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Abstract. The aim of the present paper is to analyse the spectrum of Laplace operators
on graphs. Motivated by the general form of vertex conditions of a Laplacian on a metric
graph, we define a new type of combinatorial Laplacian. With this generalised discrete
Laplacian, it is possible to relate the spectral theory on discrete and metric graphs using
the theory of boundary triples. In particular, we derive a spectral relation for equilat-
eral metric graphs and index formulas. Moreover, we introduce extended metric graphs
occuring naturally as limits of “thick” graphs, and provide spectral analysis of natural
Laplacians on such spaces.

1. Introduction

In this article, we consider discrete and metric graph Laplacians and their spectral
theory. In particular, we introduce a new type of discrete Laplacian associated to metric
graph Laplacians with general vertex conditions. A metric graph G is by definition a
topological graph (i.e., a CW complex of dimension 1), where each edge e is assigned
a length ℓe. The resulting metric measure space allows to introduce a family of ordinary
differential operators acting on each edge e considered as interval Ie = (0, ℓe) with boundary
conditions at the vertices making the global operator self-adjoint. One also refers to the
pair of the graph and the self-adjoint differential operator as quantum graph. Quantum
graphs play an intermediate role between difference operators on discrete graphs and partial
differential operators on manifolds. On the one hand, they are a good approximation of
partial differential operators on manifolds or open sets close to the graph, see e.g. [P09,
P06, EP05, KuZ03] and references therein. On the other hand, solving a system of ODEs
reduces in many cases to a discrete problem on the combinatorial graph, see Section 6. We
believe that many of the results for discrete and metric graphs can serve as a toy model
in order to provide new results in spectral geometry. Spectral graph theory is an active
area of research. Results on spectral theory of combinatorial Laplacians can be found e.g.
in [D84, MW89, CdV98, CGY96, Ch97, HS99, Sh00, HS04]. For metric graph Laplacians
we mention the works [R84, vB85, Nic87, KS99a, Ha00, KS03a, Kuc04, FT04a, Ku05,
BaF06, KS06, Pan06, HP06, BaR07].

Let us briefly motivate the generalisation of the usual discrete (or combinatorial) Lapla-
cian on a graph presented in Section 2. Generalised discrete Laplacians as defined below in
Definition 2.15 occur naturally in the Dirichlet-to-Neumann operator of a boundary triple
associated to the corresponding (equilateral) quantum graph, see Section 4. Dirichlet-to-
Neumann operators have a nice physical interpretation: Given a “potential” F living on
the boundary space G , the Dirichlet-to-Neumann operator associates to F the correspond-
ing current Λ(z)F ∈ G at the “energy” z. A typical situation in inverse problems would
be to recover information of the graph from such measurements, i.e., from knowledge of
Λ(z).

The self-adjoint (energy-independent) vertex conditions of a metric graph Laplacian can
be encoded in a certain vertex space V =

⊕
v Vv. Here, Vv is a subspace of the deg v-

dimensional space C
Ev , where Ev is the set of edges adjacent to v, and deg v = |Ev| is the
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degree of the vertex. The generalised discrete Laplacian will be an operator acting on V ,
generalising the usual discrete Laplacian defined on ℓ2(V ).

The theory of boundary triples gives us a spectral relation between the discrete and
metric graph Laplacian, at least for equilateral graphs, see Section 6. This relation and
related results have already been observed by many authors (see e.g. [vB85, Nic87, Ca97,
CW05, Pan06, BaF06, P07a, BGP08] and the references therein). The interpretation of
the corresponding discrete operator as a new type of combinatorial Laplacian might be of
its own interest (see also [Sm07] for a related generalisation of combinatorial Laplacians
via a scattering approach).

We also establish a spectral relation at the bottom of the spectrum of the discrete
and metric graph Laplacians. In particular, we define an index (the Fredholm index of
a generalised “exterior derivative” in the discrete and metric case) and show that they
agree (Theorem 6.5). The result extends the well-known fact that the index equals the
Euler characteristic for standard graphs. Such index formulas have been discussed e.g.
in [KPS07a, FKW07, P07b]. Finally, we define an extended metric graph Laplacian acting
on its metric and discrete Hilbert space in a coupled way (see Section 5) and provide some
spectral analysis (see Theorems 6.3 and 6.8). Extended Laplacians occur naturally as
limits of “thick” graphs in the case when the vertex neighbourhood volume is of the same
order as (or decays slower than) the tranversal volume, named “borderline” and “slowly
decaying” case in [P09, EP05, KuZ03].

Structure of the article. This article is organised as follows: In the next section, we
define the generalised discrete Laplacians. Section 3 is devoted to metric graphs and
their associated Laplacians. In Section 4 we apply the concept of boundary triples briefly
explained in Appendix A to metric graphs. In Section 5 we define extended metric graphs;
and in Section 6 we use the concept of boundary triples in order to describe relations
between the discrete and (simple and extended) metric graph Laplacians. Finally, Section 7
contains material on trace formulas for the heat operator associated to metric and discrete
graph Laplacians.

Acknowledgements. The author would like to thank the organisers of the workshop
“Random, Growing, and Infinite Networks” in Blaubeuren in January 2008 for the kind
invitation and stimulating discussions. This article is an extended version of a talk held
at the workshop. The author also ackknowledges the kind invitation to Ulm University.

2. Discrete graphs and generalised Laplacians

The aim of the present section is to define the spaces and operators associated to a
discrete graph and to conclude some simple consequences needed later on.

2.1. Discrete graphs and vertex spaces. Let us first fix the notation for graphs.

Definition 2.1.

(i) A discrete graph G is given by (V, E, ∂), where V , E are countable. Here, V =
V (G) denotes the set of vertices, E = E(G) denotes the set of edges, and ∂ : E −→
V × V is a map associating to each edge e the pair (∂−e, ∂+e) of its initial and
terminal vertex , the connection map. In particular, ∂e fixes an orientation of the
edge e. Abusing the notation, we also denote by ∂e the set {∂−e, ∂+e}.

(ii) For each vertex v ∈ V we define the (outgoing (−) resp. incoming (+)) edge
neighbourhood of v by

E±
v := { e ∈ E | ∂±e = v } and Ev := E+

v ·∪ E−
v ,
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i.e., E±
v consists of all edges starting (−) resp. ending (+) at v and Ev their disjoint

union.1

(iii) The degree of v ∈ V is defined by

deg v := |Ev| = |E+
v | + |E−

v |,
i.e., the number of adjacent edges at v. In order to avoid trivial cases, we assume
that deg v ≥ 1, i.e., no vertex is isolated. We also assume that deg v is finite for
each vertex.

(iv) A discrete graph is (edge-)weighted, if there is a function ℓ : E −→ (0,∞) associ-
ating to each edge e ∈ E a length ℓe > 0. Alternatively, we may think of 1/ℓe as
a weight associated to the edge e.

The interpretation “length” will become clear when defining metric graphs in Defini-
tion 3.1, as well as the interpretation of 1/ℓe as a weight or conductivity , see (2.7). If
ℓe = 1 for all edges, we call the graph equilateral .

We will use frequently the following elementary fact about reordering a sum over edges
and vertices, namely

∑

e∈Eint

F (∂+e, e) =
∑

v∈V

∑

e∈E+
v

F (v, e) and
∑

e∈E

F (∂−e, e) =
∑

v∈V

∑

e∈E−
v

F (v, e) (2.2)

for a function (v, e) 7→ F (v, e) depending on v and e ∈ Ev with the convention that a sum
over the empty set is 0. Note that this equation is also valid for self-loops and multiple
edges. The reordering is a bijection since the union E = ·⋃

v∈V E±
v is disjoint. For a graph

with finite edge set, the relation

2|E| =
∑

v∈V

deg v (2.3)

follows by setting F (v, e) = 1.
Let us make the following assumption on the lower bound of the edge lengths:

Assumption 2.4. Throughout this work we assume that there is a constant ℓ− > 0 such
that

ℓe ≥ ℓ− ∀ e ∈ E, (2.4)

i.e., that the weight function ℓ−1 is bounded. Without loss of generality and for conve-
nience, we assume that ℓ− ≤ 1.

We want to introduce a vertex space allowing us to define Laplace-like combinatorial
operators motivated by general vertex conditions on metric graphs.

The usual discrete (weighted) Laplacian is defined on scalar functions F : V −→ C on
the vertices V , namely

...
∆F (v) = − 1

deg v

∑

e∈Ev

1

ℓe

(
F (ve) − F (v)

)
, (2.5)

where ve denotes the vertex on e opposite to v. Note that
...
∆ can be written as

...
∆ =

...
d∗...d

with ...
d: ℓ2(V ) −→ ℓ2(E), (

...
dF )e = F (∂+e) − F (∂−e). (2.6)

Here, ℓ2(V ) = ℓ2(V, deg) and ℓ2(E) = ℓ2(E, ℓ−1) carry the weighted norms defined by

‖F‖2
ℓ2(V ) :=

∑

v∈V

|F (v)|2 deg v and ‖η‖2
ℓ2(E) :=

∑

e∈E

|ηe|2
1

ℓe
, (2.7)

1Note that the disjoint union is necessary in order to generate two formally different labels for a self-
loop e, i.e., an edge with ∂−e = ∂+e. Moreover, a loop is counted twice in the degree of a vertex. This
convention is useful when comparing discrete and equilateral metric graphs (see Theorem 6.1).
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and
...
d∗ denotes the adjoint with respect to the corresponding inner products. We sometimes

refer to functions in ℓ2(V ) and ℓ2(E) as 0- and 1-forms, respectively. Note that the
orientation is important for the exterior derivative

...
d, but not for the Laplacian

...
∆, since

the former is of “first order”, while the second is of “second order”.
We would like to carry over the above concept for the “vertex space” ℓ2(V ) to more gen-

eral vertex spaces V =
⊕

v Vv. The main motivation to do so are metric graph Laplacians
with general vertex conditions as defined in Section 3.2 and their relations with discrete
graphs (cf. Section 6).

Definition 2.8.

(i) Denote by V max
v := CEv the maximal vertex space at the vertex v ∈ V , i.e., a value

F (v) = {Fe(v)}e∈Ev
∈ V max

v has deg v components, one for each adjacent edge. A
vertex space at the vertex v is a linear subspace Vv of V max

v .
(ii) The corresponding (total) vertex spaces associated to the graph (V, E, ∂) are

V
max :=

⊕

v∈V

V
max

v and V :=
⊕

v∈V

Vv,

respectively. Elements of V are also called 0-forms. The space V carries its
natural Hilbert norm, namely

‖F‖2
V

:=
∑

v∈V

|F (v)|2 =
∑

v∈V

∑

e∈Ev

|Fe(v)|2.

Associated to a vertex space is an orthogonal projection P =
⊕

v∈V Pv in V max,
where Pv is the orthogonal projection in V max

v onto Vv.
(iii) We call a general subspace V of V

max local if it decomposes with respect to
V max =

⊕
v V max

v , i.e., if V =
⊕

v Vv and Vv ⊂ V max
v . Similarly, an operator A on

V is called local if it is decomposable with respect to the above direct sum.
(iv) The dual vertex space associated to V is defined by V ⊥ := V max ⊖ V and has

projection P⊥ = 1− P .

Note that a local subspace V is closed since Vv ≤ V max
v is finite dimensional. Alterna-

tively, a vertex space is characterised by fixing an orthogonal projection P in V which is
local. In view of the corresponding notation on a metric graph (see Definition 3.9), one
may call the pair (G, V ) a discrete quantum graph.

