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Abstract. Convergence of operators acting on a given Hilbert space is an old

and well studied topic in operator theory. The idea of introducing a related
notion for operators acting on varying spaces is natural. However, it seems that

the first results in this direction have been obtained only recently, to the best of
our knowledge. Here we consider sectorial operators on scales of Hilbert spaces.

We define a notion of convergence that generalises convergence of the resolvents

in operator norm to the case when the operators act on different spaces and show
that this kind of convergence is compatible with the functional calculus of the

operator and moreover implies convergence of the spectrum. Finally, we present

examples for which this convergence can be checked, including convergence of
coefficients of parabolic problems. Convergence of a manifold (roughly speaking

consisting of thin tubes) towards the manifold’s skeleton graph plays a prominent

role, being our main application.

1. Introduction

Convergence of operators in the resolvent sense is a classical issue in operator
theory. Early results go back, at least implicitly, to Rayleigh and Schrödinger. The
first systematic investigations are due to Trotter, Rellich and Kato.

If the operators under consideration arise from sesquilinear forms on a Hilbert
space, there are powerful methods available to study convergence of the operators,
in particular in the self-adjoint case. In Kato’s classical monograph [Kat95, Chap-
ters 8–9] one finds a detailed study of various kinds of convergence with focus on
strong and uniform convergence in the resolvent sense and the consequences of the
respective convergence for the behaviour of the spectrum. Moreover, Kato gives
criteria in terms of the forms that allow to check easily in many situations that a
sequence of operators arising from uniformly sectorial forms converge either strongly
or uniformly. Those criteria are particularly easy to verify if the forms satisfy some
monotonicity assumptions, i.e., they converge from above or from below.

A similar, very successful approach has been developed by Mosco [Mos94] in the
context of symmetric Dirichlet forms, i.e., forms associated with sub-Markovian self-
adjoint C0-semigroups. His notion of form convergence, which is sometimes known
as M -convergence, modifies (and sometimes improves) the earlier Γ-convergence in-
troduced in [DGF75]. In particular he studies compactness and closure properties
with respect to the topologies associated to these notions of convergence. By this,
he succeeds in obtaining strong resolvent convergence, spectral convergence and con-
vergence of the generated semigroups from simple conditions on the forms, and in
fact resolvent convergence can be easily characterised via the forms.

In this article, on the other hand, we are interested in convergence properties
in operator norm of operators associated with forms that act on varying Hilbert
spaces, for example differential operators on varying domains. Such situations have
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been widely studied for elliptic equations on varying domains with respect to several
boundary conditions on several spaces, and we refer to Daners’ survey article [Dan08]
for results for these instances of problems in the spirit of form methods and further
references.

In the late 1990s further convergence results in the context of homogenisation
problems have been obtained by the post-Soviet school, see [Zhi00, Mel00, Pas04]
and references therein. These results mostly rely upon a notion of convergence of
sequences living in a family of Hilbert spaces, i.e., of L2-spaces on varying domains or
with respect to varying measures. While their results only provide strong convergence
to the solution of a concrete elliptic or parabolic problem, an interesting feature is
that their methods can also be extended to certain nonlinear settings, cf. [Mel08].

On the other hand, a natural approach to infinite dimensional problems is based
on approximation via finite dimensional spaces. This is common in numerical anal-
ysis and an abstract theory of such kind of approximations has been recently de-
veloped, cf. [IK02]. If in particular one considers diffusion-like processes, form
methods are a mighty tool. Convergence schemes for Dirichlet forms on scales
of finite dimensional spaces have been considered by Mosco and others, particu-
larly in the context of stochastic diffusion equations and diffusion on fractals, see
e.g. [Kol06, FL08, Hin09, AVR09, MV09]. There are similar convergence results
for manifolds, metric measure spaces, Hilbert spaces, quadratic forms on different
Hilbert spaces in [KS03, Kas02, Kas06]. Though, in these works only the strong
convergence of the associated operators is considered.

In this article we investigate convergence of m-sectorial operators Aε, which are
allowed to act on different Hilbert spaces Hε, towards an m-sectorial operator A0

acting on a Hilbert space H0 by form methods. Our notion of form convergence
resembles a sufficient condition for convergence of the resolvent in operator norm
due to Kato and is designed in a way that allows to check the conditions easily in
many applications. The notation is introduced in Section 2. Our main abstract
results are contained in Section 3. More precisely, in Section 3.1 we show that if Aε
converges to A0, then also ϕ(Aε) converges to ϕ(A0) in norm if ϕ is in a suitable class
of bounded holomorphic functions (Theorem 3.7). We prove in Section 3.2 that the
spectra of Aε converge to the spectrum of A0 (Corollary 3.14 and Theorem 3.17).
Similar results for self-adjoint operators can be found in [Pos06]. In [Pos09], also
convergence of certain non-self-adjoint operators in a specific situation is considered.
In Section 3.3 we consider invariance of subsets of the Hilbert spaces and extrapolated
semigroups. In particular, if we assume that the Hilbert spaces Hε are L2-spaces
and the semigroups (etAε)t≥0 generated by the Aε are bounded on the corresponding
L∞-spaces, then we can prove that under suitable assumptions on the convergence
scheme the semigroups etAε converge to etA0 also as operators on Lp for p ∈ [2,∞)
(Theorem 3.23).

Section 4 describes several situations to which our results can be applied with-
out much effort. In Section 4.1 we put the Fourier series expansion with respect to
eigenvectors into our framework to exhibit the ideas at an elementary example. In
Section 4.2 we apply our results in a situation where Aε are elliptic operators on
a domain whose coefficients converge to the coefficients of an elliptic operator A0.
More precisely, we consider generalised Wentzell-Robin boundary conditions, which
are a natural candidate for our framework because the natural choice of inner prod-
ucts on the underlying Hilbert space depends on the coefficients even if the Hilbert
spaces coincide as sets. In this setting we generalise results of Coclite et al. [CFG+08]
and complement those of [CGG08] (Theorem 4.4). In Section 4.3 we adopt a varia-
tional approach to elliptic operators whose coefficient may vanish at the boundary,
as in [AC10] (Theorem 4.5). Observe that in this situation the limiting Hilbert space
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differs from the approximating ones – not only with respect to the inner product,
but even as a set –, so that Kato’s classical results cannot be applied directly.

Our main example, however, is the convergence of tube-like manifolds to the
skeleton graph, which we investigate in Section 5. More precisely, we letHε = L2(Xε)
for ε > 0, whereXε is a manifold consisting of (m+1)-dimensional objects resembling
tubes (edge neighbourhoods) that are connected in (m + 1)-dimensional junction
regions (vertex neighbourhoods). If these tubes have a uniform thickness ε, then
it is natural to expect that the behaviour of physical processes on Xε which are
described by an elliptic operator is close to the behaviour of an analogous process on
the skeleton graph X0, which is a 1-dimensional manifold with singularities at the
vertices. We show that under some uniformity assumptions we indeed have resolvent
convergence and convergence of finite parts of the spectrum (Theorem 5.9). Note
that the convergence results for manifolds and metric measure spaces of Kasue et
al. [KS03, Kas02, Kas06] do not apply here, since our families of manifolds (Xε)ε do
not satisfy the necessary curvature bounds (see e.g. [Kas02, p. 1224]).

Robin boundary conditions are closely related to Neumann boundary conditions
from the perspective of the quadratic (or, more generally, sesquilinear) form ap-
proach. In fact, the form domain is the same, while the forms differs only by a (pos-
sibly non-symmetric) boundary term. This allows us to rely on the results in [Pos06]
for treating the principal term, so that we only have to handle the boundary term.

One of our motivations for this example is given by recent articles of Grieser [Gri08]
and Cacciapuoti–Finco [CF08]. Grieser considered general boundary conditions
(Dirichlet, Robin or Neumann) on a manifold (if embedded, the embedding is “straight”)
shrinking to a metric graph. He showed that the limit behaviour depends on the scat-
tering matrix at the threshold of the essential spectrum, so that, generically, the limit
operator is decoupling. Cacciapuoti and Finco use a simple wave-guide model (in our
terminology, a flat manifold converging to a graph consisting of two (half-infinite)
edges and one vertex only). Using curved embedded edges with different scalings of
the transversal and longitudinal curvature, they obtain non-trivial couplings start-
ing with Robin boundary conditions. However, their notion of convergence differs
significantly from ours since one can use separation of variables due to the simple
product topology of the space. For the convergence of unitary groups in a similar
setting we refer to the recent work of Teufel and Wachsmuth [TW09].

Grieser and Cacciapuoti-Finco use scale-invariant Robin boundary conditions of
the form ∂u

∂ν = βεu with βε = β/ε. This scaling leads to transversal eigenvalues

of the order ε−2. In particular, a rescaling of the limit operator is necessary in
order to expect convergence, see Remark 5.2. Using Robin boundary conditions
with coupling of order βε = O(1) near the vertices and βε = O(ε3/2) along the
edge neighbourhoods, we are able to construct a family of manifolds with boundary,
such that, in the limit, the corresponding Laplacians converge to a Laplacian on
the underlying metric graph with generalised, possibly non-local δ-interactions in
the vertices. Using the same idea as in [EP09], we can further approximate other
couplings like the δ’-interaction.

Acknowledgements. This article has been written while the third author was vis-
iting the University of Ulm. He would like to thank the University of Ulm for the
hospitality and the financial support.

2. Notation

We consider m-sectorial operators (in the sense of Kato) on Hilbert spaces. For
our approach, it is convenient to work with such an operator in terms of its associated
form. We briefly sketch the correspondence of m-sectorial operators and sesquilinear
forms. For these results and much more information we refer to [Kat95, Chapter VI].
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We point out that there is a one-to-one correspondence between bounded, H-elliptic
forms and m-sectorial operators, so there is no loss of generality in working with an
m-sectorial operator only in terms of its form.

Let H be a Hilbert space and let V be a dense subspace of H that is a Hilbert
space in its own right, and which is continuously embedded into H. We say that a
sesquilinear form a : V × V → C is bounded if there exists M ≥ 0 such that

(2.1) |a(u, v)| ≤M‖u‖V ‖v‖V for all u, v ∈ V ,

and we call a H-elliptic or simply elliptic if there exist ω ∈ R and α > 0 such that

(2.2) Re a(u, u) + ω‖u‖2
H ≥ α‖u‖2

V for all u ∈ V .

In this case

‖u‖a :=
√

Re a(u, u) + ω‖u‖2
H

defines an equivalent norm on V . More precisely, since V is continuously embedded
into H, there exists c ≥ 0 such that

(2.3) ‖u‖H ≤ cV ‖u‖V for all u ∈ V .

For any such constant cV , we obtain

(2.4) α‖u‖2
V ≤ ‖u‖2

a ≤
(
M + c2V ω

)
‖u‖2

V for all u ∈ V .

We define the associated operator A of a by

u ∈ D(A) and Au = f :⇐⇒ u ∈ V and a(u, v) = 〈f |v〉H ∀v ∈ V,

and we emphasise that since the form a is not assumed to be symmetric, the associ-
ated operator A is in general not self-adjoint.

Consider for a moment the form b : V × V → C given by

b(u, v) := a(u, v) + ω〈u|v〉H ,
which is associated with the operator A+ ω. Then by (2.1) and (2.4)

|Im b(u, u)| = |Im a(u, u)| ≤ |a(u, u)| ≤M‖u‖2
V ≤ M

α
‖u‖2

a =
M

α
b(u, u).

The proof of [Ouh05, Theorem 1.53] now shows that σ(A+ ω) ⊂ Σarctan M
α

, where

(2.5) Σθ :=
{
z ∈ C \ {0} : |arg(z)| < θ

}
.

Moreover, denoting here and in the following

R(z,A) := (z −A)−1,

for every θ ∈ (arctan M
α , π] we have

‖zR(z,A+ ω)‖L (H) ≤ Dθ for all z 6∈ Σθ,

i.e., σ(A) ⊂ −ω + Σarctan M
α

and

(2.6) ‖R(z,A)‖L (H) ≤
Dθ

|z + ω| for all z 6∈ Σθ − ω

with

Dθ :=
1

sin(θ − arctan M
α )

.

Operators satisfying such a condition are frequently called m-sectorial (in the sense
of Kato).

Definition 2.1. Let (Hε)ε≥0 be a family of Hilbert spaces. We say that (aε)ε≥0

is an equi-sectorial family of sesquilinear forms with form domains (Vε)ε≥0, if there
exist M , ω, α and cV not depending on ε such that (2.1), (2.2) and (2.3) are satisfied
for all ε ≥ 0, i.e., all the constants are uniform with respect to ε.
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Remark 2.2. If (aε)ε≥0 is an equi-sectorial family of sesquilinear forms, then by (2.4)
the norms ‖·‖Vε

and ‖·‖aε
are equivalent with a uniform constant. This allows us

to use either of these two norm interchangeably in the following. For the theoretical
part, the form norm is more convenient. But for applications, we usually prefer to
equip Vε with other norms that are easier to handle.

Now let (aε)ε≥0 be a family of equi-sectorial family of sesquilinear forms on Hilbert
spaces (Hε)ε≥0. We want to “measure” the distance between the associated operators
(Aε)ε>0 and A0. For this, we introduce identification operators J↑ε : H0 −→ Hε and
J↓ε : Hε −→ H0, ε > 0, which are considered to be “almost unitary”, i.e., unitary up
to some error. For technical reasons, it is also convenient to introduce identification

operators J↑ε
1 : V0 −→ Vε and J↓ε

1 : Vε −→ V0 for the form domains, which are
considered to be “almost the restrictions” of J↑ε and J↓ε to V0 and Vε, respectively.

