, y) ∈ Xe = Ie×Ye and x ∈ Xv, and to put the ε-dependence only in the
metric of the Riemannian manifold. This is a significant simplification in the reduction to a graph
model; the particular error estimates coming from a concrete embedding of the metric graph X0 into
some ambient space do not enter into this reduction step.

For other shrinking behaviour at the vertices, we refer to [24, 12, 34].

2.1.3 Operators on thick graphs

On a thick graph, we typically consider a Laplace-like operator, e.g., the Neumann-Laplacian (if Xε

has boundary) or the Laplacian on Xε (if Xε has no boundary) defined via its quadratic form

dXε
(u) :=

∫

Xε

|du|2gε
, Hε := H

1(Xε), (2.7)

in the Hilbert space H := L2(Xε). Note that the Neumann boundary condition ∂nu = 0 on ∂Xε

only enters in the corresponding operator domain via a partial integration formula.
We will see below that the Neumann case and the Laplacian on a manifold without boundary can

be treated in the same way. The main reason for this fact is that on the transversal manifolds Ye,
the lowest eigenfunction is constant in both cases with corresponding eigenvalue 0.

If ∂Xε 6= ∅, then we also consider the Dirichlet-Laplacian ∆D
Xε

on Xε defined via the quadratic

form d̊Xε
defined as above, but with domain dom d̊Xε

:= H̊1(Xε), the closure of C∞
c (Xε) of the space

of smooth functions with compact support away from ∂Xε in H1(Xε).

2.2 Examples of thick graphs

The thick graph Xε may have boundary or not, depending on whether the transversal manifolds Ye

have boundary or not.
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2.3 Appearance of thick graphs in Physics and Mathematics

2.2.1 An abstract example

We can construct a graph-like manifold Xε according to a given metric graph X0 by associating
appropriate manifolds Ye and Xv to each edge e and vertex v as in Section 2.1.2. It is not difficult
to see that one can define a globally smooth metric gε on the underlying manifold such that the
decomposition (2.6) holds with Xε,e = Ie × εYe and Xε,v = εXv (see also Figure 2).

Figure 3: Four examples of thick graphs: the first two are examples of thick graphs, viewed either as
2-dimensional manifold without boundary (the surface of the pipeline network) or as 3-dimensional manifold
with boundary. The examples in the second row correspond to the periodic and self-similar metric graphs
of Figure 1.

2.2.2 Examples with boundary from embedded graphs

Let X0 be a metric graph embedded in Rd such that the angle between two edges meet in a vertex
always with a non-zero angle. Let X̃ε be the ε-neighbourhood, then X̃ε is close to a thick graph Xε as
discussed above. This example has boundary, and corresponds to the case with transversal manifold
Ye being a ball in Rd. In this situation, the boundary ∂Xε may have corners (but with non-zero
angle). This does not bother us, inasmuch as we can define a Neumann Laplacian with compact
resolvent (if Xε is compact).

2.2.3 Examples without boundary

If we choose X̃ε to be (a smoothed version of) the boundary of the ε-neighbourhood of an embedded
graph in Rd+1 as above, then we obtain an example which is close to a thick graphXε (a d-dimensional
manifold without boundary), with transversal manifold being a (d − 1)-dimensional in Rd (see also
Figure 3).

2.3 Appearance of thick graphs in Physics and Mathematics

2.3.1 Physical models

Possibly the first time thick graphs appeared is in [36], where Ruedenberg and Scherr used thick
graphs as justification of quantum graph models for the spectra of aromatic hydrocarbons. Although
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2.3 Appearance of thick graphs in Physics and Mathematics

the justification is mathematically not correct (the limit of a shifted Dirichlet Laplacian on a thick
graph is generally not the Kirchhoff Laplacian, see Section 4), the quantum graph models lead to a
good approximation of the spectra.

Since quantum graphs are generally believed to provide good models for electronic and optical
nano-structures, a natural question arises:

Is the quantum graph model a good approximation of a physically more realistic system with finite,
but non-vanishing thickness ε > 0?

Moreover, one is interested in modelling devices with certain properties like a quantum switch
modelled by a certain vertex condition in a quantum graph.