Example 2.9. The names of the vertex spaces in the examples are borrowed from the
corresonding examples in the metric graph case, see the end of Section 3. For more general
cases defined via vertex spaces, e.g. the discrete magnetic Laplacian, we refer to [P07b].

(i) Choosing Vv = C1(v) = C(1, . . . , 1), we obtain the standard vertex space denoted
by V std

v , also called continuous or Kirchhoff . The associated projection is

Pv =
1

deg v
E

where E denotes the square matrix of rank deg v where all entries equal 1. This
case corresponds to the standard discrete case mentioned before. Namely, the
natural identification

•̃ : V
std :=

⊕

v

V
std

v −→ ℓ2(V ), F 7→ F̃ , F̃ (v) := Fe(v),

(the latter value is independent of e ∈ Ev) is isometric, since the weighted norm
in ℓ2(V ) and the norm in G

std agree, i.e.,

‖F‖2
V std =

∑

v∈V

∑

e∈Ev

|Fe(v)|2 =
∑

v∈V

|F̃ (v)|2 deg v = ‖F̃‖2
ℓ2(V ).



GENERALISED DISCRETE LAPLACIANS ON GRAPHS AND QUANTUM GRAPHS 5

(ii) More generally, we can fix a vector p(v) = {pe(v)}e∈Ev
with non-zero entries

pe(v) 6= 0 and define the weighted standard vertex space by V p
v := Cp(v). The

corresponding projection is given by

PvF (v) =
1

|p(v)|2 〈p(v), F (v)〉p(v).

As in the previous example, we have an isometry

•̃ : V
p :=

⊕

v

V
p(v)

v −→ ℓ2(V, |p|2), F 7→ F̃ , F̃ (v) :=
Fe(v)

pe(v)

(the latter value is independent of e ∈ Ev), since

‖F‖2
V p =

∑

v∈V

∑

e∈Ev

|Fe(v)|2 =
∑

v∈V

|F̃ (v)|2|p(v)|2 =: ‖F̃‖2
ℓ2(V,|p|2).

(iii) We call V min
v := 0 the minimal or Dirichlet vertex space. Similarly, V max is called

the maximal or Neumann vertex space. The corresponding projections are P = 0
and P = 1.

(iv) Assume that deg v = 4 and define a vertex space of dimension 2 by

Vv = C(1, 1, 1, 1)⊕ C(1, i,−1,−i).

The corresponding orthogonal projection is

Pv =
1

4




2 1 + i 0 1 − i
1 − i 2 1 + i 0

0 1 − i 2 1 + i
1 + i 0 1 − i 2


 .

We will show some invariance properties of this vertex space in Example 2.12 (ii).

In contrast to the standard vertex space, the vertex space may “decouple” some or all of
the the adjacent edges e ∈ Ev at a vertex v, e.g., if the vertex space is V max. “Decoupling”
here means, that we may split the graph at a vertex space Vv such that the corresponding
projection Pv has block structure w.r.t. a non-trivial decomposition Vv = V1,v ⊕ V2,v. We
call a vertex space Vv without such a decomposition irreducible. Similarly, we say that
V =

⊕
v Vv is irreducible, if all its local subspaces Vv are irreducible. For more details, we

refer to [P07c].
In [P07b, Lem. 2.13] we showed the following result on symmetry of a vertex space:

Proposition 2.10. Assume that the vertex space Vv of a vertex v with degree d = deg v
is invariant under permutations of the coordinates e ∈ Ev, then Vv is one of the spaces
V min

v = 0, V max
v = CEv , V std

v = C(1, . . . , 1) or (V std)⊥, i.e., only the minimal, maximal,
standard and dual standard vertex spaces are invariant.

If we only require invariance under the cyclic group of order d, we have the following
result:

Proposition 2.11. Assume that the vertex space Vv of a vertex v with degree d = deg v
is invariant under cyclic permutation of the coordinates e ∈ Ev = {e1, . . . , ed}, i.e.,
ei 7→ ei+1 and ed 7→ e1, then Vv is an orthogonal sum of spaces of the form V

k
v =

C(1, θk, θ2k, . . . , θ(d−1)k) for k = 0, . . . , d − 1, where θ = e2πi/d.

Proof. The (representation-theoretic) irreducible vector spaces invariant under the cyclic
group are one-dimensional (since the cyclic group is Abelian) and have the form V k

v as
given above. �
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We call V
k

v a magnetic perturbation of V
std

v , i.e., the components of the generating vector
(1, . . . , 1) are multiplied with a phase factor eiϕe , ϕe ∈ R, (see e.g. [P07b, Ex. 2.10 (vii)]).

Example 2.12.

(i) If we require that the vertex space Vv is cyclic invariant with real coefficients in
the corresponding projections, then Vv is C(1, . . . , 1) or C(1,−1, . . . , 1,−1) (if d
even) or their sum. But the sum is not irreducible since

Vv = C(1, . . . , 1) ⊕ C(1,−1, . . . , 1,−1)

= C(1, 0, 1, 0, . . . , 1, 0) ⊕ C(0, 1, 0, 1, . . . , 0, 1)

and the latter two spaces are standard with degree d/2. In other words, the
irreducible graph at v associated to the boundary space Vv splits the vertex v
into two vertices v1 and v2 adjacent with the edges with even and odd labels,
respectively. The corresponding vertex spaces are standard.

(ii) The sum of two cyclic invariant spaces is not always reducible: Take the cyclic
invariant vertex space Vv = V 0

v ⊕V 1
v ≤ C4 of dimension 2 given in Example 2.9 (iv).

Note that Vv is irreducible, since the associated projection Pv does not have block
structure. This vertex space is maybe the simplest example of an (cyclic invariant)
irreducible vertex space which is not standard or dual standard. Note that if
deg v = 3, then an irreducible vertex space is either standard or dual standard (or
the corresponding version with weights and magnetic perturbations, i.e., (1, . . . , 1)
replaced by a vector p(v) with non-zero entries).

2.2. Operators associated to vertex spaces. Let us now define a generalised cobound-
ary operator or exterior derivative associated to a vertex space. We use this exterior
derivative for the definition of an associated Laplace operator below:

Definition 2.13. Let V be a vertex space of the graph G. The exterior derivative on V

is defined via ...
dV : V −→ ℓ2(E), (

...
dV F )e := Fe(∂+e) − Fe(∂−e),

mapping 0-forms onto 1-forms.

We often drop the subscript V for the vertex space or write
...
dstd instead of

...
dV std etc.

The proof of the next lemma is straightforward using (2.2) (see e.g. [P07b, Lem. 3.3]):

Lemma 2.14. Assume the lower lengths bound (2.4), then
...
d is norm-bounded by

√
2/ℓ−.

The adjoint ...
d∗

V
: ℓ2(E) −→ V

fulfils the same norm bound and is given by

(
...
d∗η)(v) = Pv

({1

ℓ e

y

ηe(v)
}

e∈Ev

)
∈ Vv,

where
y

ηe(v) := ±ηe if v = ∂±e denotes the oriented evaluation of ηe at the vertex v.

Definition 2.15. The discrete generalised Laplacian associated to a vertex space V is
defined by

...
∆

V
:=

...
d∗

V

...
dV , i.e.,

(
...
∆V F )(v) = Pv

({1

ℓ e

(
Fe(v) − Fe(ve)

)}

e∈Ev

)

for F ∈ V , where ve denotes the vertex on e ∈ Ev opposite to v.

Remark 2.16.

(i) From Lemma 2.14 it follows that
...
∆

V
is a bounded, non-negative operator on V

with norm estimated from above by 2/ℓ−. In particular, σ(
...
∆

V
) ⊂ [0, 2/ℓ−].
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(ii) We can also define a Laplacian
...
∆1

V
:=

...
dV

...
d∗

V
acting on the space of “1-forms”

ℓ2(E) (and
...
∆0

V
:=

...
∆

V
=

...
d∗

V

...
dV ). For more details and the related supersymmetric

setting, we refer to [P07b]. In particular, we have

σ(
...
∆1

V ) \ {0} = σ(
...
∆0

V ) \ {0}.
Moreover, in [P07b, Ex. 3.16–3.17] we discussed how these generalised Laplacians
can be used in order to analyse the (standard) Laplacian on the line graph and
subdivision graph associated to G (see also [Sh00]).

The next example shows that we have indeed a generalisation of the standard discrete
Laplacian:

Example 2.17.

(i) For the standard vertex space V std, it is convenient to use the unitary transforma-

tion from V std onto ℓ2(V ) associating to F ∈ V the (common value) F̃ (v) := Fe(v)
as in Example 2.9 (i). Then the exterior derivative

...
dstd and its adjoint

...
d∗

std are
unitarily equivalent to

...
d: ℓ2(V ) −→ ℓ2(E), (

...
dF̃ )e = F̃ (∂+e) − F̃ (∂−e)

and

(
...
d∗η)(v) =

1

deg v

∑

e∈Ev

1

ℓe

y

ηe(v),

i.e.,
...
d is the classical coboundary operator already defined in (2.6) and

...
d∗ its

adjoint.
Moreover, the corresponding discrete Laplacian

...
∆std :=

...
∆

V std is unitarily equiv-

alent to the usual discrete Laplacian
...
∆ =

...
d∗...d defined in (2.5) as one can easily

check.
Similarly, for the standard weighted vertex space V p, the generalised discrete

Laplacian expressed on the space ℓ2(V, |p|2) is given by

...
∆pF (v) = − 1

|p(v)|2
∑

e∈Ev

1

ℓe

(
F (ve) − F (v)

)
, (2.17)

where |p(v)|2 =
∑

e∈Ev
|pe(v)|2.

(ii) For the minimal vertex space V
min = 0, we have

...
d = 0,

...
d∗ = 0 and

...
∆

V min = 0.
For the maximal vertex space, we have

(
...
∆V maxF )e(v) =

{ 1

ℓe

(
Fe(v) − Fe(ve)

)}

e∈Ev

and
...
∆

V max
∼=

⊕

e∈E

...
∆e, where

...
∆e

∼= 1

ℓe

(
1 −1
−1 1

)
.

In particular, in both cases, the Laplacians are decoupled and any connection
information of the graph is lost.

Let us now assume that the graph is equilateral (i.e., ℓe = 1) and the graph has no
double edges (i.e., ∂ is injective). Then we can write the Laplacian in the form

∆
V

= 1− MV , MV := PAmax,

where MV : V −→ V is called the principle part of the generalised discrete Laplacian, and
Amax : V max −→ V max the generalised adjacency matrix , defined by

Amax{F (w)}w = {Amax(v, w)F (w)}v, Amax(v, w) : C
Ew −→ C

Ev
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for F ∈ V
max. Furthermore, Amax(v, w) = 0 if v, w are not joined by an edge and

Amax(v, w)e,e′ = δe,e′, e ∈ Ev, e′ ∈ Ew

otherwise. In particular, written as a matrix, Amax(v, w) has only one entry 1 and all
others equal to 0. The principle part of the Laplacian then has the form

(MV F )(v) =
∑

e∈Ev

AV (v, ve)F (ve),

for F ∈ V similar to the form of the principle part of the standard Laplacian defined for
V std ∼= ℓ2(V ), where

AV (v, w) := PvA
max(v, w)Pw : Vw −→ Vv.