We make this more explicit and use the following terminology, inspired by the
technique developed in [Pos06, Appendix A] and [Pos09] (see also [EP09]).

Definition 2.3. Let ε > 0, and let a0 and aε be bounded, elliptic, sesquilinear forms
on Hilbert spaces H0 and Hε with form domains V0 and H0. Denote the associated
operators by A0 and Aε, respectively. For parameters δε > 0 and κ ≥ 1 we say
that A0 and Aε are δε-κ-quasi-unitarily equivalent if there exist bounded operators

J↑ε ∈ L (H0,Hε), J
↓ε ∈ L (Hε,H0), J

↑ε
1 ∈ L (V0, Vε) and J↓ε

1 ∈ L (Vε, V0) that
satisfy the following conditions.

‖J↑ε − J↑ε
1 ‖L (V0,Hε) ≤ δε and ‖J↓ε − J↓ε

1 ‖L (Vε,H0) ≤ δε;(2.7a)

‖J↓ε − (J↑ε)∗‖L (Hε,H0) ≤ δε and ‖J↑ε − (J↓ε)∗‖L (H0,Hε) ≤ δε;(2.7b)

‖id−J↓εJ↑ε‖L (V0,H0) ≤ δε and ‖id−J↑εJ↓ε‖L (Vε,Hε) ≤ δε;(2.7c)

‖J↑ε‖L (H0,Hε) ≤ κ and ‖J↓ε‖L (Hε,H0) ≤ κ;(2.7d)
∣∣a0(f, J

↓ε
1 u) − aε(J

↑ε
1 f, u)

∣∣ ≤ δε‖f‖V0
‖u‖Vε

for all f ∈ V0 and u ∈ Vε.(2.7e)

If (aε)ε∈≥0 is an equi-sectorial family of sesquilinear forms and if there exists κ ≥ 1
and a family (δε)ε>0 of positive real numbers with limε→0 δε → 0 such that Aε is
δε-κ-quasi-unitarily equivalent to A0, then we say that the family (Aε)ε>0 converges
to A0 as ε→ 0.

Remark 2.4.

(i) For δε = 0 the operators A0 and Aε are unitarily equivalent. In fact, if δε =
0, conditions (2.7b) and (2.7c) states that J↑ε is unitary with inverse J↓ε.

Since by (2.7a) the operators J↑ε
1 and J↓ε

1 are the restrictions of J↑ε and J↓ε,
condition (2.7e) states that J↑ε realises the unitary equivalence of A0 and Aε.

(ii) In applications, it typically is easy to check that J↑ε
1 : V0 −→ Vε and J↓ε

1 : Vε −→
V0 are bounded: if J↑ε

1 is bounded as an operator into Hε and takes values in
Vε, then it is bounded as an operator into Vε by the closed graph theorem, and

an analogous argument applies to J↓ε
1 .

(iii) The two conditions in (2.7b) are equivalent to each other. In fact, they can be
rephrased as

(2.7b’) |〈J↑εf |u〉Hε
− 〈f |J↓εu〉H0

| ≤ δε‖f‖H0
‖u‖Hε

for all f ∈ H0 and u ∈ Hε.

(iv) Condition (2.7c) does not imply that J↓εJ↑ε or J↑εJ↓ε are invertible operators.
In fact, in most of our examples one of the two operators will have a large kernel,
whereas the other has a small range.

(v) Only (2.7e) depends on the evolution processes acting on the scale Hε, while
the first four conditions are solely related to the function spaces. So if we
have verified (2.7a)–(2.7d) in one situation, those conditions are satisfied for a
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large class of examples. To be more specific, we can reuse the results obtained
in [Pos06] for Neumann boundary conditions and do not have to check these
four conditions once again for the discussion of the Laplace operator with Robin
boundary conditions in Section 5.

Example 2.5. Let a0 and aε be forms on a single Hilbert space H with equal form

domain V and let J↑ε, J↑ε
1 , J↓ε and J↓ε

1 be the identity on H resp. V . Then the
conditions of Definition 2.3 are satisfied if and only if

(2.8) |a0(u, v) − aε(u, v)| ≤ δε‖u‖V ‖v‖V
for all u, v ∈ V .

In the setting of Example 2.5, if (2.8) is satisfied for a family (δε)ε>0 satisfying
limε→0 δε = 0, then the resolvent of Aε converges to the resolvent of A0 in operator
norm uniformly on compact subsets of ̺(A0). In fact, it would suffice if (2.8) is
satisfied whenever u = v, see [Kat95, Theorem VI.3.6]. In this sense, our results are
a generalisation of this classical result to the setting of varying spaces. We can also
deduce similar consequences like in the classical situation, e.g. convergence of the
spectra.

3. Abstract results

For the whole section, let (aε)ε≥0 be an equi-sectorial family of sesquilinear forms
for constants M , ω, α and cV as in (2.1), (2.2) and (2.3), and let (Aε)ε≥0 denote

the associated operators. We always let the operators J↑ε, J↓ε, J↑ε
1 and J↓ε

1 and the
constant κ be as in Definition 2.3.

3.1. Functional calculus. In our situation, each operator Aε+ω is invertible by the
Lax-Milgram theorem due to (2.2). It is known that in this situation the operators
Aε + ω have bounded H∞-calculus, see [KW04, §11], [Are04, §5.2] or [Haa06, §7.3].
We are going to show that under the conditions of Section 2, for an admissible
holomorphic function ϕ the operators ϕ(Aε) converge to ϕ(A0) as ε→ 0.

We start with some auxiliary estimates. For brevity, in the proofs we write

Rε(z) := R(z,Aε) = (z −Aε)
−1.

Lemma 3.1. Let θ ∈ (arctan M
α , π]. There exists Cθ ≥ 0 such that for all ε ≥ 0 and

z 6∈ Σθ − ω

‖R(z,Aε)‖L (Hε,Vε) ≤
Cθ√
|z + ω|

and ‖R(z,Aε)
∗‖L (Hε,Vε) ≤

Cθ√
|z + ω|

.

Proof. Let u ∈ Hε be fixed. Then by (2.4)

α‖Rε(z)u‖2
Vε

≤ ‖Rε(z)u‖2
aε

= Re aε(Rε(z)u,Rε(z)u) + ω‖Rε(z)u‖2
Hε

= Re〈(ω +Aε)Rε(z)u|Rε(z)u〉Hε

= Re〈(ω + z)Rε(z)u|Rε(z)u〉Hε
− Re〈u|Rε(z)u〉Hε

≤
(
|ω + z| · ‖Rε(z)‖L (Hε) + 1

)
‖Rε(z)‖L (Hε)‖u‖2

Hε

Now (2.6) implies the first estimate for

Cθ :=

√
(1 +Dθ)Dθ

α
.

The second estimate can be proved like the first. In fact, R(z,Aε)
∗ = R(z,A∗

ε) and
A∗
ε is associated with the form a∗ε given by

a∗ε(u, v) := a(v, u).
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Thus it suffices to realise that a∗ε satisfies (2.1) and (2.2) for the same constants as
aε. �

Lemma 3.2. Let J↑ε and J↓ε be as in Definition 2.3, and let Bε ∈ L (Hε, Vε) and
B0 ∈ L (H0, V0). Then

‖Bε − J↑εB0J
↓ε‖L (Hε) ≤ κ‖J↓εBε −B0J

↓ε‖L (Hε,H0) + δε‖Bε‖L (Hε,Vε).

Proof. By (2.7c) and (2.7d) we have

‖Bε − J↑εB0J
↓ε‖L (Hε) ≤ ‖Bε − J↑εJ↓εBε‖L (Hε) + ‖J↑εJ↓εBε − J↑εB0J

↓ε‖L (Hε)

≤ δε‖Bε‖L (Hε,Vε) + κ‖J↓εBε −B0J
↓ε‖L (Hε,H0). �

Lemma 3.3. Let J↑ε and J↓ε be as in Definition 2.3, and let f ∈ V0 and u ∈ Hε.
Then

‖J↓εu− f‖H0
≤ κ‖u− J↑εf‖Hε

+ δε‖f‖V0
.

Proof. Let g ∈ H0. By (2.7c) and (2.7d)
∣∣〈J↓εu− f |g〉H0

∣∣ ≤
∣∣〈J↓ε(u− J↑εf)|g〉Hε

∣∣ +
∣∣〈J↓εJ↑εf − f |g〉Hε

∣∣

≤ κ‖u− J↑εf‖Hε
‖g‖H0

+ δε‖f‖V0
‖g‖H0

.

Since g is arbitrary, this proves the claim. �

Now we prove the key estimate of this section.

Proposition 3.4. Let Aε and A0 be δε-κ-quasi-unitarily equivalent, m-sectorial op-
erators with vertex ω and semi-angle θ ∈ (arctan M

α , π], and let r > 0. Then there
exist constants Cθ,r,1 > 0 and Cθ,r,2 > 0 such that

(3.1) ‖R(z,Aε)J
↑ε − J↑εR(z,A0)‖L (H0,Hε) ≤

δεCθ,r,1√
|z + ω|

and

(3.2) ‖R(z,Aε) − J↑εR(z,A0)J
↓ε‖L (Hε) ≤

δεCθ,r,2√
|z + ω|

for all z 6∈ Σθ − ω satisfying |z + ω| ≥ r.

Proof. Let Dθ be as in (2.6) and let Cθ be as in Lemma 3.1. Let f ∈ H0 and u ∈ Hε

be arbitrary, and fix z 6∈ Σθ − ω. Then by (2.7b) (see also (2.7b’)), (2.6), (2.7a) and
Lemma 3.1

∣∣〈(Rε(z)J↑ε − J↑εR0(z)
)
f
∣∣u

〉
Hε

∣∣

≤
∣∣〈f |J↓εRε(z)

∗u〉H0
− 〈J↑εR0(z)f |u〉Hε

∣∣ +
δεDθ

|z + ω| ‖u‖Hε
‖f‖H0

≤
∣∣〈(z −A0)R0(z)f |J↓ε

1 Rε(z)
∗u〉H0

− 〈J↑ε
1 R0(z)f |(z −Aε)

∗Rε(z)
∗u〉Hε

∣∣

+
( 2δεCθ
|z + ω|1/2 +

δεDθ

|z + ω|
)
‖u‖Hε

‖f‖H0

≤
∣∣a0(R0(z)f, J

↓ε
1 Rε(z)

∗u) − aε(J
↑ε
1 R0(z)f,Rε(z)

∗u)
∣∣

+ |z|
∣∣〈R0(z)f |J↓ε

1 Rε(z)
∗u〉H0

− 〈J↑ε
1 R0(z)f |Rε(z)∗u〉Hε

∣∣

+
( 2δεCθ
|z + ω|1/2 +

δεDθ

|z + ω|
)
‖u‖Hε

‖f‖H0
.
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Using (2.7e) and once again (2.7b) we can further estimate
∣∣〈

(
Rε(z)J

↑ε − J↑εR0(z)
)
f |u〉Hε

∣∣
≤ δε‖R0(z)f‖V0

‖Rε(z)∗u‖Vε

+ |z|
∣∣〈R0(z)f |J↓εRε(z)

∗u〉H0
− 〈J↑εR0(z)f |Rε(z)∗u〉Hε

∣∣

+
(δε|z|CθDθ

|z + ω|3/2 +
2δεCθ

|z + ω|1/2 +
δεDθ

|z + ω|
)
‖u‖Hε

‖f‖H0

≤
(δε(Dθ + C2

θ )

|z + ω| +
δε|z|D2

θ

|z + ω|2 +
δε|z|CθDθ

|z + ω|3/2 +
2δεCθ

|z + ω|1/2
)
‖u‖Hε

‖f‖H0
.

For |z + ω| ≥ r, this implies (3.1) with

Cθ,r,1 := (CθDθ + 2Cθ) +
Dθ + C2

θ +D2
θ

r1/2
+

|ω|CθDθ

r
+

|ω|D2
θ

r3/2
.

Estimate (3.2) is a consequence of (3.1) since by Lemma 3.2 and Lemma 3.1 we have

‖Rε(z)u− J↑εR0(z)J
↓ε‖L (Hε) ≤ κ‖J↓εRε(z) −R0(z)J

↓ε‖L (Hε,H0) +
δεCθ√
|z + ω|

,

so we can choose Cθ,r,2 := κCθ,r,1 + Cθ. �

Remark 3.5. Estimate (3.2) tells us that we can find a good approximation of the
operator Aε in terms of the (often simpler) operators A0, J

↑ε and J↓ε, at least
for small ε. This is interesting by itself. In fact, we even have a rather explicit
error estimate; in the proof we have given concrete (though certainly not optimal)
constants. However, since these expressions are quite cumbersome, we prefer to work
with the general constants Cθ,r,1 and Cθ,r,2.

Define

H∞(Σθ − ω) :=
{
ϕ : Σθ − ω → C : ϕ is holomorphic and bounded

}

and

H∞
00 (Σθ − ω) :=

{
ψ ∈ H∞(Σθ − ω) : ∃µ > 1

2 such that ψ(z) ∈ O(|z|−µ) (z → ∞)
}

and equip these spaces with the supremum norm. Let θ ∈ (arctan M
α , π]. We define

the primary functional calculus of Aε for ψ ∈ H∞
00 (Σθ − ω) by

(3.3) ψ(Aε) :=
1

2πi

∫

∂(Σσ−ω)

ψ(z)R(z,Aε) dz,

where σ ∈ (arctan M
α , θ). By Cauchy’s integral theorem, this definition is indepen-

dent of the choice of σ and agrees with the usual definition of the functional calculus,
compare also [Haa06, §2.5.1].