Is it possible to find a thick graph model converging to a prescribed quantum graph vertex coupling?
On a quantum graph, many physical properties like the conductance or existence of bound states

can be calculated explicitly. Such models are called solvable models, since mathematically, the calcu-
lation on a quantum graph mostly reduces to a system of coupled ODEs. Note that the conductance
of a periodic medium (a periodic semi-conductor or a photonic crystal transmitting light) is guaran-
teed if the spectrum of the corresponding operator has band structure and is absolutely continuous.
If the energy of a particle lies in such a band, then it can “travel” through the medium; if the energy
lies outside the bands (i.e., in a spectral gap, then no transport is possible.

Thick graph models are also used in other areas; e.g. thick graphs as models for proteins have
been analysed recently in [29].

2.3.2 Thick graphs in Mathematics: Spectral geometry

In Spectral Geometry, one investigates relations of the spectrum of the Laplacian (or related oper-
ators) on a Riemannian manifold to its geometry. Graph-like manifolds may serve as toy models in
order to show certain properties, or to disprove a conjecture. Maybe the first mathematical treatment
of convergence results for thick graphs is provided by Colin de Verdière [7]:

Theorem 2.8. Given a compact oriented manifold M of dimension d ≥ 3 without boundary and a
natural number n ≥ 1, then there exists a metric gn such that the first non-zero eigenvalue of the
associated Laplacian has multiplicity n.

In dimension 2, the multiplicity of the non-zero eigenvalues is bounded from above by the genus
of the surface (see [4]). If d ≥ 3, Colin de Verdière embeds a complete metric graph X0 with n + 1
vertices in M . Such an embedding is possible, since dimM ≥ 3. Then he deforms a given metric g
on M into a family of metrics {gε} such that gε equals g on a small ε–neighbourhood Xε of X0 and
which is small outside. He then shows that the eigenvalues of ∆(M,gε) are close to the eigenvalues of
the Neumann Laplacian on (Xε, gε). In a second step, it can be seen that these Neumann eigenvalues
converge to the eigenvalues of the Kirchhoff Laplacian on X0, using methods discussed below (cf.
Theorem 3.2). If all lengths of the metric graph are the same, then the first non-zero eigenvalue of
the Kirchhoff Laplacian has the desired multiplicity n. The use of enough parameters (the lengths
of the edges in the metric graph X0) allows to find a path in this parameter space such that the
multiplicity is preserved. A similar construction is used in [8] in order to show the following more
general result: Let d ≥ 3, and let λ1 = 0 < λ2 ≤ · · · ≤ λn be a sequence of n numbers. Then there
exists a metric g such that the corresponding Laplacian has λ1, . . . , λn as its first n eigenvalues.

2.3.3 Thick graphs in Mathematics: Global analysis

The heat kernel of a Riemannian manifold X is the smallest positive fundamental solution to the
heat equation −∂tu = ∆Xu (recall that ∆X ≥ 0).
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3 Neumann Laplacians on thick graphs

On a complete Riemannian manifold X with non-negative Ricci curvature, Li and Yau [25] showed
that the heat kernel pt(x, y) has the asymptotic behaviour (2.9) with β = 2 for all times t, i.e., the
heat kernel behaves very similar as the heat kernel of the Laplacian on X = Rd, namely

pt(x, y) =
1

(4πt)d/2
exp

(
−|x− y|2

4t

)

for t > 0 and x, y ∈ R
d. In contrast, on self-similar graphs X0 (like the Sierpiński graph, see Figure 1),

in general, a different asymptotic behaviour occurs, e.g.,

pt(x, y) ∼
1

volBx(
√
t)

exp
(
−d(x, y)

β

ct

)
(2.9)

for some c > 0 and β = log 5/ log 2 > 2 for the Sierpiński graph, where d(x, y) denotes the geodesic
distance between the points x, y ∈ X and volBx(r) denotes the volume of a geodesic ball Bx(r).

Up to recent time it was believed that Gaussian estimates with β > 2 are typical only for such
self-similar spaces Surprisingly, one can construct a fractal-like Riemannian manifold X according to
the metric graph X0 having the Gaussian estimate with β = log 5/ log 2 > 2 for large times t, and
the classical Gaussian estimate β = 2 for short times (see [2, 1] and references therein).

From a probabilistic point of view, this behaviour can be understand as follows: pt(x, y) is the
probability density that a particle starting at the point x is at the point y in time t. A particle
moving on a fractal-like manifold sees the smooth structure for short times, but for large times, the
fractal nature becomes apparent.