Equivalently,

MV =
⊕

v∈V

∑

w∈V

AV (v, w) (2.18)

where the sum is actually only over those vertices w, which are connected with v. In
particular, in the standard case V = V std, the matrix AV std(v, w) consists of one entry
only since V std

v
∼= C(deg v) isometrically. Namely, we have AV std(v, w) = 1 if v and w are

connected and 0 otherwise, i.e., AV std is (unitarily equivalent to) the standard adjacency
operator in ℓ2(V ).

Let us return to the general situation (i.e., general lengths ℓe and possibly double edges).
Let G be a discrete graph. We define a Hilbert chain associated to a vertex space V on G
by

C(G,V ) : 0 −→ V

...
dV−→ ℓ2(E) −→ 0.

Obviously, the chain condition is trivially satisfied since only one operator is non-zero. In
this situation and since we deal with Hilbert spaces, the associated cohomology spaces
(with coefficients in C) can be defined by

H0(G, V ) := ker
...
dV

∼= ker
...
dV / ran 0,

H1(G, V ) := ker
...
d∗

V
= (ran

...
dV )⊥ ∼= ker 0/ ran

...
dV

where ran A := A(H1) denotes the range (“image”) of the operator A : H1 −→ H2. The
index or Euler characteristic of the Hilbert chain C(G,V ) is defined by

ind(G, V ) := dim ker
...
dV − dim ker

...
d∗

V ,

i.e., the Fredholm index of
...
dV , provided at least one of the dimensions is finite. Note

that for the standard vertex space V std ∼= ℓ2(V ), the exterior derivative is just (unitarily
equivalent to) the classical coboundary operator defined in (2.6). In particular, the corre-
sponding homology spaces are the classical ones, and dimHp(G, V std) counts the number
of components (p = 0) and edges not in a spanning tree (p = 1).

Using the stability of the index under continuous perturbations, we can calculate the
index via simple (decoupled) model spaces and obtain (see [P07b, Sec. 4]), or alternatively,
we can apply standard arguments from linear algebra:

Theorem 2.19. Let V be a vertex space associated with the finite discrete graph G =
(V, E, ∂), then

ind(G, V ) = dim V − |E|.
Note that in particular, if V = V std, i.e., if V ∼= ℓ2(V ) is the standard vertex space, we

recover the well-known formula for (standard) discrete graphs, namely

ind(G, V std) = |V | − |E|,
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i.e., the index equals the Euler characteristic χ(G) := |V | − |E| of the graph G. On the
other hand, in the “extreme” cases, we have

ind(G, V max) = |E| and ind(G, V min) = −|E|.
since dim V max =

∑
v∈V deg v = 2|E| and dim G min = 0. Note that the first index equals

the Euler characteristic of the “decoupled” graph Gdec consisting of the disjoint union of
the graphs Ge = (∂e, e) having only two vertices and one edge, i.e., we have

ind(G, V max) = χ(Gdec) =
∑

e

χ(Ge) = |E|,

since χ(Ge) = 2−1 = 1. Similarly, the second index equals the relative Euler characteristic,
i.e.,

ind(G, V min) = χ(Gdec, ∂Gdec) := χ(Gdec) − χ(∂Gdec) = −|E|,
where ∂Gdec = ·⋃

e ∂Ge and ∂Ge = ∂e.
In [P07b, Lem. 4.4] we established a general result on the cohomology of the dual V ⊥

of a vertex space V . It shows that actually, V
⊥ and the oriented version of V , i.e.,

y

V = {F ∈ V max |
y

F ∈ G }, are related:

Proposition 2.20. Assume that the global length bound

ℓ− ≤ ℓe ≤ ℓ+ for all e ∈ E (2.21)

holds for some constants 0 < ℓ− ≤ ℓ+ < ∞. Then H0(G, V ⊥) and H1(G,
y

V ) are isomor-

phic. In particular, if G is finite, then ind(G, G ⊥) = − ind(G,
y

V ).

The orientation also occurs in the metric graph case, see e.g. Lemma 3.13.

3. Metric graphs, quantum graphs and associated operators

In this section, we fix the basic notion for metric and quantum graphs. Most of the
material is standard (except maybe the concept of exterior derivatives), and we refer to the
literature for further results and references, see e.g. [Ku08, Ku05, Kuc04, KS99a, KS99b].

3.1. Metric graphs.

Definition 3.1. Let G = (V, E, ∂) be a discrete (exterior) graph. A topological graph Gtop

associated to G is a CW complex containing only 0-cells and 1-cells, such that the 0-cells
are the vertices V and the 1-cells are labelled by the edge set E, respecting the graph
structure in the obvious way.

A metric graph Gmet associated to a weighted discrete graph (V, E, ∂, ℓ) is a topological
graph associated to (V, E, ∂) such that for every edge e ∈ E there is a continuous map

Φe : Ie −→ Gmet, Ie := [0, ℓe], such that Φe(I̊e) is the 1-cell corresponding to e, and the

restriction Φe : I̊e −→ Φ(I̊e) ⊂ Gmet is a homeomorphism. The maps Φe induce a metric
on Gmet. In this way, Gmet becomes a metric space.

By abuse of notation, we omit the labels (·)top and (·)met for the topological and metric
graph associated to the discrete weighted graph, and simply write G or (V, E, ∂, ℓ).

Given a weighted discrete graph, we can abstractly construct the associated metric
graph as the disjoint union of the intervals Ie for all e ∈ E and appropriate identifications
of the end-points of these intervals (according to the combinatorial structure of the graph),
namely

Gmet =
·⋃

e∈E

Ie/∼. (3.2)

Remark 3.3.
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(i) The metric graph Gmet becomes canonically a metric measure space by defining
the distance of two points to be the length of the shortest path in Gmet, joining
these points. We can think of the maps Φe : Ie −→ Gmet as coordinate maps and
the Lebesgue measures dse on the intervals Ie induce a (Lebesgue) measure on
the space Gmet. We will often omit the coordinate map Φe, e.g., for functions f
on Gmet we simply write fe := f ◦ Φe for the corresponding function on Ie. If the
edge e is clear from the context, we also omit the label (·)e.

(ii) Note that two metric graphs Gmet
1 and Gmet

2 can be isometric as metric spaces, such
that the underlying discrete graphs G1 and G2 are not isomorphic: The metric
on a metric graph Gmet cannot distinguish between a single edge e of length ℓe in
G1 and two edges e′, e′′ of length ℓe′, ℓe′′ with ℓe = ℓe′ + ℓe′′ joined by a vertex of
degree 2 in G2: The underlying graphs are not (necessarily) isomorphic.

3.2. Operators on metric graphs. Since a metric graph is a topological space, and
isometric to intervals outside the vertices, we can introduce the notion of measurability
and differentiate function on the edges. We start with the basic Hilbert space

L2(G) :=
⊕

e∈E

L2(Ie) and ‖f‖2 = ‖f‖2
L2(G) :=

∑

e∈E

∫

Ie

|fe(s)|2 ds,

where f = {fe}e with fe ∈ L2(Ie).
In order to define Laplacian-like differential operators in the Hilbert space L2(G) we

introduce the maximal or decoupled Sobolev space of order k as

H
k
max(G) :=

⊕

e∈E

H
k(Ie),

‖f‖2
Hk

max(G) :=
∑

e∈E

‖fe‖2
Hk(Ie),

where Hk(Ie) is the classical Sobolev space on the interval Ie, i.e., the space of functions
with (weak) derivatives in L2(Ie) up to order k. We define the unoriented and oriented
evaluation of f on the edge e at the vertex v by

f
e
(v) :=

{
fe(0), if v = ∂−e,

fe(ℓ(e)), if v = ∂+e
and

y

f
e
(v) :=

{
−fe(0), if v = ∂−e,

fe(ℓ(e)), if v = ∂+e.

Note that f
e
(v) and

y

f
e
(v) are defined for f ∈ H1

max(G). Recall that V max =
⊕

v V max
v =⊕

v CEv .

Lemma 3.4. Assume the lower lengths bound (2.4), then the evaluation operators

• : H
1
max(G) −→ V

max,
y• : H

1
max(G) −→ V

max,

f 7→ f = {{f
e
(v)}e∈Ev

}v ∈ V
max and f 7→

y

f = {{
y

f
e
(v)}e∈Ev

}v ∈ V
max

are bounded by (2/ℓ−)1/2.

Proof. It is a standard fact from Sobolev theory, that

|f(0)|2 ≤
∫ ℓe

0

(
a|f(s)|2 +

2

a
|f ′(s)|2

)
ds ≤ 2

ℓ−

∫ ℓe

0

(
|f(s)|2 + |f ′(s)|2

)
ds (3.5)

for f ∈ H1(Ie) and 0 < a ≤ ℓe, using ℓe ≥ ℓ− > 0 and ℓ− ≤ 1 (see e.g. [P09, Cor. A.2.22]).
In particular, the individual evaluation operator H1(Ie) → C, fe 7→ ±fe(v) is bounded by
(2/ℓ−)1/2. �

The lower length bound allows us to get rid of first order derivatives:
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Lemma 3.6. Assume that I = [0, ℓ], then

‖f ′‖2
L2(I) ≤

1025

ℓ2
−

‖f‖2
L2(I) + 2‖f ′′‖2

L2(I) ≤
1025

ℓ2
−

(
‖f‖2

L2(I) + ‖f ′′‖2
L2(I)

)

for f ∈ H
2(I), where ℓ− = min{1, ℓ}.

Proof. Partial integration and Cauchy-Young’s inequality yield

‖f ′‖2
CY
≤ 1

2
‖f‖2 +

1

2
‖f ′′‖2 +

∣∣f(0)f ′(0)
∣∣ +

∣∣f(ℓ)f ′(ℓ)
∣∣.

The boundary term can be estimated by

∣∣f(0)f ′(0)
∣∣ CY
≤ η

2

∣∣f ′(0)
∣∣2 +

1

2η

∣∣f(0)
∣∣2

≤ η

2

(
b′‖f ′′‖2 +

2

b′
‖f ′‖2

)
+

1

2η

(
b‖f ′‖2 +

2

b
‖f‖2

)

=
1

ηb
‖f‖2 +

ηb′

2
‖f ′′‖2 +

1

2

(2η

b′
+

b

η

)
‖f ′‖2

for η > and b, b′ ∈ (0, ℓ], applying (3.5) to f and f ′. A similar result holds for the boundary
term at s = ℓ, so that we end up with the inequality

‖f ′‖2 ≤
(1

2
+

2

ηb

)
‖f‖2 +

(1

2
+ ηb′

)
‖f ′′‖2 +

(2η

b′
+

b

η

)
‖f ′‖2.

If we set η := a/8, b := a/32 and b′ := a for 0 < a ≤ ℓ, then the coefficient of ‖f ′‖2

on the RHS equals 1/2. Bringing this term on the LHS and multiplying by 2 yields
the desired estimate with a = ℓ−. Note that 1 + 4/(ηb) = 1 + 1024/a2 ≤ 1025/a2 and
12ηb′ = 1 + a2/4 ≤ 2 since a ≤ 1. �

The two evaluation maps of Lemma 3.4 allow a very simple formula of a partial integra-
tion formula on the metric graph, namely

〈f ′, g〉L2(G) = 〈f,−g′〉L2(G) + 〈f,
y

g〉V max , (3.7)

where f ′ = {f ′
e}e and similarly for g. Basically, the formula follows from partial integration

on each interval Ie and a reordering of the sum using (2.2).