Remark 3.6. In our setting, the natural space for the primary functional calculus
would be the larger space

H∞
0 (Σθ) :=

{
ψ ∈ H∞(Σθ) : ∃ µ > 0 such that ψ(z) ∈ O(|z|−µ) (z → ∞)

}

since in fact (3.3) is defined even for ψ ∈ H∞
0 (Σθ−ω). However, using estimate (3.2)

we can show convergence of ψ(Aε) to ψ(A0) only for ψ ∈ H∞
00 (Σθ − ω).

Since the operators Aε are m-sectorial in the sense of Kato, this functional calculus
has a natural extension to ϕ ∈ H∞(Σθ − ω), and the operator ϕ(Aε) is bounded
with norm

(3.4) ‖ϕ(Aε)‖L (Hε) ≤
(
2 +

2√
3

)
‖ϕ‖∞,

cf. [Haa06, Corollary 7.1.17]. It is important for us to have a bound on the norm of
ϕ(Aε) that is uniform with respect to ε.
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We are now able to show that ϕ(Aε) converges to ϕ(A0) is the following sense if
(Aε)ε>0 converges to A0 in the sense of Definition 2.3, which is our main result in
the context of the functional calculus.

Theorem 3.7. Let A0 and Aε be as in Section 2 and assume that Aε be δε-κ-quasi-
unitarily equivalent to A0. Let θ ∈ (arctan M

α , π]. Then for all ψ ∈ H∞
00 (Σθ − ω)

there exists Cψ ≥ 0 such that

(3.5) ‖J↑εψ(A0)J
↓ε − ψ(Aε)‖L (Hε) ≤ Cψδε.

Moreover, for all ψ ∈ H∞(Σθ − ω) there exists Cψ ≥ 0 such that

(3.6) ‖J↑εϕ(A0)J
↓εu− ϕ(Aε)u‖Hε

≤ Cϕδε‖(ω + 1 +Aε)u‖Hε

for all u ∈ D(Aε).

Proof. Fix ψ ∈ H∞
00 (Σθ − ω) and σ ∈ (arctan M

α , θ). Let ν ∈ (0, αc−2
V ) be such that

θ′ := arctan
( M

α− νc2V

)
< σ,

where α, M and cV are as in (2.1), (2.2) and (2.3). Since

aε(u, u) + (ω − ν)‖u‖2
Hε

≥ α‖u‖2
Vε

− ν‖u‖2
Hε

≥ (α− νc2V )‖u‖2
Vε
,

the operator Aε is m-sectorial with vertex −ω + ν and semi-angle θ′, and the same
is true for A0 on H0. Hence by Proposition 3.4

‖R(z,Aε) − J↑εR(z,A0)J
↓ε‖L (Hε) ≤

δεCθ′,ν/2,2√
|z + ω − ν|

for all z 6∈ Σθ′ − ω + ν such that |z + ω − ν| ≥ ν
2 . If r > 0 is sufficiently small, then

B(−ω, r) ∩ (∂Σσ − ω) has distance at least ν
2 to Σθ′ − ω + ν, and hence

(3.7) ‖R(z,Aε) − J↑εR(z,A0)J
↓ε‖L (Hε) ≤ δεcσ,ν

for all z ∈ ∂(Σσ−ω) satisfying |z+ω| ≤ r, where cσ,ν and r are constants depending
on σ and ν, so in principle only on M , α and cV .

There exist µ > 1
2 and K ≥ 0 such that

|ψ(z)| ≤ K

|z + ω|µ and |ψ(z)| ≤ K

for all z ∈ Σθ − ω. Thus, by (3.3), Proposition 3.4 and (3.7)

‖J↑εψ(A0)J
↓ε − ψ(Aε)‖L (Hε)

≤ 1

2π

∫

∂(Σσ−ω)

|ψ(z)| ‖J↑εR0(z)J
↓ε −Rε(z)‖L (Hε) dz

≤ 1

2π

∫

∂(Σσ−ω)\B(−ω,r)

δεCσ,r,2K

|z + ω|µ+ 1

2

dz +
1

2π

∫

∂(Σσ−ω)∩B(−ω,r)
δεcσ,νK dz.

Therefore, we have shown (3.5) with

Cψ :=
Cσ,r,2K

(µ− 1
2 )rµ−

1

2π
+
cσ,νrK

π
.

In particular, there exists a constant Cψ∗ belonging to the function ψ∗ ∈ H∞
00 (Σθ)

defined by

ψ∗(z) :=
1

ω + 1 + z
such that

‖J↑εψ∗(A0)J
↓ε − ψ∗(Aε)‖L (Hε) ≤ Cψ∗δε,
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i.e.,

(3.8) ‖J↑ε(ω + 1 +A0)
−1J↓ε − (ω + 1 +Aε)

−1‖L (Hε) ≤ Cψ∗δε.

Now let ϕ ∈ H∞(Σθ − ω) be fixed and define ψ ∈ H∞
00 (Σθ − ω) by

ψ(z) :=
ϕ(z)

ω + 1 + z

Then ϕ(Aε)(ω + 1 + Aε)
−1 = ψ(Aε) by the construction of the functional calcu-

lus [Haa06, §2.3.2]. Hence for all u ∈ D(Aε) we have

‖J↑εϕ(A0)(ω + 1 +A0)
−1J↓ε(ω + 1 +Aε)u− ϕ(Aε)u‖Hε

= ‖J↑εψ(A0)J
↓ε(ω + 1 +Aε)u− ψ(Aε)(ω + 1 +Aε)u‖Hε

≤ Cψδε‖(ω + 1 +Aε)u‖Hε
.

Moreover, from (2.7d) and (3.4) we obtain that

‖J↑εϕ(A0)J
↓εu− J↑εϕ(A0)(ω + 1 +A0)

−1J↓ε(ω + 1 +Aε)u‖Hε

≤ κ
(
2 +

2√
3

)
‖ϕ‖∞‖J↓εu− (ω + 1 +A0)

−1J↓ε(ω + 1 +Aε)u‖H0
.

Finally, by Lemma 3.3, (3.8), Lemma 3.1 (for z = −ω − 1) and (2.7d)

‖J↓εu− (ω + 1 +A0)
−1J↓ε(ω + 1 +Aε)u‖H0

≤ κ‖u− J↑ε(ω + 1 +A0)
−1J↓ε(ω + 1 +Aε)u‖Hε

+ δε‖(ω + 1 +A0)
−1J↓ε(1 + ω +Aε)u‖V0

≤ κCψ∗δε‖(ω + 1 +Aε)u‖Hε
+ δεCθκ‖(ω + 1 +Aε)u‖H0

.

Combining the previous three estimates, we have proved (3.6) with

Cϕ := Cψ + κ2
(
2 +

2√
3

)
‖ϕ‖∞

(
Cψ∗ + Cθ

)
. �

Corollary 3.8. If (Aε)ε>0 converges to A0 in the sense of Definition 2.3, then the
family (J↓εϕ(Aε)J

↑ε)ε>0 converges in operator norm to ϕ(A0) (regarded as operators
on H0) for every ϕ ∈ H∞

00 (Σθ − ω), θ ∈ (arctan M
α , π]. If merely ϕ ∈ H∞(Σθ − ω),

then we have at least convergence in the strong operator topology.

Proof. Since all conditions in Definition 2.3 are symmetric with respect to A0 and
Aε, interchanging the roles of the two operators we obtain as in Theorem 3.7 that

‖ψ(A0) − J↓εψ(Aε)J
↑ε‖L (H0) ≤ Cψδε

for ψ ∈ H∞
00 (Σθ − ω), which proves the first claim. Similarly,

‖ϕ(A0)f − J↓εϕ(Aε)J
↑εf‖L (H0) ≤ Cϕδε‖(ω + 1 +A0)f‖H0

for all f ∈ D(A0) if ϕ ∈ H∞(Σθ − ω), implying that (J↓εϕ(Aε)J
↑ε)ε>0 converges

to ϕ(A0) on a dense subspace of H0. Since the operators are uniformly bounded
by (2.7d) and (3.4), this implies strong convergence. �

Example 3.9. For every t ∈ Σσ, σ ∈ (0, π2 ), the function z 7→ e−tz is in H∞
00 (Σθ−ω)

for θ ∈ (0, π2 − σ). Hence the semigroups (e−tAε)ε>0 converge to e−tA0 “in operator
norm” (in the sense of Theorem 3.7 and Corollary 3.8) for t in the common sector of
holomorphy of the semigroups, i.e., for every fixed t ∈ Σσ, where σ := π

2 −arctan M
α .

Note, however, that we cannot expect this for t = 0 since typically J↑εJ↓ε does
not tend to the identity in operator norm even if Hε = H0 for all ε ≥ 0. Thus we
cannot expect uniform convergence near t = 0. However, the explicit constant Cψ in
the proof of Theorem 3.7 shows that the convergence is uniform on compact subsets
of Σσ.
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3.2. Spectral convergence. It has been proven in [Pos06, §A.5] that if a family
of self-adjoint operators (Aε)ε>0 converges to A0 in the sense of Definition 2.3, then
their spectra σ(Aε) converge to σ(A0). In [Pos09], a similar result for certain non-
self-adjoint operators arising in the treatment of resonances via complex scaling are
considered. Here we prove that a similar result is true in the general (m-sectorial)
case, where the spectra need not be real. This is a part of the justification why we
regard our notion of convergence as a sensible generalisation of the classical resolvent
convergence, compare also Example 2.5.

We consider the following notion of spectral convergence, which is quite natural.
It is often called “upper semi-continuity” of the spectrum. This type of convergence
is precisely what we obtain if in a fixed Hilbert space we have a family of operators
whose resolvents converge in operator norm, see [Kat95, Theorem IV.3.1].

Definition 3.10. We say that the spectra σ(Aε) of the family (Aε)ε>0 converge to
the spectrum σ(A0) of A0 as ε → 0 if for each compact set K ⊂ ̺(A0) there exists
ε1 > 0 such that K ⊂ ̺(Aε) for all ε ∈ (0, ε1).

Ideally, we could hope that the spectra σ(Aε) converge to σ(A0) if (Aε)ε>0 con-
verges to A0. In fact, this is true if in addition ̺(A0) is connected, see Corollary 3.14.

We start with an auxiliary lemma, allowing us to estimate the resolvent of Aε if
we have a priori information about the resolvent of A0. For the whole section, the
operators (Aε)ε>0 are assumed to satisfy the conditions in Section 2.

Lemma 3.11. For every ℓ > 0 and r > 0 there exist δ0 = δ0(ℓ, r, ω) > 0 and
L = L(ℓ, r, ω) > 0 with the following property: if Aε is δε-κ-quasi-unitarily equivalent
to A0 for some δε ∈ (0, δ0], if z ∈ ̺(A0)∩̺(Aε)∩B(0, r), and if ‖R(z,A0)‖L (H0) ≤ ℓ,
then ‖R(z,Aε)‖L (Hε) ≤ L.

Proof. For z ∈ ̺(A0) ∩ ̺(Aε) we define

V (z) := J↓εRε(z) −R0(z)J
↓ε.

Let z and z0 be in ̺(A0) ∩ ̺(Aε). Then by the resolvent identity we have
(
R0(z0) −R0(z)

)
J↓εRε(z)Rε(z0) = R0(z)R0(z0)J

↓ε(Rε(z0) −Rε(z)
)

and thus
R0(z0)V (z)Rε(z0) = R0(z)V (z0)Rε(z).

Hence

V (z) = (z0 −A0)R0(z)V (z0)Rε(z)(z0 −Aε)

= (id+(z0 − z)R0(z))V (z0)(id+(z0 − z)Rε(z))

on D(Aε) and thus on Hε by density. Setting z0 := −ω−1 and using the dual version
of (3.1), which follows by exchanging the roles of Aε and A0 in Proposition 3.4, to
estimate V (z0) we deduce that

(3.9) ‖V (z)‖L (Hε,H0) ≤ δεCθ,1,1
(
1 + ℓ|ω + 1 + z|

)(
1 + |ω + 1 + z| ‖Rε(z)‖L (Hε)

)
.

Next, we note that for all u ∈ Hε

‖Rε(z)u‖2
aε

= 〈(ω +Aε)Rε(z)u|Rε(z)u〉Hε

≤
(
‖u‖Hε

+ |ω + z| ‖Rε(z)u‖Hε

)
‖Rε(z)u‖Hε

,

proving by (2.4) that

(3.10)
‖Rε(z)‖2

L (Hε,Vε) ≤
1

α

(
1 + |ω + z| ‖Rε(z)‖L (Hε)

)
‖Rε(z)‖L (Hε)

≤ 1

α

(
1 + β‖Rε(z)‖L (Hε)

)2

with β := max{1, |ω + z|}.
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Now write

Rε(z) =
(
id−J↑εJ↓ε)Rε(z) + J↑ε(J↓εRε(z) −R0(z)J

↓ε) + J↑εR0(z)J
↓ε.

This representation, combined with (3.9) and (3.10), shows that

‖Rε(z)‖L (Hε) ≤ δε‖Rε(z)‖L (Hε,Vε) + κ‖V (z)‖L (Hε) + κ2ℓ

≤
( δε√

α
+ κδεCθ,1,1

(
1 + ℓ|ω + 1 + z|

)
+ κ2ℓ

)

+ δε

( β√
α

+ Cθ,1,1
(
1 + ℓ|ω + 1 + z|

)
|ω + 1 + z|

)
‖Rε(z)‖L (Hε)

=: ℓ1 + δεc‖Rε(z)‖L (Hε).