3 Neumann Laplacians on thick graphs

Let Xε be a thick graph constructed from the building blocks Xε,v = εXv and Xε,e = Ie × εYe with
transversal manifolds εYe. Let Hε be the Laplacian on Xε (in our notation, Hε ≥ 0) associated to
the quadratic form dXε

, cf. (2.7). If ∂Xε 6= ∅ we assume Neumann boundary conditions.
On the limit space, the metric graph, we consider a weighted Kirchhoff Laplacian, namely, (H0f)e =

−f ′′
e for f ∈ H2

max(X0) fulfilling

f continuous,
∑

e∈Ev

(vold−1 Ye)f
′

e(v) = 0. (3.1)

3.1 Convergence results for Neumann Laplacians

Let us first assume that the thick graph and the metric graph are compact. In this case, Hε and
H0 have purely discrete spectrum, denoted by λk(Hε) and λk(H0), written in increasing order and
repeated according to their multiplicity.

The following convergence result on the discrete spectrum shows that the Kirchhoff Laplacian on
the metric graph is natural in the sense that it occurs as a limit of an ε-neighbourhood of the graph.
It was proven for the first time by Colin de Verdière, where he showed Theorem 2.8 above. Since this
convergence result is used as a technical step only and presented in a brief way, the paper seemed to
be overlooked in much of the mathematical physics community until recently. Later on, Rubinstein-
Schatzman [35] proved it in a concrete embedded situation, and Kuchment-Zeng [23] simplified some
arguments. In [12] we introduced graph-like manifolds and stressed the geometric point of view of
the analysis.
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3.1 Convergence results for Neumann Laplacians

Theorem 3.2. Let Xε be a compact thick graph with underlying compact metric graph X0, and let
Hε be the (Neumann-)Laplacian on Xε, and let H0 be the weighted Kirchhoff Laplacian on X0, then

λk(Hε) − λk(H0) = O(ε1/2) as ε→ 0.

Idea of the proof: The proof uses a variational characterisation of eigenvalues (the Min-max principle)
and identification operators for quadratic form domains J1 : H1(X0) −→ H1(Xε) and J ′1 : H1(Xε) −→
H1(X0). The main step in the proof is then to compare the Rayleigh quotients

‖f ′‖2
L
2
(X0)

‖f‖2
L
2
(X0)

and
‖du‖2

L
2
(Xε)

‖u‖2
L
2
(Xε)

.

In all of the above-cited papers, the underlying spaces are assumed to be compact, and therefore,
only the discrete spectrum was considered, and the spectral convergence does not (directly) imply
the convergence of eigenfunctions. We introduce the following notion of convergence of operators
acting in different Hilbert spaces, developed (to our knowledge) for the first time in [31]; implying in
particular the convergence of the discrete and essential spectrum for non-compact graph-like spaces
(in the fast decaying case).

Definition 3.3. For each ε ≥ 0, let Hε be a non-negative operator acting in a Hilbert space Hε. We
say that Hε

gnr−→ H0 in the generalised norm resolvent sense of order O(ε1/2) iff there is a bounded
operator J : H0 −→ Hε such that

J∗J = id0, ‖(idε −JJ∗)Rε‖ = O(ε1/2) and ‖JR0 −RεJ‖ = O(ε1/2),

where Rε := (Hε + 1)−1 denotes the resolvent for ε ≥ 0.

This is not the most general condition, more details can be found in [34].
For the following result, we need some uniformity conditions on the metric and thick graph: We say

that a metric graph X0 is uniform iff there is a positive lower bound on the edge lengths, cf. (2.4).1

We say that a graph-like manifold Xε is uniform iff

inf
e∈E

λN
2 (Ye) > 0, inf

v∈V
λN

2 (Xv) > 0 and sup
v∈V

vold Xv

vold−1 ∂̊Xv

<∞. (3.4)

Here, λN
2 (M) denotes the second (first non-zero) eigenvalue of the Neumann Laplacian on the manifold

M . Recall that ∂̊Xv is the part of the boundary of Xv where the edge neighbourhoods are attached.
For a thick graph (in our notation, a graph-like manifold up to some error terms), one needs in

general more assumptions on the embedding, e.g., one needs a lower bound on the angles of two
adjacent edges at a vertex, and upper bounds on the curvature of an edge embedded in Rd, cf. [31]
and [34, Sec. 6.7].