Remark 3.8. If we distinguish between functions (0-forms) and vector fields (1-forms), we
can say that 0-forms are evaluated unoriented , whereas 1-forms are evaluated oriented . In
this way, we should interprete f ′ and g as 1-forms and f , g′ as 0-forms.

Let us now introduce another data in order to define operators on the metric graph:

Definition 3.9. A quantum graph (G, V ) is given by a metric graph G together with a
vertex space V associated to G (i.e., a local subspace of V max, see Definition 2.8). In
particular, a quantum graph is fixed by the data (V, E, ∂, ℓ, V ).

Note that in the literature (see e.g. [Ku08]), a quantum graph is sometimes defined as a
metric graph together with a self-adjoint (pseudo-)differential operator acting on it. This
definition is more general, since we only associate the Laplacian ∆

V
defined below with a

quantum graph (G, V ).
Associated to a quantum graph (G, V ), we define the Sobolev spaces

H
k
V
(G) :=

{
f ∈ H

k
max(G)

∣∣ f ∈ V
}

and H
k
y

V
(G) :=

{
f ∈ H

k
max(G)

∣∣ y

f ∈ V
}
.

By Lemma 3.4, these spaces are closed in Hk
max(G) as pre-image of the closed subspace V

and the bounded operators • and
y•, respectively; and therefore themselves Hilbert spaces.
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On the Sobolev space H
1
V
(G), we can rewrite the vertex term in the partial integration

formula (3.7) and obtain

〈f ′, g〉L2(G) = 〈f,−g′〉L2(G) + 〈f, P
y

g〉V (3.10)

for f ∈ V and g ∈ V max, where P denotes the orthogonal projection of V in V max.
Let us now mimic the concept of exterior derivative:

Definition 3.11. The exterior derivative associated to a quantum graph G and a vertex
space V is the unbounded operator dV in L2(G) defined by dV f := f ′ for f ∈ dom dV :=
H1

V
(G).

Remark 3.12.

(i) Note that dV is a closed operator (i.e., its graph is closed in L2(G) ⊕ L2(G)),
since H1

V
(G) is a Hilbert space and the graph norm of d = dV , given by ‖f‖2

d :=
‖df‖2 + ‖f‖2, is the Sobolev norm, i.e, ‖f‖d = ‖f‖H1

max(G).
(ii) We can think of d as an operator mapping 0-forms into 1-forms. Obviously, on

a one-dimensional smooth space, there is no need for this distinction, but the
distinction between 0- and 1-forms makes sense through the vertex conditions
f ∈ V , see also the next lemma.

The adjoint of dV can easily be calculated from the partial integration formula (3.10),
namely the vertex term P

y

g has to vanish for functions g in the domain of d∗
V
:

Lemma 3.13. The adjoint of dV is given by d∗
V
g = −g′ with domain dom d∗

V
= H

1
y

V ⊥
(G).

As for the discrete operators, we define the Laplacian via the exterior derivative:

Definition 3.14. The Laplacian associated to a quantum graph (G, V ) is defined by

∆V = ∆(G,V ) := d∗
V dV

with domain dom ∆
V

:= { f ∈ dom dV | dV f ∈ dom d∗
V
}.

Let us collect some simple facts about the Laplacian:

Proposition 3.15. Let (G, V ) be a quantum graph with lower lengths bound infe ℓe ≥ ℓ−,
ℓ− ∈ (0, 1].

(i) The Laplacian ∆
V

= d∗
V
dV is self-adjoint and non-negative. Moreover, the Lapla-

cian is the operator associated to the closed quadratic form dV (f) := ‖dV f‖2
G and

dom dV = H1
V
(G).

(ii) The domain of the Laplacian ∆
V

= d∗
V
dV is given by

dom ∆V =
{

f ∈ H
2
max(G)

∣∣ f ∈ V ,
y

f ′ ∈ V
⊥ }

.

Proof. The self-adjointness follows immediately from the definition of the Laplacian. More-
over,

〈f, ∆
V
g〉 = 〈dV f, dV g〉 = dV (f, g)

for all f ∈ dom dV and g ∈ dom ∆
V
. Hence, ∆

V
is the operator associated to V

(see [Kat66, Thm. VI.2.1]). Finally, the domain characterisation is easily seen using
Lemma 3.13. �

The condition f ∈ V ,
y

f ′ ∈ V ⊥ will be called vertex condition, and similarly, f(v) ∈ Vv,
y

f ′(v) ∈ V ⊥
v vertex condition at the vertex v.

Remark 3.16.
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(i) There are other possibilities how to define self-adjoint extensions of a Laplacian,
see e.g. [Ha00, Kuc04, FKW07] and (ii) below. In particular, for a self-adjoint
(bounded) operator L on V , we can define a self-adjoint Laplacian ∆(V ,L) with
domain

dom ∆(V ,L) :=
{

f ∈ H
2
V
(G)

∣∣ P
y

f ′ = Lf
}
,

where P is the projection in V
max onto the space V . The vertex conditions f ∈ V

and P
y

f ′ = Lf at the vertex v split into three different parts, namely the Dirichlet

part f ∈ V , the Neumann part P
y

f ′ ∈ (ker L)⊥ ⊂ V and the Robin part P
y

f ′ = Lf

on (ker L)⊥ (see e.g. [FKW07] for details). If L = 0, then the Robin part is not
present, as it is the case in Proposition 3.15.

(ii) One can encode the vertex conditions also in a (unitary) operator S on V max, the
scattering operator (see e.g. [KS97, KS99a, KS03b, KPS07b]). In general, S = S(λ)
depends on the eigenvalue (“energy”) parameter λ, namely, S(λ) is (roughly)

defined by looking how incoming and outgoing waves (of the form x 7→ e±i
√

λx)
propagate through a vertex. In our case (i.e., if L = 0 in ∆(V ,L) described above),
one can show that S is independent of the energy , namely,

S =

(1 0
0 −1)

= 2P − 1 (3.17)

with respect to the decomposition V max = V ⊕V ⊥, and where P is the orthogonal
projection of V in V max. In particular, the so-called energy-independent vertex
conditions are precisely the ones without Robin part (i.e., L = 0), see (i) above.

(iii) As in the discrete case, we can consider ∆0
V

:= ∆
V

as the Laplacian on 0-forms,
and ∆1

V
:= dV d∗

V
as the Laplacian on 1-forms. Again, by supersymmetry, we have

the spectral relation

σ(∆1
V

) \ {0} = σ(∆0
V

) \ {0}.
For more details we refer to [P07b, Sec. 5].

An important example is the quantum graph with standard vertex space

V
std =

⊕

v

V
std

v , V
std

v = C(1, . . . , 1) ⊂ C
Ev ,

respectively, its weighted version

V
p =

⊕

v

V
p(v)

v , V
p(v)

v = Cp(v) ⊂ C
Ev ,

where p(v) = {pe(v)}e∈Ev
and pe(v) 6= 0. Moreover,

dom d∗
p =

{
g ∈ H

1
max(G)

∣∣ ∑

e∈Ev

pe(v)
y

g
e
(v) = 0 ∀v ∈ V

}
and

dom ∆p =
{

f ∈ H
2
max(G)

∣∣ f(v) ∈ Cp(v),
∑

e∈Ev

pe(v)
y

f ′
e
(v) = 0 ∀v ∈ V

}
.

For the standard vertex space, H
1
V std(G) consists of continuous functions on the topological

graph G: On each edge, we have the embedding H1(Ie) ⊂ C(Ie), i.e., f is already continuous
inside each edge. Moreover, the evaluation f

e
(v) is independent of e ∈ Ev. This is the

reason why we call V std also the continuous vertex space. In particular, a function f is
in the domain of the standard or Kirchhoff Laplacian ∆std = ∆

V std iff f ∈ H
2
max(G), f is

continuous and if the flux condition on the derivatives
∑

e∈Ev
f ′

e(v) = 0 is fulfilled for all
v ∈ V .
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Let us make a short remark on the extremal vertex spaces V
max

v = C
Ev and V

min = 0:
The corresponding Laplacian fulfils the vertex conditions

fe(v) = 0 ∀e ∈ Ev resp. f ′
e(v) = 0 ∀e ∈ Ev,

i.e., the function f fulfils indidivual Dirichlet resp. Neumann vertex conditions at the
vertex v. This is the reason for the name Dirichlet resp. Neumann vertex space in Exam-
ple 2.9 (iii).

In particular, if V = 0 and V = V max are the minimal and maximal vertex spaces, then

∆0 =
⊕

e

∆∂Ie

Ie
and ∆max =

⊕

e

∆Ie
,

respectively, i.e., the operators are decoupled. Here ∆∂Ie

Ie
is the Laplacian on Ie with Dirich-

let boundary conditions on ∂Ie, and similarly, ∆Ie
is the Laplacian on Ie with Neumann

boundary conditions on ∂Ie.
We say that a quantum graph (G, V ) is compact if the underlying metric graph G is

compact as topological space. In particular, G is compact iff |E| is finite (since in our
setting, all edges have finite length). The following observation is proven e.g. in [P07c,
Prp. 3.13].

Proposition 3.18. Assume that (G, V ) is a compact quantum graph, then the resolvent
(∆

V
+1)−1 of the associated Laplacian is a compact operator. In particular, ∆

V
has purely

discrete spectrum, i.e., there is an infinite sequence {λk}k of eigenvalues, where λk =
λk(∆V

) denotes the k-th eigenvalue (repeated according to its multiplicity) and λk → ∞ as
k → ∞.

4. Boundary triples associated to quantum graphs

We need the notion of a boundary of a graph: A boundary of a metric graph G is a
subset ∂G of V . We call vertices in V̊ := V \ ∂G interior vertices.

Let us now define a boundary triple associated to a quantum graph (G, V ) (see also [Pan06,
BGP07, BGP08, P08]). The concept of a boundary triple is briefly explained in Appen-
dix A. In particular, for a quantum graph (G, V ) we set

H := L2(G), H
1 := H

1
V
(G), a(f) := ‖dV f‖2

G,

G :=
⊕

v∈∂G

Vv, Γf := {f(v)}v∈∂G

for f ∈ H 1. Moreover, we define the maximal operator by (Af)e = −f ′′
e and

dom A :=
{

f ∈ H
2
V

(G)
∣∣Pv

y

f ′(v) = 0 ∀ v ∈ V̊
}
, and set Γ′f := {Pv

y

f ′(v)}v∈∂G,

where P =
⊕

v Pv denotes the orthogonal projection of V in V
max. In particular, functions

in dom A fulfil the vertex conditions f(v) ∈ Vv and
y

f ′(v) ∈ V ⊥
v for all inner vertices,

whereas for the boundary vertices v ∈ ∂G, only f(v) ∈ Vv is assumed.

Proposition 4.1. Assume that (G, V ) is a quantum graph with boundary ∂G ⊂ V and
lower length bound ℓe ≥ ℓ− for some ℓ− ∈ (0, 1]. Then we have:

(i) The quadratic form a and the maximal operator A are closed.
(ii) The triple (Γ, Γ′, G ) is a bounded boundary triple associated to the quadratic form

a and the maximal operator A.