Thus, if δε ∈ (0, δ0] with δ0 := 1
2c , then

1

2
‖Rε(z)‖L (Hε) ≤ (1 − δεc)‖Rε(z)‖L (Hε) ≤ ℓ1,

i.e., we have proved the claim with L := 2ℓ1. �

Now we come to our main theorem regarding convergence of the spectrum.

Theorem 3.12. Let A0 be an m-sectorial operator with vertex ω and semi-angle θ.
Let K ⊂ ̺(A0) be compact and connected. Then there exist constants δ0 > 0 and
Cθ,K , Dθ,K ≥ 0 (that also depend on A0) with the following property: if Aε is δε-κ-
quasi-unitarily equivalent to A0 for δε ∈ (0, δ0], and if in addition K ∩ ̺(Aε) 6= ∅,
then K ⊂ ̺(Aε),

(3.11) ‖J↓εR(z,Aε) −R(z,A0)J
↓ε‖L (Hε,H0) ≤ Cθ,Kδε

and

(3.12) ‖J↑εR(z,A0)J
↓ε −R(z,Aε)‖L (Hε) ≤ Dθ,Kδε

for all z ∈ K.

Proof. Since K is compact, K ⊂ B(0, r) for some r > 0 and

ℓ := sup
z∈K

‖R0(z)‖L (Hε) <∞.

Choose δ0 = δ0(ℓ, r, ω) as in Lemma 3.11. Let δε ∈ (0, δ0) and let Aε be δε-κ-quasi-
unitarily equivalent to A0. Let K0 := ̺(Aε)∩K, which is non-empty by assumption.
Since ̺(Aε) is open, the set K0 is relatively open in K.

Let (zn) be a sequence in K0 converging to z ∈ K. Then from Lemma 3.11 we
know that ‖Rε(zn)‖L (Hε) is bounded, hence z ∈ ̺(Aε). We have shown that K0 is
closed in K. Since K is connected, K0 = K, i.e., K ⊂ ̺(Aε).

Since by Lemma 3.11 we have ‖Rε(z)‖L (Hε) ≤ L for some L > 0, it follows
from (3.9) that

‖J↓εRε(z) −R0(z)J
↓ε‖L (Hε,H0) ≤ δεCθ,1,1

(
1 + ℓ(|ω| + 1 + r)

)(
1 + L(|ω| + 1 + r)

)
.

for all z ∈ K. This is (3.11) for

Cθ,K := Cθ,1,1
(
1 + ℓ(|ω| + 1 + r)

)(
1 + L(|ω| + 1 + r)

)

Now (3.12) follows from Lemma 3.2 and estimate (3.10) with

Dθ,K := κCθ,K +
1√
α

(
1 + βL

)
. �
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Remark 3.13. It can be difficult to check the condition K∩̺(Aε) 6= ∅ of the previous
theorem. On the other hand, in the classical situation, i.e., if Hε = H0 for all ε ≥ 0
and R(z,Aε) converges to R(z,A0) in operator norm, this is automatically fulfilled
by the fact that the set of invertible operators is open in L (H0):

Let λ ∈ ̺(A0) ∩ K and µ < −ω such that λ 6= µ. Then Rε(µ) converges in
operator norm to R0(µ), since µ is outside the sector Σθ. Moreover, λ ∈ ̺(Aε) is
equivalent with the invertibility of 1

µ−λ − Rε(µ) by the spectral mapping theorem.

For the same reason, 1
µ−λ −R0(µ) is invertible. Since the set of invertible operators

is open, λ ∈ ̺(Aε) for sufficiently small ε.

If the resolvent set is connected, a given compact set K ⊂ ̺(A0) can be enlarged
to a connected compact set K ′ ⊂ ̺(A0) in such a way that we can guarantee K ′ ∩
̺(Aε) 6= ∅, so that the theorem applies. We make this explicit in the following
corollary. Note that in particular if the spectrum is real or discrete, the resolvent set
is connected. Hence for self-adjoint operators and operators with compact resolvent
we obtain spectral convergence.

Corollary 3.14. Assume that ̺(A0) is connected and that (Aε)ε>0 converges to
A0 in the sense of Definition 2.3. Then σ(Aε) converges to σ(A0) in the sense of
Definition 3.10.

Proof. LetK ⊂ ̺(A0) be compact. Since ̺(A0) is connected, there exists a connected
compact set K ′ ⊂ ̺(A0) such that K ⊂ K ′ and −ω−1 ∈ K ′. In fact, let R > |ω|+1
be such that K ⊂ B(0, R), and let (Oρ,µ)µ denote the family of (open) connected
components of the open set

Oρ :=
{
z ∈ ̺(A0) ∩B(0, R) : dist(z, σ(A0)) < ρ

}
.

Then
K ∪ {−ω − 1} ⊂

⋃
ρ,µ

Oρ,µ,

and hence by compactness there exist a finite subcover (Oρi,µi
). Let K ′′ the be the

union of the compact, connected sets Oρi,µi
⊂ ̺(A0). Now K ′′ has only finitely

many connected components. Since ̺(A0) is arcwise connected, we can join these
connected components by finitely many paths (γk) in ̺(A0). Then K ′ := K ′′∪⋃

k γk
is a connected, compact subset of ̺(A0) that contains K and −ω − 1.

Since −ω− 1 ∈ ̺(Aε) for all ε ≥ 0 we obtain from Theorem 3.12 that K ′ ⊂ ̺(Aε)
if δε is sufficiently small. Hence K ⊂ ̺(Aε) for small ε, which implies the claim. �

In the rest of this section, we show that the discrete spectra of (Aε)ε>0 converge
to the discrete spectrum of A0 as the operators (Aε)ε>0 converge to A0. In fact, we
show that for an eigenvalue λ of A0 of finite algebraic multiplicity m0(λ) and for
sufficiently small δε, there exist exactly m0(λ) eigenvalues of Aε near λ, where we
count the eigenvalues according to their algebraic multiplicity.

Recall that the algebraic multiplicity m0(λ) of an isolated point λ ∈ σ(A0) is the
rank rkP0 := dim RgP0 of the spectral projection

P0 :=
1

2πi

∫

∂B(λ,r)

R(z,A0) dz,

where r > 0 is such that B(λ, r)∩σ(A0) = {λ}, compare [ALL01, §1.3]. By Cauchy’s
integral theorem, this definition does not depend on the particular choice of r, and
in fact we could replace the circle ∂B(λ, r) by any positively oriented, smooth curve
that surrounds λ, but no other point of σ(A0).

Remark 3.15. Since R(z,A0) is locally bounded as a L (H0, V0)-valued function, see
for example estimate (3.10), the spectral projection P0 is a bounded operator from
H0 to V0.
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Lemma 3.16. There exist δ0 > 0 such that ‖J↑εf‖Hε
≥ 1

2‖f‖H0
for all f ∈ RgP0

if δε ∈ (0, δ0].

Proof. For all f ∈ V0 we have by (2.7b’), (2.7c) and (2.7d) that

‖f‖2
Hε

− ‖J↑εf‖2
H0

= 〈f |f〉H0
− 〈J↑εf |J↑εf〉Hε

= 〈f − J↓εJ↑εf |f〉Hε
+ δε‖J↑εf‖Hε

‖f‖H0

≤ δε‖f‖V0
‖f‖H0

+ δεκ‖f‖2
H0
.

Now if f ∈ RgP0, i.e., f = P0f , and f 6= 0, we obtain that

‖f‖Hε
− ‖J↑εf‖H0

≤ δε
‖P0‖L (H0,V0) + κ

‖J↑εf‖Hε
+ ‖f‖H0

‖f‖2
H0

≤ δ0
(
‖P0‖L (H0,V0) + κ

)
‖f‖H0

=
1

2
‖f‖H0

for

δ0 :=
1

2

(
‖P0‖L (H0,V0) + κ

)−1
. �

We now prove our main theorem about continuous dependence of the discrete
spectrum. For simplicity we assume that ̺(A0) is connected, even though it would
suffice that ̺(Aε) ∩B(λ, r) 6= ∅ for small ε and all r > 0.

Theorem 3.17. Let ̺(A0) be connected, let λ be an isolated point of σ(A0) with
finite algebraic multiplicity m0(λ) ∈ N, and let D be a bounded, open set such that
D ∩ σ(A0) = {λ}. Then there exists δ0 > 0 such that if Aε is δε-κ-quasi-unitarily

equivalent to A0 for δε ∈ (0, δ0], then there exist eigenvalues (λε,i)
m0(λ)
i=1 of Aε such

that
σ(Aε) ∩D =

{
λε,1, . . . , λε,m0(λ)

}
.

Here, the values (λε,i) are not necessarily pairwise different, but rather each value is
repeated according to its algebraic multiplicity with respect to Aε.

Proof. We may assume that D has smooth boundary. In fact, otherwise we can
replace D by an open set D1 ⊂ D with smooth boundary still containing λ. Since
(D \D1) ∩ σ(Aε) = ∅ for small δε by Corollary 3.14, the result carries over from D1

to D.
By Corollary 3.14, the integral

Pε :=
1

2πi

∫

∂D

Rε(z) dz

is defined for sufficiently small δε, and using Theorem 3.12 we see that there exist
δ1 > 0 and C1 ≥ 0 such that

‖J↓εPε − P0J
↓ε‖L (Hε) < C1δε

if δε ∈ (0, δ1].
Now let u ∈ Rg(Pε), i.e., Pεu = u. Then by Lemma 3.16 there exists δ2 ∈ (0, δ1)

such that

‖P0J
↓εu‖H0

≥ ‖J↓εPεu‖H0
− ‖(J↓εPε − P0J

↓ε)u‖H0
≥ 1

2
‖u‖Hε

− C1δε‖u‖Hε
> 0

whenever δε ∈ (0, δ2]. This proves that P0J
↓ε is injective on Rg(Pε), showing that

rkP0 ≥ rkPε whenever δε ∈ (0, δ2].
For the converse inequality, we interchange the roles of P0 and Pε. In fact, The

estimate ‖J↓εu‖H0
≥ 1

2‖u‖Hε
for u ∈ Rg(Pε) can be obtained as in Lemma 3.16

by exploiting the fact that Lemma 3.11 and (3.10) provide a uniform bound for
‖Pε‖L (Hε,Vε), compare also Remark 3.15. Now it readily follows that rkPε ≥ rkP0

for sufficiently small δε.
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Thus there exists δ0 > 0 such that m0(λ) = rkPε whenever δε ∈ (0, δ0]. This
implies that σ(Aε) ∩D consists of finitely many eigenvalues whose algebraic multi-
plicities add up to m0(λ), compare [ALL01, Theorem 1.32]. �

Remark 3.18. Theorem 3.17 says that near an isolated eigenvalue λ of A0 any suffi-
ciently close operator Aε also possess only isolated eigenvalues, whose multiplicities
add up to the multiplicity of λ. This is a version of [Pos06, Corollary A.15] for
non-self-adjoint operators, see also [Pos09].

The following corollary is a trivial consequence of Theorem 3.17 and Corollary 3.14.

Corollary 3.19. Let ̺(A0) be connected, let λ be an isolated point of σ(A0) with
finite algebraic multiplicity, and let (Aε)ε>0 converge to A0 in the sense of Defini-
tion 2.3. Then the eigenvalues λε,i in Theorem 3.17 converge to λ, i.e., limε→0 λε,i →
λ for every i = 1, . . . ,m0(λ).

3.3. Invariance and extrapolation. Assume that (Aε)ε>0 converges to A0 in the
sense of Definition 2.3. We have already shown that the generated semigroups also
converge in an appropriate sense, see Example 3.9. It is now natural to ask whether
certain properties of the semigroups (e−tAε)ε>0 are inherited by e−tA0 under appro-
priate assumptions on the operators J↑ε and J↓ε.

In this short section, we formulate a simple result of this kind and apply it to
obtain convergence of the semigroups in extrapolation spaces under natural assump-
tions.

Theorem 3.20. Let (Aε)ε>0 converge to A0 as ε→ 0 in the sense of Definition 2.3,
let θ ∈ (arctan M

α , π], and let ϕ ∈ H∞(Σθ − ω). For every ε ≥ 0, let Cε be a closed
subset of Hε such that

(3.13) J↑εC0 ⊂ Cε and J↓εCε ⊂ C0.

If ϕ(Aε)Cε ⊂ Cε for all ε > 0, then ϕ(A0)C0 ⊂ C0.

Proof. By the assumptions,

(3.14) (J↓εϕ(Aε)J
↑ε)C0 ⊂ C0

for all ε > 0. Thus the result follows from Corollary 3.8 because the invariance of a
closed set is stable under strong convergence. �

Remark 3.21. In some applications, for example in Section 5, the condition (3.13) is
only satisfied up to a rescaling of the identification operators, i.e., we can write the
identification operators as

J↑ε = cεJ̃↑ε, J↓ε = c−1
ε J̃↓ε

for operators J̃↑ε and J̃↓ε that do satisfy (3.13). It is clear that also in this more gen-
eral situation the inclusion (3.14) is satisfied and hence the assertion of Theorem 3.20
remains valid.

It is well-known how invariance of closed convex subsets under the action of a
semigroup on a Hilbert space H generated by an operator associated with a sesqui-
linear form can be efficiently characterised by a Beurling-Deny-type criterion due to
Ouhabaz, see [Ouh05, Thm. 2.2]. Assuming that H = L2(Ω, µ) with a measure space
Ω, typical applications of this criterion involve positivity and L∞-contractivity (i.e.,
invariance of the subset of those L2-functions taking a.e. values in the interval [0,∞)
or [−1, 1]).