The following result was first proven in [31], see also [34]:

Theorem 3.5. Let Xε be a uniform thick graph with underlying uniform metric graph X0, and let
Hε be the (Neumann-)Laplacian on Xε, and let H0 be the weighted Kirchhoff Laplacian on X0 defined

in (3.1), then Hε
gnr−→ H0 of order O(ε1/2). Moreover, the error depends only on the bounds in (2.4)

and (3.4).

Idea of the proof. Let us motivate why a condition like ‖(idε −JJ∗)Rε‖ = O(ε1/2) should be true:

1In [31], we assumed additionally that the graph has uniformly bounded vertex degrees. Actually, this is not needed,
cf. [34].
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3.2 Convergence of operators in different Hilbert spaces

• JJ∗ is the projection onto transversally constant functions, and functions vanishing on vertex
neighbourhoods Xε,v;

• functions in (ranJJ∗)⊥ have high energy (spectral parameter of Hε);

• the resolvent “cuts off” high energies.

In other words: eigenfunctions uε of Hε with bounded eigenvalues λε ≤ const do not concentrate on
Xε,v and are almost transversally constant. Actually, the arguments for a rigorous proof of Hε

gnr−→ H0

are very similar to the arguments for the proof of Theorem 3.2.

Freidlin and Wentzell consider the problem from a probabilistic point of view in [16]. They show
that a suitable Markov process on a thin graph neighbourhood converges to a Markov process on the
metric graph. In essence, they prove strong resolvent convergence of the Laplacian with Neumann
boundary conditions on the graph neighbourhood to a Laplace-type operator on the metric graph.
A similar result for tree graphs is proven by Saito in [37].

Results for certain classes of compact manifolds converging in the Gromov-Hausdorff distance are
given in the works of Kasue [20, 21] (see also the references therein and [17, 3] for related results); in
particular, the convergence of the discrete spectrum and strong convergence of resolvents is shown.
Typically, these results need some uniform curvature bounds, which are in general not fulfilled for a
family {Xε}ε of graph-like manifolds, and imply only strong resolvent convergence.

For the convergence of resonances, we refer to [13] and the survey article [14].

3.2 Convergence of operators in different Hilbert spaces

Let us comment on the generalised norm resolvent convergence, cf. [31] and [34, Ch. 4] for more
results):

Theorem 3.6. Assume that Hε
gnr−→ H0, then the following assertions hold:

i. Convergence of operator functions: We have

‖ϕ(Hε)J − Jϕ(H0)‖ → 0 and ‖ϕ(Hε) − Jϕ(H0)J
∗‖ → 0

for suitable functions ϕ (in particular, limλ→∞ ϕ(λ) exists), e.g. ϕ(λ) = e−tλ or ϕ = 1I , I ⊂ R

with ∂I ∩ σ(H0) = ∅.

ii. Convergence of discrete spectrum: Let λ0 be a (for simplicity) simple discrete eigenvalue of H0

with corresponding normalised eigenfunction ϕ0, then there exist simple discrete eigenvalues λε

of Hε with corresponding eigenfunctions ϕε such that λε → λ0 and ‖Jϕ0 − ϕε‖ → 0.

iii. Convergence of essential spectrum: σess(Hε) → σess(H0) converges uniformly in [0,Λ] for all
Λ > 0. In particular, Hε has a spectral gap if H0 has (provided ε > 0 is small enough).

In particular, the convergence of all discrete eigenvalues Theorem 3.2 follows. Under certain ad-
ditional assumptions (positivity and contractivity, fulfilled for the above example of the Neumann
Laplacian on a thick graph, we also have convergence of ϕ(Hε) − Jϕ(H0)J

∗ → 0 in the operator
norm on L(Lp(Xε)) (cf. [28]).

As a consequence for thick graphs, we know that a thick graph has spectral gaps once the corre-
sponding metric graph has spectral gaps. A typical example of an operator having spectral gaps is
given by a periodic operator; in [26], we showed, that the Kirchhoff Laplacian on the periodic graph
of Figure 1 (lower left) has spectral gaps; so the same is true for a corresponding thick graph.
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4 Dirichlet and other Laplacians on thick graphs

Another interesting example is given by the self-similar Sierpiński graph: Teplyaev showed in [38]
that the spectrum of the discrete Laplacian on this graph is fractal, a simple argument shows that
the same is true for a corresponding (equilateral) metric graph (cf. e.g. [32]). In particular, σ(H0)
has infinitely many components in any compact spectral interval I ⊂ [0,∞). Therefore, Theorem 3.6
implies that the number of components of σ(Hε) ∩ I tends to ∞ as ε→ 0. Note that our analysis is
too weak in order to show that the number of components is actually infinite for a positive ε > 0.