Proof. (i) The closeness of a follows from the closeness of the operator dV . For the closeness
of A, note that dom A is a closed subspace of H2

V
(G), since the evaluation operator

y•′ is



GENERALISED DISCRETE LAPLACIANS ON GRAPHS AND QUANTUM GRAPHS 15

bounded (see Lemma 3.4). Moreover,

‖f‖2 + ‖f ′′‖2 ≤ ‖f‖2 + ‖f ′‖2 + ‖f ′′‖2 = ‖f‖2
H2

max(G) ≤
(
1 +

1025

ℓ2
−

)(
‖f‖2 + ‖f ′′‖2

)

by Lemma 3.6, i.e., the graph norm of A and the norm on H2
V
(G) are equivalent. Since

the latter space is complete, the closeness of A follows.
(ii) Green’s formula (A.6) follows from partial integration (3.10), namely

〈f, Ag〉 = 〈f,−g′′〉 = 〈f ′, g′〉 − 〈f, P
y

g′〉V = a(f, g) − 〈Γf, Γ′g〉G
for f ∈ H 1 and g ∈ dom A since Pv

y

g′(v) = 0 for v ∈ V̊ by definition of dom A.
For the surjectivity (A.1b) one has to construct a function f ∈ dom A with prescribed

values f(v) = F (v) and
y

f ′(v) = G(v) for all v ∈ ∂G and given F, G ∈ V . Clearly, this can
be done locally at each boundary vertex for a function vanishing at points with distance

more than ℓ−/2 from each boundary vertex. At inner vertices we set f(v) = 0 and
y

f ′(v).
The global lower bound on each length ℓe ≥ ℓ− assures that the different parts of the
functions near each vertex have disjoint supports and that the summability of F and G
(i.e., F, G ∈ V ) implies the integrability of f , f ′ and f ′′ on G for an appropriate choice of
f . �

For the next proposition, we need some more notation. Let
√

z be the square root cut
along the positive axis R+ = [0,∞), so that in particular, Im

√
z > 0. We denote by

sinz,e,+(s) :=
sinz s

sinz ℓe
and sinz,e,−(s) :=

sinz(ℓe − s)

sinz ℓe
, (4.2a)

where sinz(s) := sin(
√

z s) for z ∈ C \ R+, the two fundamental solutions of −f ′′
e = zfe on

Ie with sinz,e,+(0) = 1, sinz,e,+(ℓe) = 0 and vice versa for sinz,e,−.2 Moreover, we set

tanz(s) = tan(
√

z s) and cotz(s) := cot(
√

z s). (4.2b)

If the boundary consists of all vertices, i.e., ∂G = V , then we can give explicit formulas
for the Dirichlet solution operator and the Dirichlet-to-Neumann map (see Definition A.3,
similar results can be found in [P08, BGP08]). Note that in this case, the boundary space
of the boundary triple agrees with the entire vertex space, i.e., G = V :

Proposition 4.3. Assume that (G, V ) is a quantum graph with boundary ∂G = V and
lower length bound ℓe ≥ ℓ− for some ℓ− ∈ (0, 1]. Then for z ∈ C \ R+, we have:

(i) The Dirichlet operator AD associated to the boundary triple (Γ, Γ′, V ) is the Lapla-
cian associated to the minimal vertex space V min = 0, i.e.,

AD = ∆0 =
⊕

e

∆∂Ie

Ie
.

In particular, AD is decoupled. The spectrum of AD is

σ(AD) =
{ k2π2

ℓ2
e

∣∣∣ e ∈ E, k = 1, 2, . . .
}
.

Moreover, if the graph is equilateral, then

σ(AD) =
{

k2π2
∣∣ k = 1, 2, . . .

}
=: ΣD.

(ii) The Neumann operator associated to the boundary triple (Γ, Γ′, V ) is the Laplacian
associated to the quantum graph (G, V ), i.e.,

AN = ∆
V
.

2We also need the analytic continuation in z = 0, i.e., we set sin0,e,+(s) :=
s

ℓe

and sin0,e,−(s) := 1− s

ℓe

.



16 OLAF POST

(iii) The Dirichlet solution operator S(z) : V −→ dom A, defined by f = S(z)F , where
f is the (unique) solution of the Dirichlet problem (A− z)f = 0, Γf = F , is given
by

fe(s) = Fe(∂−e) sinz,e,−(s) + Fe(∂+e) sinz,e,+(s),

where F = {F (v)}v∈V ∈ ⊕
v Vv = V .

(iv) The Dirichlet-to-Neumann map Λ: V −→ V is given by

(Λ(z)F )(v) = PvH(v), H(v) = {He(v)}e∈Ev

where

He(v) =

√
z

sinz ℓe

(
(cosz ℓe)Fe(v) − Fe(ve)

)
,

and where ve denotes the vertex ajacent with e opposite of v. In particular, if the
graph is equilateral (ℓe = 1), then

Λ(z) =

√
z

sin
√

z

( ...
∆V − (1 − cos

√
z)

)
,

i.e., the Dirichlet-to-Neumann map is an affine-linear (z-depending) function of
the discrete Laplacian

...
∆

V
.

Proof. The first assertion is obvious. The second assertion follows from the characterisation
of the domain of ∆

V
in Proposition 3.15. Note that if ∂G = V , then dom A = H2

V
(G). For

the third assertion, note that f = S(z)F solves the differential equation on each edge, that
Γf = F by the ansatz for f and that f ∈ L2(G) (and therefore also Af = zf ∈ L2(G)).
The last assertion is easily seen by a straightforward calculation. �

5. Extended quantum graphs

Let us provide Laplacians defined on an extended space associated to a quantum graph
(G, V ). We always assume that the lower length bound ℓe ≥ ℓ− > 0 is fulfilled. The
operators on the extended space described below occur naturally in the limit of graph-like
manifolds, in particular, when the shrinking rate of the vertex neighbourhood volume is
of the same order as the transversal volume (“borderline case”, L invertible) or shrinks
slower (“slowly decaying case”, L = 0) see e.g. [P09, EP05, KuZ03].

Definition 5.1. An extended quantum graph is a triple (G, V , L), where (G, V ) is a quan-
tum graph (i.e., G is a metric graph and V =

⊕
v Vv a vertex space), and L a self-adjoint,

bounded operator on V . Moreover, we assume that L is local, i.e., L =
⊕

v L(v), where
L(v) acts on Vv.

We sometimes refer to a quantum graph (G, V ) and the related operators and spaces
(see Section 3.2) as simple.

We now associate the Hilbert spaces and operators to an extended metric graph. Basi-
cally, we define the extended spaces and operators as the extended corresponding objects
associated to the boundary triple (Γ, Γ′, V ), see Definition A.9. In particular, the extended
Hilbert space is given by

Ĥ := L2(G) ⊕ V ,

(see Proposition A.10).

The extended exterior derivative d̂(V ,L) is defined via

d̂(V ,L) : Ĥ
1

L −→ L2(G), d̂(V ,L)f̂ := f ′ for f̂ = (f, F ) ∈ Ĥ
1

L ,

where

Ĥ
1

L :=
{

(f, F ) ∈ H
1
V
(G) ⊕ V

∣∣ f = LF
}

(5.2)
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is the extended space of order 1 associated to (G, V , L). The following result follows
straightforward:

Lemma 5.3. The adjoint of d̂(V ,L) is given by

(d̂(V ,L))
∗g = (−g′, LP

y

g) and dom(d̂(V ,L))
∗ = H

1
max(G),

where P denotes the projection onto V in V
max.

From Proposition A.10 we conclude the following assertions:

Proposition 5.4. Assume that (G, V ) is a quantum graph and L a bounded operator on
G .

(i) The extended quadratic form âL associated to (G, V ) and L is given by

âL(f̂) = ‖d̂(V ,L)f̂‖2
G

with domain dom âL = Ĥ
1

L (see (5.2)). In particular, âL is closed and non-
negative.

(ii) The extended Laplacian ∆̂(V ,L) = (d̂(V ,L))
∗d̂(V ,L) is non-negative and acts as

∆̂(V ,L)(f, F ) = (−f ′′, LP
y

f ′)

with domain given by

dom ∆̂(V ,L) =
{

f̂ = (f, F ) ∈ H
2
max(G) ⊕ G

∣∣ f ∈ V , f = LF
}
.

In particular, for L = 0 we obtain (see Corollary A.11 and Proposition 4.3):

Corollary 5.5. Assume that (G, V ) is a quantum graph. Then the extended quadratic

form â0 and the corresponding operator ∆̂(V ,0) associated to (G, V ) and the trivial operator
L = 0 are decoupled, i.e.,

â0 =
⊕

e∈E

d
∂Ie

Ie
⊕ 0 and ∆̂(V ,0) =

⊕

e∈E

∆∂Ie

Ie
⊕ 0

with respect to the decompositon Ĥ =
⊕

e L2(Ie) ⊕ G , where d
∂Ie

Ie
and ∆∂Ie

Ie
denote the

Dirichlet quadratic form and the Dirichlet Laplacian on Ie, respectively.

If V = V p is a weighted standard vertex space, we can use the equivalent space ℓ2(V, |p|2)
(see Example 2.9 (ii)). Now, the local, bounded operator L viewed as operator on ℓ2(V, |p|2)
can be identified with a bounded, real-valued sequence {L(v)}v∈V . Moreover, we have

(d̂(p,L))
∗g =

(
−g′,

{ L(v)

|p(v)|2
∑

e∈Ev

pe(v)
y

g
e
(v)

}
v∈V

)

∆̂(p,L)(f, F ) =
(
−f ′′,

{ L(v)

|p(v)|2
∑

e∈Ev

pe(v)
y

f ′
e
(v)

}

v∈V

)

Remark 5.6. We can define an extended Laplacian acting on “1-forms” by

∆̂1
(V ,L) = d̂(V ,L)(d̂(V ,L))

∗

acting as ∆̂1
(V ,L)g = −g′′ with domain given by

dom ∆̂1
(V ,L) =

{
g ∈ H

2
max(G)

∣∣y

g′ ∈ V , g′ + L2P
y

g = 0
}
.

In particular, ∆̂1
(V ,L) represents a Laplacian on a (simple) quantum graph, i.e., the Lapla-

cian acts in the (simple) Hilbert space L2(G). For details on this point of view, we refer

to [P07b]. If V p is a standard weighted vertex space, then the Laplacian ∆̂1
(V ,L) can be

interpreted as a delta’-interaction, see e.g. [EP08].
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6. Spectral relations between discrete and metric graphs

In this section, we provide two results of a spectral relation between the discrete and
quantum graph Laplacian. The first one is true for the entire spectrum, but only for
equilateral graphs, the second is valid for general metric graphs, but only at the bottom of
the spectrum.

6.1. Spectral relation for equilateral graphs. The spectral relation between the met-
ric and combinatorial operator for the standard vertex space is well-known, see for ex-
ample [vB85, Nic87] for the compact case and [Ca97] for the non-compact case (see
also [Kuc04, Pan06, P08, BGP08] and the references therein). Moreover, in [Exn97], delta-
and delta’-vertex conditions are considered. Dekoninck and Nicaise [DN00] proved spec-
tral relations for fourth order operators, and Cartwright and Woess [CW05] used integral
operators on the edge.

Let us combine the concrete information on the boundary triple (Γ, Γ′, V ) with Theo-
rem A.5, in order to obtain a spectral relation between the quantum and discrete graph
spectrum:

Theorem 6.1. Assume that (G, V ) is a quantum graph with lower length bound ℓe ≥ ℓ−
for some ℓ− ∈ (0, 1]. Then the following assertions are true:

(i) For z ∈ C \ σ(AD) we have the explicit formula for the eigenspaces

ker(∆V − z) = S(z) ker Λ(z).