A typical application of Theorem 3.20 is the following.
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Corollary 3.22. Let p ∈ [1,∞]. Assume that Hε = L2(Ωε) for measure spaces Ωε,
ε ≥ 0. Assume that (Aε)ε>0 converges to A0, where the operators J↑ε and J↓ε in the
definition of convergence are positive (Lp-contractive). Assume that the semigroup
(e−tAε)t≥0 is positive (Lp-contractive) on Hε for every ε > 0. Then (e−tA0)t≥0 is
positive (Lp-contractive) on H0.

Proof. Apply Theorem 3.20 to the closed (and convex) sets

Cε :=
{
u ∈ L2(Ωε) : u ≥ 0 a.e.

}

and

Cε :=
{
u ∈ L2(Ωε) ∩ Lp(Ωε) : ‖u‖Lp(Ωε) ≤ 1

}

p ∈ [1,∞], respectively. �

If we are in the situation that the semigroups on Hε = L2(Ωε) are L∞-contractive,
we can even establish convergence in L (Lp(Ωε)). We could also state the result in
a more general version for arbitrary interpolation spaces. But this would involve
several technical assumption that we prefer to avoid. It is clear that the analogous
result for 1 < p < 2 holds if we assume the semigroups to be L1-contractive.

Theorem 3.23. Let (Aε)ε>0 converge to A0 in the sense of Definition 2.3 as ε→ 0,
assume that Hε = L2(Ωε) for ε ≥ 0 with measure spaces (Ωε), let θ ∈ (arctan M

α , π],
let ϕ ∈ H∞(Σθ − ω), and let p ∈ [2,∞). Assume that there exists a family (cε)ε>0

of positive real numbers such that cεJ
↑ε, c−1

ε J↓ε and ϕ(Aε) are L∞-contractive for
all ε > 0.

Then J↓εϕ(Aε)J
↑ε → ϕ(A0) strongly as operators on Lp(Ω0). If ϕ ∈ H∞

00 (Σθ−ω),
the operators convergence even in operator norm, and in this case we have

‖J↑εϕ(A0)J
↓ε − ϕ(Aε)‖L (Lp(Ωε)) → 0.

Proof. By Corollary 3.22 and Remark 3.21 also ϕ(A0) is L∞-contractive. Moreover,
by Corollary 3.8,

‖ϕ(A0)f − J↓εϕ(Aε)J
↑εf‖H0

→ 0

for all f ∈ H0. Now by the interpolation inequality

‖ϕ(A0)f − J↓εϕ(Aε)J
↑εf‖Lp(Ω0)

≤ ‖ϕ(A0)f − J↓εϕ(Aε)J
↑εf‖(p−2)/p

L∞(Ω0)
‖ϕ(A0)f − J↓εϕ(Aε)J

↑εf‖2/p
L2(Ω0)

≤
(
2‖f‖L∞(Ω0)

)(p−2)/p ‖ϕ(A0)f − J↓εϕ(Aε)J
↑εf‖2/p

L2(Ω0)
→ 0

for all f in the dense subspace L2(Ω0) ∩ L∞(Ω0) of Lp(Ω0). Since in addition

‖J↓εϕ(Aε)J
↑ε‖L (Lp(Ω0)) ≤ 1

by the Riesz-Thorin interpolation theorem, this proves strong convergence.
Now if ψ ∈ H∞

00 (Σθ), then as in the proof of Corollary 3.8 there exists Cψ ≥ 0
such that

‖ψ(A0) − J↓εψ(Aε)J
↑ε‖L (H0) ≤ Cψδε.

Moreover, by assumption and Corollary 3.22, see also Remark 3.21,

‖ψ(A0)f − J↓εψ(Aε)J
↑εf‖L∞(Ω0) ≤ 2‖f‖L∞(Ω0).

Thus by the Riesz-Thorin interpolation theorem

‖ψ(A0) − J↓εψ(Aε)J
↑ε‖L (Lp(Ω0)) ≤ 2(p−2)/pC

p/2
ψ δp/2ε → 0.

Employing Theorem 3.7 instead of Corollary 3.8, the same reasoning shows that

‖J↑εϕ(A0)J
↓ε − ϕ(Aε)‖L (Lp(Ω)) → 0. �
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4. Simple examples

In this section, we collect some examples to which the theory of the previous
section can be applied without much effort. On the other hand, our main application,
which involves some delicate calculations, is contained in a section by its own.

4.1. Fourier series. We start with an almost trivial example. Let a0 be sectorial
form with form domain V0 on a Hilbert space H0 as introduced in Section 2, and let
A0 be the associated operator. Assume that V0 is compactly embedded into H0, i.e.,
that A0 has compact resolvent. For simplicity we also assume that A0 is self-adjoint.

It is classical that in this situation there exists an orthonormal basis (ek)k∈N of
H0 consisting of eigenvectors of A0 to eigenvalues (λk)k∈N, and λk → ∞. We can
assume that λk ≤ λk+1 for all k ∈ N, and to make the notation simpler we assume
that λ1 > 0. Passing to an equivalent norm,

V0 =
{
f ∈ H0 : ‖f‖2

V0
=

∞∑

k=1

λk
∣∣〈f |ek〉H0

∣∣2 <∞
}
.

We explain how this situation can be embedded into our framework. To this aim, it
is convenient to index the Hilbert spaces and operators by n ∈ N instead of ε. Let Pn
denote the orthogonal projection onto Hn := Vn := span(ek)

n
k=1, J

↑n := J↑n
1 := Pn,

and J↓n := J↓n
1 := id, where Hn and Vn carry the norms induced by H0 and V0,

respectively, and let an be the restriction of a0 to Vn, so that An is the restriction
of A0 to Hn = Hn ∩D(A0).

Now (2.7a), (2.7b) and (2.7d) are trivial; in fact, these conditions hold with δε = 0
and κ = 1. Moreover,

‖f − Pnf‖2
H0

=
∞∑

k=n+1

∣∣〈f |ek〉H0

∣∣ ≤ 1

λn+1
‖f‖2

V0
,

which implies both conditions in (2.7c). Finally, (2.7e) follows from the fact that

a0(f, u) − an(Pnf, u) =

∞∑

k=1

λk〈f − Pnf |ek〉H0
〈ek|u〉H0

= 0

for all f ∈ V0 and u ∈ Vn. Hence the operators An converge to A0 in the sense of
Definition 2.3.

The results in Section 3 now tell us that

‖PnR(z,A0) −R(z,An)‖L (H0) → 0,

as well as that other functions of these operators like the generated semigroup con-
verge in this sense. Convergence of the spectrum as in Corollary 3.14 and Theo-
rem 3.17 is of course built into this approximation.

4.2. Varying coefficients. Studying the convergence of elliptic operators with vary-
ing coefficients is a very classical topic. In fact, the underlying spaces typically do
not change, so that the theory in Kato’s book applies. However, sometimes it is con-
venient to incorporate the coefficients into the measure of the underlying L2-space.
Although such problems are still accessible by classical methods if all the norms are
uniformly equivalent, it is quite natural to work with scales of Hilbert spaces instead.

The following example is taken from [CFG+08], where the authors proved strong
convergence in C(Ω) as well as in Lp for every p ∈ [1,∞) for a class of elliptic
operators with Wentzell boundary conditions. Applying our results, on the other
hand, we obtain convergence in operator norm for all p ∈ (1,∞), see Theorem 3.23.
Tracing the constants in the proofs, we in addition have explicit error estimates, and
in particular we know the order of convergence, which answers the open question that
closes [CFG+08]. We also mention the later article [CGG08], where these results are
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refined by obtaining a detailed estimate on the order of convergence in operator norm
in H1.

Let Ω be a bounded Lipschitz domain in R
n. Then Γ := ∂Ω becomes an oriented

compact Riemannian manifold with Riemannian metric g in a natural way, where
the charts are Lipschitz regular, and the metric is bounded and measurable. As in
the smooth case, there exists a volume measure σ on Γ, which coincides with the
(n − 1)-dimensional Hausdorff measure. Let H1(Γ) be the completion of Lipschitz-
continuous functions u on Γ with respect to the norm defined by

‖u‖2
H1(Γ) :=

∫

Γ

(
|u|2 + |du|2g

)
dσ,

where

(4.1) |du|2g =

n−1∑

i,j=1

gij∂iu∂ju

in a chart U ⊂ Γ with coordinates xi : U −→ R, i = 1, . . . , n − 1, and tangential
vectors ∂i = ∂/∂xi. Moreover, (gij) is the inverse of (gij) = (g(∂i, ∂j)). For an ad
hoc definition of Lipschitz-regular manifolds, we refer to [ABtE08].

Now let the families (Aε)ε≥0 ⊂ L∞(Ω;L (Cn)), (βε)ε≥0 ⊂ L∞(Γ), (γε)ε≥0 ⊂
L∞(Γ) and (qε)ε≥0 ⊂ R be bounded in the respective spaces, and assume that there
exist α > 0 and b > 0 such that for all ε ≥ 0 we have qε ≥ α,

Re〈Aεξ|ξ〉Cn ≥ α|ξ|2

on Ω for all ξ ∈ C
n and βε ≥ b on Γ. For ε ≥ 0, define

Hε := L2(Ω) × L2
(
Γ;

dσ

βε

)

and

Vε :=
{
(u, f) ∈ H1(Ω) ×H1(Γ) : u|Γ = f

}
⊂ Hε,

and equip these spaces with the natural scalar products. Note that the space Vε and
its norm do in fact not depend on ε.

Proposition 4.1. The family (aε)ε≥0 of sesquilinear forms with form domains Vε
which is defined by

aε
(
(u, u|Γ), (v, v|Γ)

)
:=

∫

Ω

〈A ∇u|∇v〉Cn +

∫

Γ

γεuv
dσ

βε
+ qε

∫

Γ

〈du|dv〉g dσ

is equi-sectorial.

Proof. By the uniformity conditions on the coefficients,

‖u‖2
Hε

= ‖u‖2
L2(Ω) + ‖u‖2

L2(Γ; dσ
βε

)
≤ ‖u‖2

H1(Ω) + 1
b‖u‖2

H1(Γ) ≤
(
1 + 1

b

)
‖u‖2

Vε
,

which shows that the embedding of Vε into Hε has a uniform constant. Moreover,

|aε
(
(u, u|Γ), (v, v|Γ)

)
| ≤ ‖Aε‖L∞(Ω,L (Cn))‖∇u‖L2(Ω)‖∇v‖L2(Ω)

+ ‖γε‖∞‖u‖L2(Γ; dσ
βε

)‖v‖L2(Γ; dσ
βε

) + qε‖u‖H1(Γ)‖v‖H1(Γ),

which shows that the forms are uniformly bounded, and

Re aε
(
(u, u|Γ), (u, u|Γ)

)

≥ α‖∇u‖2
L2(Ω) + α‖du‖2

L2(Γ) − ‖γε‖∞‖u‖2
L2(Γ; dσ

βε
))

≥ α
(
‖u‖2

H1(Ω) + ‖u‖2
H1(Γ)

)
− α‖u‖2

L2(Ω) −
(
‖γε‖∞ + α‖βε‖∞

)
‖u‖2

L2(Γ; dσ
βε

)
,

which shows that the ellipticity constants are uniform with respect to ε ≥ 0. �
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Remark 4.2. Integration by parts shows that (at least formally) the operator Aε on
Hε associated with aε acts as

Aε
(
(u, u|Γ)

)
=

(
−div(A ∇u), (A ∇u) · ν + γεu|Γ) − qεβε∆Γu|Γ)

)
,

where ν denotes the outer unit normal of Ω, and ∆Γ is the Laplace-Beltrami operator
on Γ, i.e., Aε is the operator considered in [CFG+08].

Proposition 4.3. There exists a constant K depending only on b and ‖β0‖∞ and
‖γ0‖∞ such that the operator Aε is δε-κ-quasi-unitarily equivalent to A0 for κ = 1
and

δε = O
(
‖Aε − A0‖∞ + ‖βε − β0‖∞ + ‖γε − γ0‖∞ + |qε − q0|

)
.

Moreover, this equivalence can be realised by taking the identification operators to be
the identity operators.

Proof. Let J↑ε, J↑ε
1 , J↓ε and J↓ε

1 be the identity operators between the respective
spaces. Then (2.7a), (2.7c) and (2.7d) hold trivially with δε = 0 and κ = 1.

To check (2.7b), fix (u, f) ∈ H0 and (v, g) ∈ Hε. Then
∣∣〈J↑ε(u, f)|(v, g)〉Hε

− 〈(u, f)|J↓ε(v, g)〉H0

∣∣

≤
∫

Γ

∣∣ 1
βε

− 1
β0

∣∣ |f ||g|dσ ≤ ‖βε − β0‖∞
∫

Γ

|fg|
b
√
β0βε

dσ

≤ ‖βε − β0‖∞
b

‖(u, f)‖H0
‖(v, g)‖Hε

,

i.e., (2.7b) holds with δε = b−1‖βε − β0‖∞, compare Remark 2.4.
Finally, to check (2.7e), fix (u, u|Γ) ∈ V0 and (v, v|Γ) ∈ Vε. Then

∣∣a0

(
(u, u|Γ), J↓ε

1 (v, v|Γ)
)
− aε

(
J↑ε

1 (u, u|Γ), (v, v|Γ)
)∣∣

≤ ‖Aε − A0‖∞‖∇u‖L2(Ω)‖∇v‖L2(Ω)

+
∥∥∥γ0

β0
− γε
βε

∥∥∥
∞
‖u‖L2(Γ)‖v‖L2(Γ) + |q0 − qε|‖u‖H1(Γ)‖v‖H1(Γ).