4 Dirichlet and other Laplacians on thick graphs

4.1 Dirichlet Laplacians on thick graphs

Let us now review some results concerning the Dirichlet Laplacian on a thick graph. For a more
detailed review especially on the Dirichlet case we refer to [19]. Related results are proven in [27, 10].

Let us assume (for simplicity) that Xε is a compact graph-like manifold associated to a metric
graph X0. Moreover, we assume that Xε has “straight” edge neighbourhoods Xε,e = Ie × εYe (the
non-compact case and the case of curved embedded edges can be found in [33, Sec. 6.11].

We assume that each transversal manifold has non-empty boundary ∂Ye 6= ∅. On a single tubular
neighbourhood Xε,e = [0, 1]× εYe with Dirichlet conditions on [0, ℓe]× ε∂Ye and Neumann conditions
on {0, ℓe} × εYe, the spectrum is given by

σ(∆DN
Xε,e

) =
{ p2π2

ℓ2e
+
λq(∆

D
Ye

)

ε2

∣∣∣ p = 0, 1, . . . , q = 1, 2, . . .
}
, (4.1)

where λq(∆
D
Ye

) denotes the q-th Dirichlet eigenvalue of Ye. Since the first Dirichlet eigenvalue is
non-negative, we have to consider a shifted operator in order to expect a convergence limit. Let
λ1 := mine λ1(∆

D
Ye

) and set

Hε := ∆D
Xε

− λ1

ε2
.

Note that only the “thickest” edges (i.e., the edges with λ1 = λ1(∆
D
Ye

) count. Let us assume for
simplicity that λ1 = λ1(∆

D
Ye

) for all edges e ∈ E.
A first result for the Dirichlet Laplacian is the following (cf. [30]):

Theorem 4.2. Let Hε = ∆D
ε − λ1/ε

2. If minv λ1(∆
DN
Xv

) > λ1 then

λk(Hε) → λk(H0),

where H0 =
⊕

e ∆D
Ie

is the decoupled Dirichlet Laplacian on the metric graph X0.

A vertex neighbourhood Xv fulfilling the condition λ1(∆
DN
Xv

) > λ1(Ye) may look like in Figure 4.

Here, ∆DN
Xv

is the Laplacian on Xv with Neumann boundary conditions at the “inner” boundary ∂̊Xv

(where the edge neighbourhoods are attached) and with Dirichlet conditions on the remaining part.
We call such manifolds Xv spectrally small. Note that this condition implies that Hε ≥ 0: Introducing
additional Neumann boundary conditions at the junctions of Xε,e and Xε,v gives a lower bound on
the shifted Dirichlet Laplacian, i.e.,

Hε ≥
⊕

e

(
∆DN

Xε,e
− λ1

ε2

)
⊕

⊕

v

(
∆DN

Xε,v
− λ1

ε2

)
.

Now the shifted Laplacians on Xε,e are non-negative since λ1 is the lowest transversal mode, see (4.1),
and the shifted Laplacians on Xε,v are non-negative since Xv is spectrally small and since ∆DN

Xε,v
−

λ1/ε
2 = ε−2(∆DN

Xv
− λ1).

10



4.1 Dirichlet Laplacians on thick graphs

Figure 4: A vertex neighbourhood Xv in the centre which is spectrally small. For the graph-like manifold,
the whole space is scaled by ε.