In particular, if the graph is equilateral (i.e., ℓe = 1) and z /∈ ΣD = { (πk)2 | k =
1, 2, . . .}, then

ker(∆
V
− z) =

√
z

sin
√

z
S(z) ker

( ...
∆

V
− (1 − cos

√
z)

)
.

Here,
...
∆

V
is the discrete Laplacian associated to the vertex space V (see Defini-

tion 2.15).
(ii) For z /∈ σ(∆

V
) ∪ σ(∆0) we have 0 /∈ σ(Λ(z)) and Krein’s resolvent formula

(∆V − z)−1 = (∆0 − z)−1 − S(z)Λ(z)−1S(z)∗

holds, where S(z)∗ is the adjoint of S(z) : V −→ L2(G).
(iii) We have the spectral relation

σ•(∆V
) \ σ(∆0) =

{
λ ∈ C \ σ(∆0)

∣∣ 0 ∈ σ•(Λ(λ))
}
,

where • ∈ {∅, pp, disc, ess}, i.e., the spectral relation holds for the entire, the pure
point (set of all eigenvalues), discrete and essential spectrum.

Assume in addition that the graph is equilateral and that λ /∈ ΣD. Then we have
the spectral relation

λ ∈ σ•(∆V
) ⇔ (1 − cos

√
λ) ∈ σ•(

...
∆

V
)

for all spectral types, namely, • ∈ {∅, pp, disc, ess, ac, sc, p}, i.e., the spectral re-
lation holds for the entire, pure point, discrete, essential, absolutely continuous,
singular continuous and point spectrum (σp(A) = σpp(A)). Finally, the multiplic-
ity of an eigenspace is preserved.

Proof. The assertions follow immediately from Proposition 4.3 and Theorem A.5 (with
L = 0). For the last assertion, we have m(z) = 1 − cos

√
z and n(z) = (sin

√
z)/

√
z (with

the analytic continuation n(0) := 1). Note that the zeros of n agree with the Dirichlet
spectrum ΣD. �

Remark 6.2.
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(i) We do not make an assertion about the Dirichlet spectrum. For standard weighted
vertex spaces and equilateral graphs, we have given a topological interpretation of
the corresponding eigenspaces associated to eigenvalues λk = k2π2 ∈ ΣD in terms
of the homology of the graph, see [vB85, Nic87, LP08] and references therein.

(ii) One can use the above spectral relation of discrete and metric graphs for an eigen-
value bracketing argument in the discrete case. Using eigenvalue monotonicity
w.r.t. the vertex space, one can ensure spectral gaps for the discrete Laplacian on
an infinite covering of a finite graph with residually finite covering group, see [LP08]
for details.

Let us now compare the extended Laplacian ∆̂(V ,L) with the corresponding discrete op-
erators as in Theorem A.12. The Dirichlet solution and the Dirichlet-to-Neumann operator
for the boundary triple (Γ, Γ′, V ) are given in Proposition 4.3.

Theorem 6.3. Assume that (G, V ) is a quantum graph with lower length bound ℓe ≥ ℓ−
for some ℓ− ∈ (0, 1], and that L is a local, bounded operator on V . Then the following
assertions are true:

(i) For z /∈ σ(AD), we have

ker(∆̂(V ,L) − z) = Ŝ(z) ker
(
LΛ(z)L − z

)
, (6.3)

where Ŝ(z) : V −→ Ĥ
2

L ⊂ H
2
V

(G) ⊕ V and Ŝ(z)F := (S(z)LF, F ). Moreover,

Ŝ(z) is an isomorphism between the above spaces.

(ii) Assume that λ ∈ R \ σ(AD), then λ is an eigenvalue of ∆̂(V ,L) iff ker(LΛ(z)L− z)

is non-trivial. Moreover, the multiplicity of the (eigen)spaces is preserved.
(iii) Assume in addition that the graph is equilateral (i.e., ℓe = 1) and that λ /∈ ΣD =

{ (πk)2 | k = 1, 2, . . .}. Moreover, assume that L = L0 idV for some L0 ∈ R \ {0}.
Then we have the spectral relation

λ is an eigenvalue of ∆̂(V ,L) ⇔ m̂L0(λ) is an eigenvalue of
...
∆V ,

where
m̂L0(λ) = L−2

0

√
z sin

√
z + (1 − cos

√
z).

Finally, the multiplicity is preserved.

Proof. We have shown in Proposition 4.1 that (Γ, Γ′, V ) is a boundary triple assiciated
to the quadratic form a and the maximal operator A. The assertions follow now from
Theorem A.12 and the concrete expressions for the boundary triple objects in Proposi-
tion 4.3. �

Remark 6.4.

(i) Note that for a quantum graph (G, V ) with invertible operator L, the eigenvalue

equation ∆̂(V ,L)f̂ = λf̂ for f̂ = (f, F ) ∈ Ĥ 2
L is equivalent with

−f ′′
e = λfe, L2P

y

f ′ = λf

since F = L−1f . For example, for a standard weighted vertex space, we have

−f ′′
e = λfe,

L(v)2

|p(v)|2
∑

e∈Ev

pe(v)
y

f ′
e
(v) = λf(v). (6.4)

In particular (for invertible operators L), the eigenvalue equation can be expressed
completely in terms of the function f , without reference to the auxiliary vector
F ∈ V . Nevertheless, the vertex condition now depends on the spectral parameter
λ.
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(ii) If we consider the Laplacian ∆(V ,L) acting in L2(G) (see Remark 3.16 (i)), the

eigenvalue equation ∆(V ,L)f = λf reads as −f ′′
e = λfe and

P
y

f ′ = Lf and
1

|p(v)|2
∑

e∈Ev

pe(v)
y

f ′
e
(v) = L(v)f(v)

for a general vertex space V and a standard weighted one, respectively. The vertex
condition in the latter case is sometimes also refered to as delta-interaction with
vertex potential (proportional to) L(v). In particular, in the standard weighted
case, the eigenvalue equation (6.4) can be interpreted as a delta-interaction with
energy-dependent vertex potential λL(v)−2.

6.2. Spectral relation at the bottom of the spectrum. Let us analyse the spectrum
at the bottom of ∆

V
in more detail. As in the discrete case, we define the Hilbert chain

associated to the exterior derivative dV by

C(Gmet,V ) : 0 −→ H
1
V (Gmet)

dV−→ L2(G
met) −→ 0

and call elements of the first non-trivial space 0-forms, and of the second space 1-forms.
The associated cohomology spaces (with coefficients in C) are defined by

H0(Gmet, V ) := ker dV
∼= ker dV / ran 0,

H1(Gmet, V ) := ker d∗
V

= (randV )⊥ ∼= ker 0/ ran dV

The index or Euler characteristic of the Hilbert chain C(Gmet,V ) associated to the quan-
tum graph (Gmet, V ) is then defined by

ind(Gmet, V ) := dim ker dV − dim ker d∗
V ,

i.e., the Fredholm index of dV , provided at least one of the dimensions is finite.
We have the following result (for more general cases cf. [P07b], and for related results,

see e.g. [FKW07, Kur08, KPS07b]):

Theorem 6.5. Assume that G is a weighted discrete graph with lower lengths bound (2.4),
and that (Gmet, V ) is a quantum graph, where Gmet denotes the metric graph associated to
G. Then there is an isomorphism Φ∗ = Φ∗

0 ⊕ Φ∗
1 with

Φ∗
p : Hp(Gmet, V ) −→ Hp(G, V ).

More precisely, Φ∗ is induced by a Hilbert chain morphism Φ , i.e.,

C(Gmet,V ) : 0 - H
1
V
(Gmet)

dV- L2(G
met) - 0

C(G,V ) : 0 - V

Φ0

?
...
dV - ℓ2(E)

Φ1

?
- 0

is commutative, where

Φ0f := f, Φ1g :=
{∫

Ie

ge(s) ds
}

e
.

In particular, if G is finite (and therefore Gmet compact), then

ind(Gmet, V ) = ind(G, V ) = dim V − |E|.
For general results on Hilbert chains and their morphisms we refer to [Lü02, Ch. 1]

or [BL92].
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Proof. The operators Φp are bounded. Moreover, that Φ is a chain morphism follows from

(Φ1dV f)e =

∫

Ie

f ′
e(s) ds = fe(ℓe) − fe(0) = (

...
dV f)e = (

...
dV Φ0f)e.

Furthermore, there is a Hilbert chain morphism Ψ, i.e.,

C(Gmet,V ) : 0 - H
1
V
(Gmet)

dV- L2(G
met) - 0

C(G,V ) : 0 - V

Ψ0

6

...
dV - ℓ2(E)

Ψ1

6

- 0

given by

Ψ0F := S(0)F = {Fe(∂−e) sin0,e,− +Fe(∂+e) sin0,e,−}e, Ψ1η := {ηe1Ie
/ℓe}e

(see Eq. (4.2a)), i.e., we let Φ0F be the edge-wise affine linear (harmonic) function

(S(0)F )e(s) = Fe(∂−e) · ℓe − s

ℓe
+ Fe(∂+e) · s

ℓe
, s ∈ Ie; (6.6)

and Φ1η be an (edgewise) constant function. Again, the chain morphism property Ψ1

...
dV =

dV Ψ0 can easily be seen. Furthermore, ΦΨ is the identity on the second (discrete) Hilbert
chain C(G,V ). It follows now from abstract arguments (see e.g. [BL92, Lem. 2.9]) that the
corresponding induced maps Φ∗

p are isomorphisms on the cohomology spaces. �

Remark 6.7. The sub-complex Ψ(C(G,V )) of C(Gmet,V ) consists of the subspace of edge-wise
affine linear functions (0-forms) and of edge-wise constant functions (1-forms). In this
way, we can naturally embed the discrete setting into the metric graph one. In particular,
assume that 0 < ℓ− ≤ ℓe ≤ ℓ+ < ∞ for all e ∈ E, then

‖Ψ0F‖2 =
∑

e

1

ℓ2
e

∫ ℓe

0

|Fe(∂−e)(ℓe − s) + Fe(∂+e)s|2 ds

=
∑

e

ℓe

3

(
|Fe(∂−e)|2 + Re

(
Fe(∂−e)Fe(∂+e)

)
+ |Fe(∂+e)|2

)
,

so that
ℓ−
6
‖F‖2

V

CY
≤ ‖Ψ0F‖2

CY
≤ ℓ+

2
‖F‖2

V
,

i.e., redefining the norm on V by ‖F‖V ,1 := ‖Ψ0F‖ gives an equivalent norm turning Ψ0

into an isometry. Moreover, ‖Ψ1η‖ = ‖η‖ℓ2(E). For more details on this point of view (as
well as “mixed” types of discrete and metric graphs), we refer to [FT04b] and references
therein.