Finally, note that
∥∥∥γ0

β0
− γε
βε

∥∥∥
∞

≤ ‖βεγ0 − β0γε‖∞
b2

≤ ‖γ0‖∞
b2

‖βε − β0‖∞ +
‖β0‖∞
b2

‖γ0 − γε‖∞,

which concludes the proof. �

It is easy to check using the Beurling-Deny criteria that the semigroups (e−tAε)
are positive and quasi-contractive in the norm of

L∞(Ω) × L∞
(
Γ;

dσ

βε

)
,

i.e.,
‖e−tAε‖L∞(Ω)×L∞(Γ; dσ

βε
) ≤ ert,

where r ∈ R depends only on a lower bound of (γε)ε≥0. By duality, we obtain
uniform quasi-contractivity also in the space

L1(Ω) × L1
(
Γ;

dσ

βε

)
.

In fact, the adjoint operator satisfies the same conditions as Aε itself.
Thus, by Theorem 3.23 (and its dual version for p < 2) we obtain the following

result. In fact, the proof of Theorem 3.23 provides an explicit error estimate.

Theorem 4.4. Assume that Aε → A0, βε → β0, γε → γ0 and qε → q0 uniformly
on Ω or Γ, respectively. Then for every t ≥ 0 and p ∈ (1,∞) the operators e−tAε

converge to e−tA0 as ε→ 0 in the operator norm of Lp(Ω) × Lp
(
Γ; dσ

)
.
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4.3. Degenerate equations in non-divergence form. Now we show that our
machinery also applies to the approximation of degenerate elliptic operators in non-
divergence form. More precisely, we study the operator m∆ with Dirichlet boundary
conditions on a bounded domain Ω ⊂ R

N for a possibly degenerate function m.
This operator has been studied for example by Arendt and Chovanec [AC10], who
investigated under which conditions its part in C0(Ω) generates a C0-semigroup.

Let m0 : Ω → (0,∞) be a bounded, measurable function and assume that 1
m0

∈
Lq(Ω), where q = 1 if N = 1, q > 1 if N = 2, and q = N

2 if N ≥ 3. Define
mε := max{m0, ε} Our goal is to show that the uniformly elliptic operators mε∆
converge to the (possibly degenerate) operator m0∆ in the sense of our abstract
framework as ε→ 0, where

dom(mε∆) :=
{
u ∈ H1

0 (Ω) ∩ L2(Ω; dx
mε(x) ) :

∃f ∈ L2(Ω; dx
mε(x) ) such that ∆u = f

mε

}
, (mε∆)u := f.

Here, in the definition of D(mε∆), the expression ∆u has to be understood as a
distribution.

We start by introducing the forms that give rise to these operators. Define

Hε := L2(Ω; dx
mε(x) ) and Vε := H1

0 (Ω).

Note that Vε ⊂ Hε even for ε = 0 by the Sobolev embedding theorem and Hölder’s
inequality due to the integrability assumption 1

m0
∈ Lq(Ω). Thus the natural inner

product

(4.2) 〈u|v〉Vε
:=

∫

Ω

∇u∇v + 〈u|v〉Hε
,

turns Vε∩Hε = Vε into a Hilbert space. Here we used the equivalent norm u 7→ ‖∇u‖
on H1

0 (Ω). For the norm associated to (4.2), the embedding constant of Vε into Hε

is at most 1. We emphasise that in general the Hilbert spaces Hε do not agree with
H0, not even as sets. We define the form aε : Vε × Vε → C by

aε(f, g) :=

∫

Ω

∇u∇v.

Then aε is bounded with constant M = 1, and aε is elliptic with constants ω = 1 and
α = 1. Hence the family (aε)ε≥0 is equi-sectorial in the sense of Definition 2.1. The
form aε is associated with the operator −mε∆ as defined above, compare [AC10].

Theorem 4.5. The operators mε∆ and m0∆ are δε-κ-quasi unitarily equivalent for
κ = 1 and a family (δε)ε>0 of real numbers such that δε → 0 as ε→ 0.

Proof. For simplicity, we assume that N ≥ 3. Define

J↓εu :=

√
m0

mε
u and J↑εf :=

√
mε

m0
f.

Then J↑ε : Hε → H0 and J↓ε : H0 → Hε are isometric isomorphisms, hence unitary.
Moreover, J↑ε and J↓ε are inverse to each other, so (2.7b), (2.7c) and (2.7d) are
satisfied with δε = 0 and κ = 1.

We take J↑ε
1 and J↓ε

1 to be the identity. Then (2.7e) is fulfilled with δε = 0.
Moreover, by Hölder’s inequality

‖J↑εu− J↑ε
1 u‖2

Hε
≤

∫

Ω

∣∣∣
√
mε

m0
− 1

∣∣∣
2 |u|2
mε

≤ ‖ 1√
m0

− 1√
mε

‖2
LN (Ω)‖u‖2

L
2N

N−2 (Ω)

≤ c2δ2/Nε ‖u‖2
V0
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for all u ∈ V0 with the embedding constant c of H1
0 (Ω) into L

2N
N−2 (Ω), and for

δε :=

∫

Ω

∣∣∣ 1√
m0

− 1√
mε

∣∣∣
N

.

Since ∣∣∣ 1√
m0

− 1√
mε

∣∣∣
N

≤ 1

m
N/2
0

∈ L1(Ω)

by assumption and in addition mε(x) → m0(x) for all x ∈ Ω, we obtain that δε → 0
by the dominated convergence theorem. The other inequality in (2.7b) is proved in
a similar way; in fact, the calculations are symmetric in m0 and mε. �

5. Shrinking tubes with Robin boundary conditions

In this section we present our main example of convergence of Laplacians acting
in different Hilbert spaces. We consider a family of manifolds Xε with boundary
together with the corresponding Laplacian Aε with (in general) non-local boundary
conditions.

We use Robin-type boundary condition of a certain scaling. In Remark 5.2 we
compare our approach with the ones used in [Gri08] and [CF08].

5.1. The metric graph model. As an example of our approximation scheme, we
consider a diffusive process on a family of (m + 1)-dimensional manifolds (X, gε)
converging to a limit space given by a metric graph X0. We will now present the
construction in detail. We consider compact spaces only. For the non-compact case,
see Remark 5.10.

Let (V,E, ∂) be a directed graph where V and E are finite sets, the set of vertices
and edges. Furthermore, ∂ : E −→ V×V encodes the graph structure and orientation
by associating to an edge e ∈ E the pair (∂−e, ∂+e) of its initial and terminal vertex.
The orientation is only introduced for convenience. The definition of A0 below does
not depend on the choice of orientation. We denote by

E
±
v

:= { e ∈ E : ∂±e = v } and Ev := E
−
v

·∪ E
+
v

the set of edges terminating in v (+), starting in v (−) resp. adjacent with v. We
denote by deg v := |Ev| the degree of a vertex v, i.e., the number of edges terminating
and starting in v.

Let X0 be the topological graph associated to (V,E, ∂), i.e., the edges are 1-
dimensional intervals meeting in the vertices according to the graph structure. The
metric structure of X0 is defined by a function ℓ : E −→ (0,∞) associating to each
edge e a length ℓe. We parametrise each edge with a coordinate s = se, i.e., we
identify the directed edge e with the associated metric edge Ie := [0, ℓe] in such a
way that ∂−e corresponds to s = 0 and ∂+e corresponds to s = ℓe. Introducing the
obvious distance function now turns the topological graph X0 into a metric space,
the metric graph. Similarly, we have a natural measure on X0 given by the Lebesque
measure on each edge ds = dse.

The basic Hilbert space is

H0 := L2(X0) :=
⊕

e∈E

L2(Ie),

with norm1 ‖f‖2
X0

=
∑

e∈E
‖fe‖2

Ie
, where L2(Ie) carries the usual norm given by

‖fe‖2
Ie

=
∫ ℓe
0

|fe|2 ds.

1Here and in the sequel, we use the notation ‖f‖M for the L2-norm of a measurable function
u : M −→ C on a measure space M .
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The Hilbert space, which will serve as domain of the sesquilinear form defined
below, is given by

V0 := H1(X0) := C (X0) ∩
⊕

e∈E

H1(Ie)

with norm defined by

‖f‖2
V0

:=
∑

e∈E

(
‖f ′‖2

Ie
+ ‖f‖2

Ie

)
,

i.e., a function in V0 is of class H1 along the edges and also continuous at each vertex.
Trivially, ‖f‖H0

≤ ‖f‖V0
, i.e., we can choose CV = 1 in (2.3).

We define the operator governing an evolution process via the sesquilinear form

(5.1) a0(f, g) := a0,V(f, g) + a0,E(f, g)

for functions f, g ∈ V0, where

a0,V(f, g) :=
∑

v∈V

∑

w∈V

γvwf(w)g(v) deg v and

a0,E(f, g) := 〈f ′|g′〉X0
=

∑

e∈E

∫ ℓe

0

f ′
e
g′

e
ds

for a given coefficient matrix (γvw)v,w∈V.
The following estimate follows easily from a standard Sobolev estimate on an

interval. In particular, we have

(5.2) ‖f‖2
V

:=
∑

v∈V

|f(v)|2 deg v ≤ 4b‖f ′‖2
X0

+
8

b
‖f‖2

X0

for f ∈ H1(X0), where f = (f(v))v∈V and 0 < b ≤ mine ℓe, see e.g. [EP09]. The next
proposition is an easy consequence of (5.2).

Proposition 5.1. The sesquilinear form a0 is well-defined on V0 = H1(X0). More-
over, given α ∈ (0, 1), there exists ω ≥ 0 such that

Re a0(f, f) + ω‖f‖2
H0

≥ α‖f‖2
V0

for all f ∈ V0 = H1(X0). In particular, a0 is H0-elliptic.

It is easily seen that the corresponding operator A0 acts as (A0f)e = −f ′′
e

on each
edge for f ∈ domA0, where f ∈ domA0 iff f ∈ C (X0) ∩

⊕
e∈E

H2(Ie) and

1

deg v

∑

e∈Ev

f ′
e
(v) +

∑

w∈V

γvwf(w) = 0,

where f ′
e
(v) = −f ′

e
(0) if v = ∂−e and f ′

e
(v) = f ′

e
(ℓe) if v = ∂+e. Observe that for a

non-diagonal matrix γ the vertex conditions defined above turn out to be non-local.

5.2. The manifold model. In the sequel, we will construct a manifold X according
to the graph (V,E, ∂) together with a family of metrics gε such that (X, gε) shrinks
to the metric graph X0 in a suitable sense (see Figure 1).

Let X be an (m + 1)-dimensional connected manifold with boundary ∂X. We
assume that X decomposes as

(5.3) X =
·⋃

v∈V

Xv ∪ ·⋃

e∈E

Xe,

where the vertex and edge manifolds, Xv andXe, are compact connected subsets with
non-empty interior. Moreover, we assume that {Xv}v∈V and {Xe}e∈E are families of
pairwise disjoint sets, respectively (indicated by ·∪), and that

Xe
∼= Ie × Ye,



CONVERGENCE OF SECTORIAL OPERATORS ON VARYING HILBERT SPACES 23

Xε

Xε,e
Xε,v

X0

v

e

Figure 1. The metric graph X0 and the family of manifolds (X, gε)
shrinking to the metric graph. Here, (X, gε) can be considered as a
subset of R

3, i.e., as a full cylinder with boundary consisting of the
surface of the pipeline network.

where Ye is a compact, connected, m-dimensional manifold, the transversal or cross-
section manifold at the edge e. Note that Ye has a boundary (as far as ∂X ∩Xe is
non-empty). In the sequel, we will identify Xe with the product Ie × Ye. Finally, we
assume that

Yv,e := Xv ∩Xe
∼=

{
Ye, if v ∈ ∂e,

∅ otherwise.

Let g be a smooth Riemannian metric on X having product structure on Xe, i.e.,

ge = ds2
e

+ he

on Xe, where he is a Riemannian metric on Ye. Here, and in the sequel, we use
the subscripts (·)v and (·)e to indicate the restriction to Xv and Xe for objects on
the manifold. By assumption, Xv is a manifold with boundary in which the disjoint
union of transversal manifolds

Yv =
·⋃

e∈Ev

Yv,e

is embedded. In addition, the embedding is isometric. We can think of X as being
constructed from the graph (V,E, ∂) and the family of transversal manifolds {Ye}e∈E

and vertex manifolds {Xv}v∈V according to the graph.
Let us now define the family of ε-depending metrics on X via

gε,v := ε2gv and gε,e := ds2
e

+ ε2he,

i.e., (X, gε) is obtained from the manifold (X, g) by ε-homothetically shrinking of the
vertex manifold Xv and the transversal manifold Ye of the edge manifold Xe (thin
tube). Note that (X, gε) defines a smooth Riemannian manifold. The smoothness
of the metric along the passage from Xv to Xe is assured since the original metric
g = g1 is assumed to be smooth on X.

If the metric graph X0 is embedded in R
m+1, then one can choose a closed neigh-

bourhood Xε of X0 in R
m+1 with smooth boundary and thickness of order ε. The

smoothness is assumed only for simplicity; a Lipschitz boundary would be enough.
Note that a decomposition as in (5.3) does not give an isometric decomposition,
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since the edge neighbourhood Xε,e is slightly shorter than ℓe due to the presence of
the vertex neighbourhoods. Nevertheless, this example can be treated in the same
way after a longitudinal rescaling of the edge variable. The error made is only of
order ε. For details, we refer to [EP09, Lem. 2.7] or [Pos09, Prop. 5.3.10].