Note that the usual ε-neighbourhood is not spectrally small, as one can easily see by inserting test
functions in the Rayleigh quotient of the quadratic form associated to Hε. One obtains that there
are eigenvalues τk(ε) of Hε with associated eigenfunctions localised near Xε,v such that τk(ε) → −∞
as ε → 0 (from Theorem 4.3 below we actually conclude τk(ε) = (τk − λ1)/ε

2 < 0).
A full description of the asymptotic behaviour of the Dirichlet spectrum (and other boundary

conditions) was first given in [27, 18]. The main observation is to consider the rescaled space

ε−1Xε → ·⋃

v

X∞

v =: X∞ as ε→ 0,

i.e., to turn the rescaled compact space ε−1Xε into a disjoint union of the star graph neighbourhoods
X∞

v with infinite edges attached.
Denote by τ1, . . . , τk0

the L2-eigenvalues of the Dirichlet Laplacian ∆D
X∞ on X∞ below the threshold

λ1. The first result is the following (see [18, 27]):

Theorem 4.3. The eigenvalues of the Dirichlet Laplacian on the graph-like manifold Xε below the

threshold λ1 have the asymptotic expansion λk(∆
D
Xε

) =
τk
ε2

+ O(e−c/ε) for k = 1, . . . , k0 as ε→ 0.

Note that the spectral smallness assumption λ1(∆
DN
Xv

) > λ1 implies that there are no such eigen-
values (i.e., k0 = 0).

Let us now treat the spectrum without these low-lying eigenvalues located at the vertex neigh-
bourhoods. Denote by Hε := (∆D

Xε
− λ1/ε

2)+ the non-negative part of the shifted Laplacian, where
A+ := 1[0,∞)(A)A.

It turns out that the asymptotic behaviour of the Dirichlet eigenvalues is determined by a scattering
problem on the star graph neighbourhood X∞

v . Denote by Sv(λ) the scattering matrix of ∆D
X∞v

at
the energy λ ≥ λ1, which is a (deg v × deg v)-matrix.

Let Vv := ker(Sv(λ1) − 1), and let H0 be the Laplacian on the underlying metric graph X0 with
vertex conditions

{fe(v)}e∈Ev
∈ Vv and {f ′

e(v)}e∈Ev
∈ V

⊥

v ⊂ C
Ev . (4.4)

Note that this vertex condition turns out to be the (unweighted) Kirchhoff condition if Vv =
C(1, . . . , 1).

Grieser [18] proved the following result (see also the results of Molchanov and Vainberg [27]):

Theorem 4.5. Let Hε := (∆D
Xε

− λ1/ε
2)+ be the non-negative part of the shifted Dirichlet Laplacian

on a compact graph-like manifold Xε, and let H0 be the metric graph Laplacian with vertex condition
as in (4.4), then the k-th eigenvalue has the asymptotics λk(Hε) − λk(H0) = O(ε) as ε → 0.

Note that Grieser’s also gives an asymptotic expansion of the eigenvalues. This method also applies
to other boundary conditions. In the Neumann case, this method gives the right error term of order
ε instead of ε1/2 as obtained by the simpler eigenvalue comparison techniques of Theorem 3.2.

11



4.2 Difference between Neumann and Dirichlet case

4.2 Difference between Neumann and Dirichlet case

Let us make some comments why the case of Neumann boundary conditions on a thick graph is much
easier to treat than the case of Dirichlet (or other) boundary conditions:

Let us first give an interpretation of the scattering matrix Sv(λ) of the Dirichlet Laplacian on the
star graph neighbourhood X∞

v . One observes that the vertex space Vv (the range of the function
values {fe(v)}e∈Ev

in a vertex condition), defined by Vv := ker(Sv(λ1) − 1) is non-trivial iff there
exist generalised (bounded) eigenfunctions ψv such that ψv,e(x, y) ∼ ϕe(y) as x → ∞ on the edge
neighbourhood Xe (e ∈ Ev), where ϕe is the eigenfunction on Ye associated to λ1: Such functions ψv

are called energy resonance at λ1.
As a consequence, a non-trivial coupling at the vertex v, i.e., a vertex space Vv 6= 0, is a “rare”

event: generically, one only has a decoupling Dirichlet vertex condition as in Theorem 4.2. Actually,
the spectral smallness condition ensures that there is no energy resonance at λ1.

In the Neumann (or boundaryless) case, the threshold is λ1 = 0, and the energy resonance at 0 is
just given by the constant function ψv = 1, and the corresponding vertex space is Vv = C(1, . . . , 1).
Note that in this case, the energy resonance function ψv = 1 exactly matches with the lowest
transversal eigenfunctions ϕe (appropriately scaled), which are also constant, i.e., we have ψe(x, y) =
ϕe(y) for all (x, y) ∈ Xe.