Finally, we analyse the spectrum at the bottom of the extended model. Let (G, V ) be
a quantum graph and L = L∗ be a local, bounded operator on V . We define the Hilbert
chain associated to the exterior derivative d(V ,L) by

C(Gmet,V ,L) : 0 −→ Ĥ
1

L

d(V ,L)−→ L2(G
met) −→ 0

and call elements of the first non-trivial space extended 0-forms, and of the second space 1-
forms. Recall that d(V ,L)(f, F ) = f ′. The associated cohomology spaces (with coefficients
in C) are defined by

H0(Gmet, V , L) := ker d(V ,L)
∼= ker d(V ,L)/ ran 0,

H1(Gmet, V , L) := ker d∗
(V ,L) = (ran d(V ,L))

⊥ ∼= ker 0/ randV
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The index or Euler characteristic of the Hilbert chain C(Gmet,V ,L) associated to the ex-
tended quantum graph (Gmet, V , L) is then defined by

ind(Gmet, V , L) := dim ker d(V ,L) − dim ker d∗
(V ,L),

i.e., the Fredholm index of d(V ,L), provided at least one of the dimensions is finite.
We define the extended discrete Hilbert chain associated to the graph G with vertex

space V and operator L by

C(G,V ,L) : 0 −→ V

...
dV L−→ ℓ2(E) −→ 0.

Similarly, we denote by Hp(G, V , L) the corresponding cohomology spaces for p = 0, 1.
The index of the extended discrete Hilbert chain is given by the Fredholm index of

...
dV L,

namely

ind(G, V , L) := dim ker
...
dV L − dim ker L

...
d∗

V

= ind(G, ker L⊥) + dim ker L = dim ker L⊥ − |E| + dim ker L = dim V − |E|.
We have the following result:

Theorem 6.8. Assume that G is a weighted discrete graph with lower lengths bound (2.4).
Assume in addition, that (Gmet, V , L) is an extended quantum graph, where Gmet denotes

the metric graph associated to G. Then there is an isomorphism Φ̂∗ = Φ̂∗
0 ⊕ Φ∗

1 with

Φ̂∗
0, Φ

∗
1 : Hp(Gmet, V , L) −→ Hp(G, V , L).

More precisely, Φ̂∗ is induced by a Hilbert chain morphism Φ̂ , i.e.,

C(Gmet,V ,L) : 0 - Ĥ
1

L

d(V ,L)- L2(G
met) - 0

C(G,V ,L) : 0 - V

Φ̂0

? ...
dV L - ℓ2(E)

Φ1

?
- 0

is commutative, where

Φ̂0(f, F ) := F, Φ1g :=
{∫

Ie

ge(s) ds
}

e
.

In particular, if G is finite (and therefore Gmet compact), then

ind(Gmet, V , L) = ind(G, V , L) = dim V − |E|.

Proof. The operators Φ̂0 and Φ1 are bounded. Moreover, that Φ̂ is a chain morphism
follows from

(Φ1d(V ,L)(f, F ))e =

∫

Ie

f ′
e(s) ds = fe(ℓe) − fe(0) = (

...
dV f)e = (

...
dV LF )e = (

...
dV LΦ̂0(f, F ))e.

Furthermore, there is a Hilbert chain morphism Ψ̂, i.e.,

C(Gmet,V ,L) : 0 - Ĥ
1

L

d(V ,L)- L2(G
met) - 0

C(G,V ,L) : 0 - V

Ψ̂0

6

...
dV L - ℓ2(E)

Ψ1

6

- 0
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given by

Ψ̂0F := Ŝ(0)F = (S(0)LF, F ), Ψ1η := {ηe1Ie
/ℓe}e,

where S(0)F is the affine (harmonic) function as defined in (6.6). It is shown in Theo-

rem A.12 that Ŝ(0) maps into Ĥ 1
L . Moreover, the chain morphism property Ψ1

...
dV L =

d(V ,L)Ψ̂0 is easy to see. In addition, Φ̂Ψ̂ is the identity on the second (discrete) Hilbert
chain C(G,V ,L). It follows again from abstract arguments (see e.g. [BL92, Lem. 2.9]) that the

corresponding induced maps Φ̂∗
0 and Φ∗

1 are isomorphisms on the cohomology spaces. �

7. Some trace formulas on metric and discrete graphs

Let us finish this chapter with some results concerning the trace of the heat operator.
Trace formulas for metric graph Laplacians appeared first in an article of Roth [R84],
where standard (Kirchhoff) boundary conditions are used. Independently, Nicaise proved
trace formulas for metric graphs in [Nic87], but he uses a slightly different definition of the
Laplacian (as in [Ca97]). More general self-adjoint vertex conditions (energy-independent,
see Remark 3.16 (ii)) are treated in [KS06, KPS07b]. Trace formulas are useful for inverve
problems, see [KN05, KN06, Now07, Kur08] and references therein.

We first need some (technical) notation; inevitable in order to properly write down the
trace formula. For simplicity, we assume that the graph has no self-loops.

Definition 7.1. Let G be a discrete graph. A combinatorial path c in G is a sequence
c = (e0, v0, e1, v1, . . . , en, vn, en+1), where vi ∈ ∂ei∩∂ei+1 for i = 0, . . . , n. We call |c| := n+1
the combinatorial length of the path c (the number of vertices passed inside the path), and
e−(c) := e0 resp. e+(c) := en+1 the initial resp. terminal edge of c. Similarly, we denote
by ∂−c := v0 and ∂+c := vn the initial resp. terminal vertex of c, i.e., the first resp. last
vertex in the sequence c. A closed path is a path where e−(c) = e+(c). A closed path is
properly closed if c is closed and ∂−c 6= ∂+c.3 Denote by Cm the set of all properly closed
paths of combinatorial length m, and by C the set of all properly closed paths.

If the graph does not have double edges, a properly closed combinatorial path can equiv-
alently be described by the sequence c = (v0, . . . , vn) of vertices passed by. In particular,
|C0| = |V |, |C1| = 0 (no self-loops) and |C2| = 2|E|. Moreover, C2k+1 = ∅ for all k ≥ 1 is
equivalent with the fact that G is bipartite. A graph G is called bipartite, if V = V+ ·∪ V−
and all edges join exactly one vertex in V− with exactly one vertex in V+.

Definition 7.2. Two properly closed paths c, c′ are called equivalent if they can be ob-
tained from each other by successive application of the cyclic transformation

(e0, v0, e1, v1, . . . , en, vn, e0) → (e1, v1, . . . , en, vn, e0, v0, e1.)

The corresponding equivalence class is called cycle and is denoted by c̃. The set of all

cycles is denoted by C̃. Given p ∈ N and a cycle c̃, denote by pc̃ the cycle obtained from c̃
by repeating it p-times. A cycle c̃ is called prime, if c̃ = pc̃′ for any other cycle c̃′ implies

p = 1. The set of all prime cycles is denoted by C̃prim.

Definition 7.3. Let γ : [0, 1] −→ Gmet be a metric path in the metric graph Gmet, i.e., a
continuous function which is of class C1 on each edge and γ′(t) 6= 0 for all t ∈ [0, 1] such
that γ(t) ∈ G1 = Gmet \ V , i.e., γ′(t) never vanishes inside an edge. In particular, a path
in Gmet cannot turn its direction inside an edge. We denote the set of all paths from x to
y by Γ(x, y).

3A closed path of (combinatorial) length 0 consists by definition of a single vertex and is by definition
properly closed. A closed path of length 1 is never properly closed. If we allow self-loops, then the closed
path c = (e, v, e), where e is a self-loop, i.e., ∂e = {v}, has length 1 and is properly closed (by definition).
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Associated to a metric path γ ∈ Γ(x, y) there is a unique combinatorial path cγ deter-
mined by the sequence of edges and vertices passed along γ(t) for 0 < t < 1, (it is not
excluded that γ(0) or γ(1) is a vertex; this vertex is not encoded in the sequence c). In
particular, if x = γ(0), y = γ(1) /∈ V , then x is on the initial edge e−(c) and y on the
terminal edge e+(c).

On the other hand, a combinatorial path c and two points x, y being on the initial resp.
terminal edge, i.e., x ∈ Ie−(c), y ∈ Ie+(c), but different from the initial resp. terminal vertex,
i.e., x 6= ∂−(c) and y 6= ∂+(c), uniquely determine a metric path γ = γc ∈ Γ(x, y) (up to a
change of velocity). Denote the set of such combinatorial paths from x to y by C(x, y).

Definition 7.4. The length of the metric path γ ∈ Γ(x, y) is defined as ℓ(γ) :=
∫ 1

0
|γ′(s)| ds.

In particular, if c = cγ = (e0, v0, . . . , en, vn, en+1) is the combinatorial path associated to γ,
then

dc(x, y) := ℓ(γ) = |x − ∂−cγ | +
n∑

i=1

ℓei
+ |y − ∂−cγ|,

where |x − y| := |xe − ye| denotes the distance of x, y being inside the same edge e, and
xe, ye ∈ Ie are the corresponding coordinates (cf. Remark 3.3 (i)). Note that there might
be a shorter path between x and y outside the edge e. For a properly closed path c we
define the metric length of c as ℓ(c) = ℓ(γc) and similarly, ℓ(c̃) := ℓ(c) for a cycle. Note
that the latter definition is well-defined.

Finally, we define the scattering amplitude associated to a vertex space V and a combi-
natorial path c = (e0, v0, . . . , en, vn, en+1). Denote by P =

⊕
v Pv its orthogonal projection

in V max onto V . Denote by S := 2P − 1 the corresponding scattering matrix defined in
Eq. (3.17). In particular, S is local, i.e., S =

⊕
v Sv. We define

SV (c) :=

n∏

i=0

Sei,ei+1
(vi),

where Se,e′(v) = 2Pe,e′(v) − δe,e′ for e, e′ ∈ Ev. For a cycle, we set S(c̃) := S(c), and this
definition is obviously well-defined, since multiplication of complex numbers is commuta-
tive.

For example, the standard vertex space V std has projection P = (deg v)−1E (all entries
are the same), so that

Sstd
e,e′(v) =

2

deg v
, e 6= e′, Sstd

e,e (v) =
2

deg v
− 1.

If in addition, the graph is regular, i.e, deg v = r for all v ∈ V , then one can simplify the
scattering amplitude of a combinatorial path c to

Sstd(c) =
(2

r

)a(2

r
− 1

)b

where b is the number of reflections in c (ei = ei+1) and a the number of transmissions
ei 6= ei+1) in c.

We can now formulate the trace formula for a compact quantum graph with Laplacian
∆

V
(cf. [R84, Thm. 1], [KPS07b, Thm. 4.1]):

Theorem 7.5. Assume that (Gmet, V ) is a compact quantum graph (without self-loops)
and ∆

V
the associated self-adjoint Laplacian (cf. Proposition 3.15). Then we have

tr e−t∆
V =

vol1 Gmet

2(πt)1/2
+

1

2

(
dim V − |E|

)
+

1

2(πt)1/2

∑

ec∈ eCprim

∑

p∈N

SV (c̃)pℓ(c̃) exp
(
−p2ℓ(c̃)2

4t

)

for t > 0, where vol1 Gmet =
∑

e ℓe is the total length of the metric graph Gmet.
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Remark 7.6.

(i) The first term on the RHS is the term expected from the Weyl asymptotics. The
second term is precisely 1/2 of the index ind(Gmet, V ) of the metric graph Gmet

with vertex space V , i.e., the Fredholm index of dV . In Theorem 6.5 we showed
that the index is the same as the discrete index ind(G, V ) (the Fredholm index of...
dV ). In [KPS07b], the authors calculated the second term as (trS)/4, but since
S = 2P−1, we have trS = 2 dim V −dim V max = 2(dim V −|E|). The last term in
the trace formula comes from an combinatorial expansion. Nicaise [Nic87] proved
a similar formula using the spectral relation for equilateral graphs Theorem 6.1.