The decomposition (5.3) induces a decomposition of the boundary Γ = ∂X, an
m-dimensional Riemannian manifold,

Γ =
·⋃

v∈V

Γv ∪ ·⋃

e∈E

Γe,

where Γv ⊂ ∂Xv and Γe = Ie × ∂Ye ⊂ ∂Xe are pairwise disjoint (or intersect only in
sets of m-dimensional measure 0). Moreover, we have

∂Xv = Γv ∪
⋃

e∈Ev

Yv,e and ∂Xe = Γe ∪
⋃

v∈∂e

Yv,e.

The Riemannian measure associated with a Riemannian manifold (M, gε) is de-
noted by dMε. In particular, we have

dXε,v = εm+1 dXv, dΓε,v = εm dΓv,(5.4a)

dXε,e = εm dXe = εm dse dYe, dΓε,e = εm−1 dΓe = εm−1 dse d∂Ye.(5.4b)

We will use the abbreviationXε,Xε,v etc. for the measure spaces (X, dXε), (Xv,dXε,v),
etc.

Here and in the sequel, we use the notation

XE :=
⋃

e∈E

Xe, XV :=
⋃

v∈V

Xv, ΓE :=
⋃

e∈E

Γe

etc. for the (disjoint) union of the corresponding manifolds. Similarly, Xε,E, Xε,V,
Γε,E etc. denote the corresponding Riemannian manifolds with the ε-depending met-
ric.

The basic Hilbert space we are working in is Hε := L2(Xε). We often write ‖u‖Xε

instead of ‖u‖L2(Xε) for the corresponding norm. The ε-dependence of the norms for
the scaled spaces can easily calculated using (5.4); e.g. for Xε,v and Xε,e we have

‖u‖2
Xε,v

= εm+1

∫

Xv

|u|2 dXv and ‖u‖2
Xε,e

= εm
∫

Ie×Ye

|u|2 dYe dxe.

Let Vε := H1(Xε) be the Sobolev space of first order defined as the completion of
smooth functions on Xε with respect to the norm defined by

‖u‖2
H1(Xε) = ‖u‖2

L2(Xε) + ‖du‖2
L2(Xε),

where ‖du‖2
L2(Xε) =

∫
X
|du|2gε

dXε, and |du|2gε
is given in (4.1). Trivially, ‖u‖Hε

≤
‖u‖Vε

, i.e., we can choose CV = 1 in (2.3).
We define a sesquilinear form by

(5.5) aε(u, v) =

∫

X

〈du|dv〉gε
dXε +

∫

Γ

βεuv dΓε +

∫

Γ×Γ

γε(u⊗ v) dΓε ⊗ dΓε

for functions u ∈ Vε = H1(Xε). Here 〈·|·〉gε
is the (pointwise) inner product on T ∗X

defined via the Riemannian metric gε. Moreover, (u⊗ v)(x1, x2) := u(x1)v(x2). We
assume that βε ∈ L∞(Γ) and γε ∈ L2(Γ × Γ). In this case, aε is indeed well-defined
for all u ∈ H1(Xε) (see Proposition 5.7).

The associated operator is given by Aεu = −∆u = d∗du for functions u ∈ domAε.
Moreover, u ∈ domAε iff u ∈ H2(Xε) and

∂nu+ βεu+

∫

Γ

γεu dΓε = 0,

where the integral is taken with respect to the first variable of γε : Γ × Γ −→ C.
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Remark 5.2. Let us illustrate the effect of scaling the underlying space for Robin
boundary conditions in a simple example: Assume that the transversal manifold Yε,e
is isometric to the interval [0, ε] and that there is no non-local contribution, i.e.,
γε = 0. We consider the Laplacian with Neumann boundary conditions at 0 and
Robin boundary conditions at ε, i.e.,

v′(ε) + βεv(ε) = 0,

where βε ∈ R \ {0} is the coupling constant. An eigenfunction for the Laplacian
∆v = −v′′ with Neumann boundary conditions at 0 is of the form

v(s) = v(0) cos(ωs) and v(s) = v(0) cosh(ωs),

with eigenvalue ω2 and −ω2 if βε > 0 and βε < 0, respectively. The lowest eigenvalue
µ(ε) is then of the same order as ε−1βε for ε→ 0.

If one chooses scale-invariant Robin boundary conditions, i.e., βε = ε−1β for some
β 6= 0, as e.g. in [Gri08] and [CF08], then the lowest eigenvalue µ(ε) is of order ε−2

and one has to substract the divergent term µ(ε) in order to expect convergence to
a limit.

Here, we use a different approach. We assume that the coupling constant βε is of
order ε3/2 on the edge neighbourhoods, see (5.13) (actually, ε1+η would be enough
for some η > 0). In this case, the lowest (transversal) eigenvalue µ(ε) is of order
ε1/2 (resp. εη), and converges to 0. We are then in the situation, where the Robin
Laplacian is close to the Neumann Laplacian. This is the reason why we are in the
same setting as in the (simpler) Neumann boundary condition case treated already
in [Pos06].

5.3. Some estimates on the manifold. Let us collect some estimates needed later
on. Basically, we need a Sobolev trace estimate. Let M be a compact Riemannian
manifold of dimension n with metric g and boundary ∂M , and B a compact (n−1)-
dimensional submanifold of ∂M carrying the induced metric. It follows that there is
a constant Ctr

B,M > 0 such that

(5.6a) ‖u‖2
B ≤ Ctr

B,M

(
‖du‖2

M + ‖u‖2
M

)

for all u ∈ H1(M). The constant Ctr
B,M geometrically depends on the shape of B

embedded in M .
If we scale the metric by a factor, gε = ε2g, then the estimate changes to

(5.6b) ‖u‖2
Bε

≤ Ctr
B,M

(
ε‖du‖2

Mε
+

1

ε
‖u‖2

Mε

)
,

using dMε = εn dM , dBε = εn−1 dB and the fact that |du|2gε
= ε−2|du|2g. Here,

Bε and Mε denote the corresponding Riemannian manifolds with the ε-depending
metric.

We will apply this trace estimate basically in the situations (Γv, Xv), (Yv, Xv) and
(∂Ye, Ye). Let us first prove the following lemma, which shows that the trace estimate
for (∂Ye, Ye) gives a trace estimate for the product (Γe, Xe) = (Ie × ∂Ye, Ie × Ye):

Lemma 5.3. We have

‖u‖2
Γε,e

≤ Ctr
∂Ye,Ye

(
ε‖dYe

u‖2
Xε,e

+
1

ε
‖u‖2

Xε,e

)

for all u ∈ H1(Xε,e), where dYe
u denotes the exterior derivative with respect to the

second variable of Ie × Ye.
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Proof. Let u ∈ H1(Xε) be smooth, then

‖u‖2
Γε,e

=

∫ ℓe

0

‖u(s)‖2
∂Yε,e

ds ≤
∫ ℓe

0

Ctr
∂Ye,Ye

(
ε‖dYe

u(s)‖2
Yε,e

+
1

ε
‖u(s)‖2

Yε,e

)
ds

= Ctr
∂Ye,Ye

(
ε‖dYe

u‖2
Xε,e

+
1

ε
‖u‖2

Xε,e

)

using the Sobolev trace estimate (5.6b) for ∂Ye ⊂ Ye pointwise. Since smooth func-
tions are dense in H1(Xe) and since the operators H1(Xe) → L2(Γe), u 7→ u↾Γe

and H1(Xe) → L2(Xe, T
∗Xe), u 7→ dYe

u are bounded, the estimate also holds for
u ∈ H1(Xe). �

It follows from these trace estimates that the global trace operator u 7→ u↾Γ
is bounded, either as operator H1(X) → L2(Γ) or H1(Xε) → L2(Γε) (see also
Proposition 5.7 below).

In the following, we need several averaging operators. Let

(5.7) −
∫

v
u := −

∫

Xv

u dXv.

denote the average value of u on Xv (and also the corresponding constant function
on Xv). Here, −

∫
M

:= (volM)−1
∫

is the normalised volume integral. Denote by
λ2(Xv) the second (first non-vanishing) eigenvalue of the Neumann problem on Xv.
Let us now compare the average of u on Γv with the average of u on Xv:

Lemma 5.4. For all u ∈ H1(Xv), we have

εm‖u− −
∫

v
u‖2

Γv
≤ εCtr

Γv,Xv

( 1

λN
2 (Xv)

+ 1
)
‖du‖2

Xε,v
.

Proof. Interpreting ũ := u− −
∫

v
u as a function on Γv we have

εm‖ũ‖2
Γv

≤ εmCtr
Γv,Xv

(
‖ũ‖2

Xv
+ ‖du‖2

Xv

)
≤ εmCtr

Γv,Xv

( 1

λN
2 (Xv)

+ 1
)
‖du‖2

Xv

using Cauchy-Schwarz, the Sobolev trace estimate (5.6a) for Γv ⊂ Xv and the min-
max principle

λN
2 (Xv)‖ũ‖2

Xv
≤ ‖dũ‖2

Xv
= ‖du‖2

Xv
,

since ũ is orthogonal to the first (constant) eigenfunction of the Neumann Laplacian
on Xv. The scaling property εm−1‖du‖2

Xv
= ‖du‖2

Xε,v
now gives the result. �

Next, we compare the average of u on Yv,e with the average of u on Xv. To do so,
we introduce a partial averaging operator also needed later on for the identification
operators. For simplicity, we assume that

(5.8) volm Ye = 1

for all e ∈ E. We set

(5.9) (−
∫

e
u)(s) := −

∫

Ye

u(s, y) dYe(y),

Note that the integral exists for almost every s and −
∫

e
u defines a function in L2(Ie).

If s = 0 or s = ℓe denotes the vertex v = ∂−e or v = ∂+e, respectively, we also write
(−
∫

e
u)(v).
The proof of the following lemma is similar to the proof of Lemma 5.4 (see

also [EP09, Lem. 2.8]):

Lemma 5.5. We have

εm
∑

e∈Ev

|−
∫

v
u− −

∫
e
u(v)|2 ≤ εCtr

Yv,Xv

( 1

λN
2 (Xv)

+ 1
)
‖du‖2

Xε,v

for all u ∈ H1(Xv).
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We finally need an estimate over the vertex neighbourhoods. It will assure that
in the limit ε → 0, no family of normalised eigenfunctions (uε)ε with uniformly
bounded eigenvalues can concentrate on Xε,v, i.e., ‖u‖Xε,v

/‖u‖Xε
→ 0. A proof of

the following estimate was given e.g. in [EP09, Lem. 2.9]:

Lemma 5.6. We have

‖u‖2
Xε,v

≤ ε2Cv‖du‖2
Xε,v

+ 8εcvol,v

[
b‖u′‖2

Xε,Ev

+
2

b
‖u‖2

Xε,Ev

]

for 0 < b ≤ mine ℓe, where
(5.10)

Cv := 4
[ 1

λ2(Xv)
+ cvol,vC

tr
Yv,Xv

( 1

λN
2 (Xv)

+ 1
)]

and cvol,v :=
volm+1Xv

deg v
.

Moreover, u′ denotes the derivative with respect to the longitudinal variable s ∈ Ie
on each component Xe = Ie × Ye of XEv

.

5.4. Equi-ellipticity. Let us now show that the family of sesquilinear forms (aε)ε
is equi-elliptic. To do so, we need assumptions on βε and γε. We assume that

γε ∈
(
L2(Γε,V) ⊗ L2(Γε,V)

)
⊕

(
L2(Γε,E) ⊗ L2(Γε,E)

)
⊂ L2(Γε) ⊗ L2(Γε),(5.11a)

‖βε,V‖∞ + ‖γε‖Γε,V×Γε,V
≤ Cβ,γ,V, ‖βε,E‖∞ + ‖γε‖Γε,E×Γε,E

≤ εCβ,γ,E(5.11b)

for all ε > 0 small enough, where βε,V is the restriction of βε to ΓV etc. Note
that we assumed for simplicity that γε only couples edge neighbourhoods with edge
neighbourhoods and vertex neighbourhoods with vertex neighbourhoods.

Proposition 5.7. Assume that (5.11a)–(5.11b) are fulfilled. Then, aε(u, u) is well-
defined for u ∈ Vε = H1(Xε). Moreover, given α ∈ (0, 1), there exists ω ≥ 0 and
ε0 = ε0(α) > 0 such that

Re aε(u, u) + ω‖u‖2
Hε

≥ α‖u‖2
Vε

for all u ∈ Vε and all ε ∈ (0, ε0]. In particular, (aε)ε∈(0,ε0] is an (Hε)ε∈(0,ε0]-equi-

sectorial family and Hε = L2(Xε).

Proof. Let us show that (2.2) holds with uniform constants ω and α. Estimate (2.1)
can be seen similarly; and (2.3) is fulfilled with cV = 1.