Since this energy resonance function at 0 does not see the geometry of Xv, it is not seen in the
limit operator, the Kirchhoff Laplacian, either. Moreover, the embedding of the metric graph X0

into an ambient space like R2 does not enter in the limit either. In contrast, in the Dirichlet case, a
curved edge leads to an additional potential on the metric graph determined by the curvature of the
edge, see [30], [34, Sec. 6.11] and references therein.

4.3 Other vertex conditions in the limit

We first give a non-existence result for certain vertex couplings. We claim that it is impossible to
approximate a delta-coupling by a pure Laplacian, using a topological argument.

Let H0 be the the Laplacian on a compact metric graphX0 with delta-coupling of strength q(v) > 0
at each vertex v, i.e., (H0f)e = −f ′′

e , and

f is continuous and
∑

e∈Ev

f ′

e(v) = q(v)f(v). (4.6)

Note that H0 ≥ 0 iff q(v) ≥ 0 for all v ∈ V . We formally write H0 = ∆X0
+

∑
v q(v)δv for this vertex

condition.
We now want to factorise H0 as H0 = d∗0d0. An easy calculation shows that this can be done by

choosing d0f := (f ′, (
√
q(v))v) ∈ L2(X0) ⊕ CV =: Ĥ0 with dom d0 = H1(X0), the Sobolev space of

order 1 with continuous functions at the vertices. Similarly, we can factorise the Laplacian on a
graph-like manifold as Hε = d∗εdε with dεu ∈ Lexact

2 (T ∗Xε) =: Ĥε, the space of exact 1-forms.
A simple example is given as follows: Let X0 = S1 be a loop graph with only one vertex v, and let

Xε = S1 ×rε
Y be a warped product, i.e., the product manifold with metric gε = dx2 + rε(x)

2h, where
(Y, h) is a closed manifold. Note that the warped product here corresponds to a manifold S

1×Y with
variable radius given by the function rε(x). It is an easy calculation that the index ind d0 (defined as
ind d0 := dim ker d0 − dim ker d∗0) equals 0 on the loop graph, but ind dε = 1 on the warped product.

As a consequence of the different indices we claim (work in progress with Claudio Cacciapuoti):

Conjecture 4.7. It is impossible to approximate a (non-trivial) delta-coupling H0 via a pure Lapla-

cian Hε = ∆Xε
with Xε = S1 ×rε

Y such that Hε
gnr−→ H0.
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4.3 Other vertex conditions in the limit

The arguments leading to this conjecture are rather simple: Since Hε ≥ 0 the limit operator also
has to be non-negative, i.e., i.e., q(v) ≥ 0. Moreover, Hε is unitarily equivalent to the family of
one-dimensional Schrödinger operators

{H0,k}k =
(
− d2

dx2
+Kε +

λk(Y )

r2
ε

)
k
, where Kε = P 2

ε + P ′

ε, Pε :=
m

2
· r

′
ε

rε

and m = dimY . If one tries to approximate a delta-coupling by the lowest member of the family
H0,0f = −f ′′ + Kεf for appropriate radius functions rε, one always ends up with a trivial coupling
strength q(v) = 0. Moreover, the above conjecture should also hold for more general spaces, since
the approximation is local, i.e., depends only on the behaviour of rε near the vertex.

In order to obtain a delta-coupling we need to change either the operator or the topology of the
approximating space. One result in this direction is to use scaled Schrödinger operators on the
vertex neighbourhoods: Let Xε be a thick graph associated to a metric graph X0 (for simplicity with
all transversal volumes being the same, e.g., vold−1 Ye = 1). Set Hε := ∆N

Xε
+ Qε with Neumann

boundary conditions (if ∂Xε 6= ∅), where Qε =
∑

v ε
−1Qv is a potential supported on the vertex

neighbourhood Xε,v only.
In the limit, we have the Laplacian with delta-couplings as in (4.6), i.e., H0 = ∆X0

+
∑

v q(v)δv,
with coupling strengths q(v) =

∫
Xv

Qv.
Under the same uniformity assumptions as in Theorem 3.5, we proved in [15]:

Theorem 4.8. Let Xε be a uniform thick graph with underlying uniform metric graph X0, let Hε :=
∆N

Xε
+

∑
v ε

−1Qv be the scaled Schrödinger operator, and let H0 := ∆X0
+

∑
v q(v)δv be the Laplacian

with delta-coupling with strengths q(v) =
∫

Xv

Qv, then Hε
gnr−→ H0 of order O(ε1/2).