We start estimating the difference aε(u, u) − ‖du‖2
Xε

. We have
∣∣aε(u, u) − ‖du‖2

Xε

∣∣ ≤ Cβ,γ,V‖u‖2
Γε,V

+ εCβ,γ,E‖u‖2
Γε,E

by Cauchy-Schwarz, Fubini, (5.11a)–(5.11b). It follows from the Sobolev trace esti-
mate (5.6b) and Lemma 5.6 that

‖u‖2
Γε,V

≤ max
v
Ctr

Γv,Xv

(
ε‖du‖2

Xε,V
+

1

ε
‖u‖2

Xε,V

)

≤ max
v

(Ctr
Γv,Xv

+ Cv)ε‖du‖2
Xε,V

+ 16 max
v
Ctr

Γv,Xv
cvol,v

[
b‖u′‖2

Xε,E
+

2

b
‖u‖2

Xε,E

]

for 0 < b ≤ mine ℓe. For ‖u‖2
Γε,E

, we have the estimate

‖u‖2
Γε,E

≤ max
e
Ctr
∂Ye,Ye

(
ε‖du‖2

Xε,E
+

1

ε
‖u‖2

Xε,E

)

by Lemma 5.3. It follows that
∣∣aε(u, u) − ‖du‖2

Xε

∣∣ ≤ C(ε, b)‖du‖2
Xε

+ ω(a)‖u‖2
Xε
,

where

C(ε, b) := max
v,e

{
εCβ,γ,V(Ctr

Γv,Xv
+ Cv), 16bCβ,γ,VC

tr
Γv,Xv

cvol,v, ε
2Cβ,γ,EC

tr
Γe,Xe

}
,

ω(b) := max
v,e

{
16b−1Cβ,γ,VC

tr
Γv,Xv

cvol,v, Cβ,γ,EC
tr
Γe,Xe

}
.
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For α ∈ (0, 1) we choose

ε0 := min
v,e

{
1,

1 − α

Cβ,γ,v(Ctr
Γv,Xv

+ Cv)
,

1 − α

Cβ,γ,eCtr
Γe,Xe

}

and

b := min
v,e

{
ℓe,

1 − α

16Cβ,γ,VCtr
Γv,Xv

cvol,v

}
.

Then C(ε, b) ≤ C(ε0, b) ≤ 1 − α and we have

Re aε(u) ≥ ‖du‖2
Xε

−
∣∣aε(u) − ‖du‖2

Xε

∣∣

≥
(
1 − C(ε0, b)

)
‖du‖2

Xε
− ω(b)‖u‖2

Xε
≥ α‖du‖2

Xε
− ω‖u‖2

Xε

for all ε ∈ (0, ε0] with ω := ω(b). In particular, the family (aε)ε is equi-sectorial. �

5.5. The identification operators. We now fix the identification operators J↑ε

and J↓ε similar as in [Pos06] (see also Remark 5.2). In particular, we set

(5.12) J↑ε : L2(X) −→ L2(Xε), (J↑εf)v := 0, (J↑εf)e := fe ⊗ 1ε,e,

where we use the decomposition of u = J↑εf with respect to (5.3). Here 1ε,e(y) :=

ε−m/2 for all y ∈ Ye, thus

(J↑εf)e(s, y) = ε−m/2fe(s).

Note that ‖J↑εf‖Hε
≤ ‖f‖H0

. For J↓ε, we just choose the adjoint, i.e., J↓ε := (J↑ε)∗.
In particular, (2.7b) is fulfilled and we have

(J↓εu)e = εm/2−
∫

e
u.

Moreover, we need the corresponding identification operators on the level of quadratic
form domains. As in [Pos06], we define

(J↑ε
1 f)e := (J↑εf)e, (J↑ε

1 f)v := ε−m/2f(v)

(see (5.9) for the notation). Note that f(v) is well defined for f ∈ V0, and that

J↑ε
1 f ∈ Vε. For the operator in the opposite direction, we choose

(J↓ε
1 u)e(s) :=(J↓εu)e(s) + εm/2

∑

v∈∂e

χv,e(s)
(
−
∫

v
u− −

∫
e
u(v)

)

=εm/2
(
−
∫

e
u(s) +

∑

v∈∂e

χv,e(s)
(
−
∫

v
u− −

∫
e
u(v)

))

where χv,e is the continuous function on the metric edge Ie with χv,e(v) = 1, χv,e being
affine linear on Iv,e := { s ∈ Ie : d(s, v) ≤ ℓ0 } and χv,e(s) = 0 for s ∈ Iv,e. Recall the

definition of −
∫

v
u in (5.7). In particular, it is easy to see that (J↓ε

1 u)e(v) = εm/2−
∫

v
u,

independently of the edge e ∈ Ev, i.e., J↓ε
1 u ∈ V .

Let γ be the matrix of Section 5.1. We additionally need that

(5.13) ‖γ̃ε − γ‖L (ℓ2(V)) ≤ ε1/2C ′
β,γ,V and ‖βε,E‖∞ + ‖γε‖Γε,E×Γε,E

≤ ε3/2C ′
β,γ,E,

where γ̃ε is the |V| × |V|-matrix defined by

γ̃ε,vw :=
1

deg v

(
δvw

∫

Γv

βε dΓv + εm
∫

Γv×Γw

γε dΓv ⊗ dΓw

)
.

Moreover, (γ̃εϕ)(v) :=
∑

w∈V
γ̃ε,vwϕ(w) denotes the corresponding operator in the

Hilbert space ℓ2(V) with weighted norm ‖ϕ‖2
V

:=
∑

v
|ϕ(v)|2 deg v. Note that the

second condition in (5.13) is stronger than the second condition in (5.11b).
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Proposition 5.8. Assume that (5.11a)–(5.11b) and (5.13) hold, then we have
∣∣aε

(
J↑ε

1 f, u) − a0(f, J
↓ε
1 u

)∣∣ ≤ δε‖f‖V0
‖u‖Vε

for all f ∈ V0 = H1(X0), u ∈ Vε = H1(Xε) and ε ∈ (0, ε0], where δε = O(ε1/2)
depends only on the geometry of the unscaled manifold X and the metric graph.

Proof. In order to verify the estimate, we will split the estimate in its vertex and
edge part. For the edge contribution, we have

∣∣aε,E
(
J↑ε

1 f, u) − a0,E(f, J↓ε
1 u

)∣∣

= εm/2
∣∣∣ε−1

(∫

ΓE

βεfu dΓ + εm−1

∫

ΓE×ΓE

γε(f ⊗ u) dΓ ⊗ dΓ
)

+
∑

e∈E

∑

v∈∂e

∫

Ie

χ′
v,ef

′
e
(−
∫

v
u− −

∫
e
u(v)) ds

∣∣∣.

The first two integrals can be estimated by

εC ′
β,γ,E(cvol,E)1/2‖f‖X0

‖u‖Γε,E

≤ ε1/2C ′
β,γ,E(cvol,E)1/2‖f‖X0

(
max

e
Ctr
∂Ye,Ye

(ε2‖du‖2
Xε,E

+ ‖u‖2
Xε,E

)
)1/2

≤ ε1/2C ′
β,γ,E(cvol,E max

e
Ctr
∂Ye,Ye

)1/2‖f‖X0
‖u‖H1(Xε)

using (5.13), Cauchy-Schwarz, Lemma 5.3 and ε ≤ 1, where cvol,E := maxe(volm−1 ∂Ye).
The last term of the edge contribution is small since

εm/2
∣∣∣
∑

e∈E

∑

v∈∂e

∫

Ie

χ′
v,ef

′
e
(−
∫

v
u− −

∫
e
u(v)) ds

∣∣∣

≤ 2εm/2ℓ
−1/2
0 ‖f ′‖X0

(∑

v∈V

∑

e∈Ev

∣∣−∫
v
u− −

∫
e
u(v)

∣∣2
)1/2

≤ 2ε1/2 max
v

(
Ctr
Yv,Xv

ℓ0

)1/2( 1

λN
2 (Xv)

+ 1
)1/2

‖f ′‖X0
‖du‖Xε,V

using Cauchy-Schwarz again, the fact that ‖χ′
v,e‖2

Ie
= 1/ℓ0, where ℓ0 = mine{ℓe, 1},

and Lemma 5.5.
For the vertex contribution, we have

(5.14)
∣∣aε,V

(
J↑ε

1 f, u) − a0,V(f, J↓ε
1 u

)∣∣ = εm/2
∣∣∣
∑

v∈V

f(v)

∫

Γv

βεu dΓv

+
∑

v,w∈V

f(w)
(
εm

∫

Γv×Γw

γε(1⊗ u) dΓv ⊗ dΓw − γvw(deg v)−
∫

v
u
)∣∣∣

≤ εm/2
∣∣∣

∑

v,w∈V

f(w)(γ̃ε,vw − γvw)−
∫

v
u) deg v

∣∣∣

+ εm/2
∑

v∈V

(
|f(v)|‖βε‖Γv

+
∑

w∈V

|f(w)|‖γε‖Γε,v×Γε,w
‖1‖Γv

)
‖u− −

∫
v
u‖Γv

since the derivative vanishes as J↑ε
1 f is constant on Xv, and where we replaced u by

−
∫

v
u+ (u− −

∫
v
u) in the first two integrals. The first sum of the last estimate can be

estimated by

εm/2
∣∣〈f |(γ̃ε − γ)u〉V

∣∣ ≤ ‖γ̃ε − γ‖L (ℓ2(V))‖f‖V(εm/2‖u‖V),
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where f = (f(v))v∈V and u = (−
∫

v
u)v∈V. Now,

εm‖u‖2
V
≤ εm

∑

v∈V

deg v

volm+1Xv

‖u‖2
Xv

≤ c′vol,V ·
(
εmax

v
Cv‖du‖2

Xε,V
+

16 maxv cvol,v
ℓ0

(
‖u′‖2

Xε,E
+ ‖u‖2

Xε,E

))

by Lemma 5.6, where c′vol,V := maxv(deg v)/(volm+1Xv). In particular, the first sum

equals εm/2
∣∣〈f |(γ̃ε − γ)u〉V

∣∣ and can be estimated from above by

ε1/2C ′
β,γ,V

(
8c′vol,V
ℓ0

max
v

{
Cv,

16cvol,v
ℓ0

})1/2

‖f‖H1(X0)‖u‖H1(Xε)

by (5.2) and since ε ≤ 1. The second summand of the right hand side of (5.14) can
be estimated by

εm/2
(
‖βε‖∞ + ‖γε‖Γε,V×Γε,V

)
‖f‖V

(∑

v∈V

vol Γv

deg v
‖u− −

∫
v
u‖2

Γv

)1/2

≤ ε1/2Cβ,γ,V max
v,e

(
8c′′vol,vC

tr
Γv,Xv

ℓe

( 1

λN
2 (Xv)

+ 1
))1/2

‖f‖H1(X0)‖du‖Xε,V

using (5.11b), (5.2) and Lemma 5.4, where c′′vol,v := (volm Γv)/(deg v). �

Let us now formulate the main theorem of this section.

Theorem 5.9. Assume that (5.11a)–(5.11b) and (5.13) are fulfilled. Then the ses-
quilinear forms (aε)ε∈[0,ε0] form an equi-sectorial family for some ε0 > 0. More-
over, the corresponding operator Aε is δε-κ-quasi-unitarily equivalent to A0 for δε =
O(ε1/2) and κ = 1.

In particular, the convergence results of Section 2 apply, e.g., the spectrum of
σ(Aε) converges to the spectrum of σ(A0) in the sense of Definition 3.10.

Proof. Condition (2.7e) has been shown in Proposition 5.8. The other conditions
have already been shown in [Pos06] or [EP09, Prp. 3.2]. Note that the spectrum of
Aε and A0 is purely discrete, since the underlying spaces are compact. �

Remark 5.10. If the graph X0 and the corresponding manifold Xε are not compact,
the corresponding forms a0 and aε are still (equi-)sectorial and fulfil Definition 2.3
provided we have a uniform control of the geometry of the graph and the manifold
building blocks (see the constants in the proofs). For example, we need a positive
lower bound on the edge length, i.e., infe ℓe > 0 and a uniform finite upper bound
on the Sobolev trace constants like supv C

tr
Γv,Xv

< ∞. The uniform control of the
geometry is in particular fulfilled if there is a finite set of of manifolds M such that
the building blocks Xv and Ye of the manifold X, constructed according to the graph
(V,E, ∂), are isometric to a member in M . Coverings of compact spaces provide
such examples.

Remark 5.11. Under suitable conditions on the coefficients we can apply Theo-
rem 3.23 in the context of the approximation results of this section. More precisely,
assume e.g. that βε ≥ 0 and γε = 0. Then it can easily be verified that the forms
aε satisfy the Beurling-Deny conditions for all ε ≥ 0. Thus the associated semi-
groups are positive and L∞-contractive. Thus for ϕ(z) = e−tz the assumptions of
Theorem 3.23 are satisfied with cε = εm/2. Hence

‖J↑εe−tA0J↓ε − etAε‖L (Lp(Xε)) → 0

as ε→ 0.



CONVERGENCE OF SECTORIAL OPERATORS ON VARYING HILBERT SPACES 31

References

[ABtE08] Wolfgang Arendt, Markus Biegert, and A.F.M. ter Elst, Diffusion determines the man-

ifold, arXiv:0806.0437v1, 2008.

[AC10] Wolfgang Arendt and Michal Chovanec, Dirichlet regularity and degenerate diffusion,
to appear in Trans. Amer. Math. Soc., 2010.

[ALL01] Mario Ahues, Alain Largillier, and Balmohan V. Limaye, Spectral computations for

bounded operators, Applied Mathematics (Boca Raton), vol. 18, Chapman & Hall/CRC,
Boca Raton, FL, 2001. MR MR1886113 (2003e:47039)

[Are04] Wolfgang Arendt, Semigroups and evolution equations: functional calculus, regular-

ity and kernel estimates, Evolutionary equations. Vol. I, Handb. Differ. Equ., North-
Holland, Amsterdam, 2004, pp. 1–85. MR MR2103696 (2005j:47041)

[AVR09] S. Andres and M.K. Von Renesse, Particle approximation of the Wasserstein diffusion,
Journal of Functional Analysis 258 (2009), 3879–3905.

[CF08] Claudio Cacciapuoti and Domenico Finco, Graph-like models for thin waveguides with

Robin boundary conditions, arXiv:0803.4314v2, 2008, preprint.
[CFG+08] Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, and
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