The proof is very similar to the proof of Theorem 3.5, only the estimate of ‖(Hε + 1)−1J − J(H0 + 1)−1‖
is slightly different (actually, in Theorem 3.5 and Theorem 4.8, we used the corresponding quadratic
forms instead of the operators, making the verification of the estimates simpler, but the presentation
a bit more technical).

Using arguments of [5, 6], one can now approximate a general vertex condition of a Laplacian H0

on X0 at a vertex v by the operator Ha on a metric graph Xa
0 , where Ha and Xa

0 are constructed
from H0 and X0 using properly scaled delta interactions and additional edges, such that Xa

0 → X0 as
a→ 0.

If we now approximate Ha by Hε with appropriate a = aε and delta strengths, we can find a
family of thick graphs Xε and operators Hε such that Hε

gnr−→ H0. The example of a delta’-coupling
is presented in [15].

Another possibility of obtaining a delta coupling is to use scaled Robin boundary conditions : Let
Hε := ∆Xε

with Robin boundary conditions

∂nε
u+ βεu = 0 on ∂Xε =

⋃

v

Γε,v ∪
⋃

e

Γε,e,

i.e., we decompose the boundary of the thick graph ∂Xε into the parts of the vertex neighbourhoods
Γε,v = ε∂Xv∩∂Xε and the edge neighbourhoods Γε,e = Ie×ε∂Ye. Denote the corresponding restriction
of βε by βε,v and βε,e. Let H0 = ∆X0

+
∑

v q(v)δv be the Laplacian on X0 with delta interactions of
strength q(v). In [28], we proved the following:

Theorem 4.9. Assume that βε,e = O(ε1+1/2), βε,v = βv and q(v) =
∫
Γv

βv, then Hε
gnr−→ H0 of order

O(ε1/2).
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5 Outlook and open problems

Idea of proof. The lowest eigenvalue λ1,e(x, ε) on the scaled transversal manifold {x} × εYe with
Robin condition ε−1∂nu(x, ·) + βεu(x, ·) = 0 on {x} × ∂Ye is of order λ1,e(x, ε) = O(ε1/2) → 0, i.e.,
this eigenvalue problem is close to the Neumann case. Therefore, we can use similar arguments as
in the proof of Theorem 3.5. Moreover, the scaling behaviour of βε at the vertex neighbourhood is
just the right one for a delta-coupling as ε → 0.

If we used scale invariant conditions, i.e., βε = β/ε, then the lowest transversal Robin eigenvalue
would be of order λ1,e(ε) = O(ε−2), and the arguments of Theorem 4.5 have to be applied.

5 Outlook and open problems

5.1 Work in progress and open problems

In a current project together with Jussi Behrndt, we show the convergence of the Dirichlet-to-
Neumann operator on a graph-like manifold Xε with cylindrical finite ends (which determine the
boundary for the Dirichlet-to-Neumann operator) to a corresponding object on the underlying met-
ric graph X0. The main point here is to introduce Dirichlet-to-Neumann operators via boundary
triples associated to quadratic forms.

There are still no conrete examples of vertex neighbourhoods known, such that the shifted and cut
Dirichlet Laplacian Hε = (∆D

Xε
− λ1/ε

2)+ converges to a Laplacian with non-trivial vertex couplings
at the vertices. Moreover, the convergence in the generalised norm resolvent convergence in the
Dirichlet case is not yet shown, although some work has been done in [10] in this direction.

5.2 Conclusion

Thick graphs (or fat graphs, graph-like manifolds . . . ) provide an interesting class of almost solvable
models and a “construction kit” for examples with special spectral behaviour. Neumann (and related)
operators on thick graphs have a rather “simple” limit behaviour (Kirchhoff and related vertex
conditions in the limit) independent of the vertex neighbourhoods, and can be treated with general
(weak) methods. In contrast, Dirichlet and other operators with non-zero (large) first eigenvalue of
order ε−2 are more complicated; the limit behaviour depends on the scattering matrix at the threshold,
and the limit operator is generically decoupled. Finally, The generalised resolvent convergence is a
very general scheme: it can be applied to many cases; a stronger version using quadratic forms
allows results with minimal smoothness assumptions; a similar convergence scheme is also available
for sectorial operators (see [28]).
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