(ii) The sum over prime cycles of the metric graph Gmet is an analogue of the sum
over primitive periodic geodesics on a manifold in the celebrated Selberg trace
formula, as well as an analogue of a similar formula for (standard) discrete graphs,
see Theorem 7.7.

(iii) Trace formulas can be used to solve the inverse problem: For example, Gutkin,
Smilansky and Kurasov, Nowaczyk [GS01, Kur08, KN06, KN05] showed that if
Gmet does not have self-loops, double edges, and if all its lengths are rationally
independent, then the metric structure of the graph is uniquely determined. Fur-
ther extensions are given e.g. in [KPS07b]. Some results can be extended to the
case of (trivially or weakly) rationally dependent edge lengths (see [Now07]), but
counterexamples in [R84, GS01, BSS06] show that one needs some conditions on
the edge lengths. In particular, there are isospectral, non-homeomorphic graphs.

The proof of Theorem 7.5 uses the expansion of the heat kernel, namely one can show
that

pt(x, y) =
1

2(πt)1/2

(
δx,y exp

(
−|x − y|2

4t

)
+

∑

c∈C(x,y)

S(c) exp
(
−dc(x, y)2

4t

))
,

where δx,y = 1 if x, y are inside the same edge (and not both on opposite sides of ∂e) and 0
otherwise. The trace of e−t∆

V can now be calculated as the integral over pt(x, x). The first
term in the heat kernel expansion gives the volume term, the second splits into properly
closed paths leading to the third term (the sum over prime cycles), and the index term
in the trace formula is the contribution of non-properly closed paths. More precisely, a
non-properly closed path runs through its initial and terminal edge (which are the same
by definition of a closed path) in opposite directions. For more details, we refer to [R84]
or [KPS07b].

Let us finish with some trace formulas for discrete graphs. Assume for simplicity, that G
is a simple discrete graph, i.e., G has no self-loops and double edges. Moreover, we assume
that G is equilateral, i.e., ℓe = 1. For simplicity, we write v ∼ w if v, w are connected by an
edge. Let V be an associated vertex space. Since ∆

V
= 1−MV and MV (see Eq. (2.18))

are bounded operators on V , we have

tr e−t∆
V = e−t tr etMV = e−t

∞∑

n=0

tn

n!
trMn

V .

Furthermore, using (2.18) n-times, we obtain

Mn
V =

⊕

v0

∑

v1∼v

· · ·
∑

vn∼vn−1

AV (v0, v1)AV (v1, v2) · . . . · AV (vn−1, vn),

and

trMn
V =

∑

v0

∑

v1∼v0

· · ·
∑

vn−1∼vn−2

tr AV (v0, v1)AV (v1, v2) · . . . · AV (vn−1, v0).



26 OLAF POST

Note that the sum is precisely over all combinatorial, (properly) closed paths c = (v0, . . . , vn−1) ∈
Cn. Denoting by

WV (c) := trAV (v0, v1)AV (v1, v2) · . . . · AV (vn−1, v0)

the weight associated to the path c and the vertex space G , we obtain the following general
trace formula. In particular, we can write the trace as a (discrete) “path integral”:

Theorem 7.7. Assume that G is a discrete, finite graph with weights ℓe = 1 having no
self-loops or double edges. Then

tr e−t
...
∆

V = e−t

∞∑

n=0

∑

c∈Cn

tn

n!
WV (c) = e−t

∑

c∈C

t|c|

|c|!WV (c). (7.7)

Let us interprete the weight in the standard case V = V std. Here, AV std(v, w) can be
interpreted as operator from C(deg w) to C(deg v) (the degree indicating the corresponding
ℓ2-weight) with AV std(v, w) = 1 if v, w are connected and 0 otherwise. Viewed as multipli-
cation in C (without weight), AV std(v, w) is unitarily equivalent to the multiplication with
(deg v deg w)−1/2 if v ∼ w resp. 0 otherwise. In particular, if c = (v0, . . . , vn−1) is of length
n, then the weight is

W std(c) =
1

deg v0

· 1

deg v1

· . . . · 1

deg vn−1

.

If, in addition, G is a regular graph, i.e., deg v = r for all v ∈ V , then W std(c) = r−n.
Then the trace formula (7.7) reads as

tr e−t
...
∆ = e−t

∞∑

n=0

tn

rnn!
|Cn| = e−t

(
|V | + |E|

r2
t2 +

|C3|
6r3

t3 + . . .
)
,

since |C0| = |V |, |C1| = 0 (no self-loops) and |C2| = 2|E|. In particular, one can determine
the coefficients |Cn| form the trace formula expansion.

The weight W std(c) for the standard vertex space is a sort of probability of a particle
chosing the path c (with equal probability to go in any adjacent edge at each vertex). It
would be interesting to give a similar meaning to the “weights” WV (c) for general vertex
spaces.

Appendix A. Boundary triples

Boundary triples allow to express boundary value problems in an purely operator-
theoretic way. In this section, we briefly describe this concept, and closely follow the
exposition in [BGP08]. For more details and a historical account including more refer-
ences, we refer to [BGP08, DHMdS06].

In this section, we assume that A is a closed operator in a Hilbert space H such that
A∗ is symmetric (i.e., A∗ ⊂ A).

Definition A.1. We say that (Γ, Γ′, G ) is a boundary triple for A if G is a Hilbert space,
and if Γ, Γ′ : dom A −→ G are two linear maps, called boundary operators, satisfying the
following conditions:

〈Af, g〉H − 〈f, Ag〉H = 〈Γf, Γ′g〉G − 〈Γ′f, Γg〉G , ∀ f, g ∈ dom A (A.1a)

(Γ, Γ′) : dom A −→ G ⊕ G , f 7→ Γf ⊕ Γ′f is surjective (A.1b)

We refer to equation (A.1a) as (abstract) Green’s formula (associated to the operator A).
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We endow domA with its graph norm, i.e., we set ‖f‖2
A := ‖f‖2+‖Af‖2. It can be shown

that Γ and Γ′ as maps from dom A into G are bounded maps (cf. [BGP08, Prop. 1.9]).
Moreover, AD := A↾ker Γ ⊂ A and AN := A↾ker Γ′ ⊂ A are self-adjoint operators, called
Dirichlet and Neumann operator associated to the boundary triple.

Lemma A.2. Let (Γ, Γ′, G ) be a boundary triple for A and set N (z) := ker(A− z). Then
the operator Γ↾N (z) : N (z) −→ G is a topological isomorphism for z /∈ σ(AD). Its inverse,
denoted by S(z), fulfils

S(z) : G −→ N (z) is a topological isomorphism and (A.2a)

S(z1) = U(z1, z2)S(z2), z1, z2 /∈ σ(AD), (A.2b)

where U(z1, z2) := (AD − z2)(A
D − z1)

−1 = 1 + (z1 − z2)(A
D − z1)

−1.

Definition A.3. Let z ∈ C \ σ(AD). We call S(z) := (Γ↾N (z))
−1 the Dirichlet solution

operator or Krein Γ-field associated to (Γ, Γ′, G ) and A.
Moreover, the operator Λ(z) := Γ′S(z) : G −→ G defines the Dirichlet-to-Neumann

operator in z or the (canonical) Krein Q-function z 7→ Λ(z).

The name “Dirichlet-solution operator” comes from the fact that h = S(z)ϕ solves the
“Dirichlet problem”

(A − z)h = 0, Γh = ϕ.

Moreover, the Dirichlet-to-Neumann operator maps ϕ onto Λ(z)ϕ = Γ′h, i.e., the “Neu-
mann” data of the Dirichlet solution.

The Dirichlet-to-Neumann operator fulfils

Λ(z1) − Λ(z2)
∗ = (z1 − z2)(S(z2))

∗S(z1) z1, z2 /∈ σ(AD).

In particular, Λ(z) is self-adjoint if z is real.

Definition A.4. Associated to a bounded operator L in G , we denote by AL the restriction
of A onto

dom AL :=
{

f ∈ dom A
∣∣Γ′f = LΓf

}
.

It can be shown that AL is self-adjoint in H iff L is self-adjoint in G . For simplicity,
we only consider operators L on G only. In order to obtain all self-adjoint restrictions
of A, one needs the more general notion of relations, see e.g. [BGP08]. For example, the
Dirichlet operator AD cannot be expressed as AL with an operator (but with the relation
L = { (0, f) | f ∈ H } ⊂ H ⊕ H ).

One of the main results for boundary triples is the following theorem (see e.g. [BGP08,
Thms. 1.29, 3.3 and 3.16]):

Theorem A.5. Assume that (Γ, Γ′, G ) is a boundary triple for A. Let L be a self-adjoint
and bounded operator in G and AL the associated self-adjoint restriction as defined above.

(i) For z /∈ σ(AD) we have ker(AL − z) = S(z) ker(Λ(z) − L).
(ii) For z /∈ σ(AL) ∪ σ(AD) we have 0 /∈ σ(Λ(z) − L) and Krein’s resolvent formula

(AD − z)−1 − (AL − z)−1 = S(z)(Λ(z) − L)−1(S(z))∗

holds.
(iii) We have the spectral relation

σ•(AL) \ σ(AD) =
{

z ∈ C \ σ(AD)
∣∣ 0 ∈ σ•(Λ(z) − L)

}

for • ∈ {∅, pp, disc, ess}, the whole, pure point (set of all eigenvalues), discrete and
essential spectrum. Furthermore, the multiplicity of an eigenspace is preserved.
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(iv) Assume that (a, b)∩σ(AD) = ∅, i.e., (a, b) is a spectral gap for AD. If the Dirichlet-
to-Neumann operator and L have the special form

Λ(z) − L =

...
∆ − m(z)

n(z)

for a self-adjoint, bounded operator
...
∆ on G and scalar functions m, n, analytic at

least in (C \ R) ∪ (a, b) and n(λ) 6= 0 on (a, b), then for λ ∈ (a, b) we have

λ ∈ σ•(AL) ⇔ m(λ) ∈ σ•(
...
∆)

for all spectral types, namely, • ∈ {∅, pp, disc, ess, ac, sc, p}, the whole, pure point,
discrete, essential, absolutely continuous, singular continuous and point spectrum
(σp(A) = σpp(A)). Again, the multiplicity of an eigenspace is preserved.

We will consider only certain boundary triples in this article. Namely, we assume that
the Neumann operator is non-negative, i.e., 〈f, ANf〉 ≥ 0 for all f ∈ dom AN. We denote
the associated non-negative quadratic form by a. Note that H 1 := dom a = dom(AN)1/2

and a(f) = ‖(AN)1/2f‖2. Moreover, we assume that Γ extends to a bounded operator
Γ: dom a −→ G (denoted by the same symbol) such that

〈f, Ag〉H = a(f, g) − 〈Γf, Γ′g〉G (A.6)

holds for all f ∈ dom a and g ∈ dom A. Here, H 1 = dom a is endowed with its canon-
ical norm ‖f‖2

a
= a(f) + ‖f‖2. It follows that the form a

D defined by dom a
D = { f ∈

dom a |Γf = 0 } and a
D(f) = a(f) for f ∈ dom a

D is closed. Moreover, a
D is is the qua-

dratic form associated to the Dirichlet operator AD. Note that (A.6) already implies (A.1a).

Definition A.7. Let (Γ, Γ′, G ) be a boundary triple associated to the closed operator A.
We call (Γ, Γ′, G ) a boundary triple associated to the quadratic form a and the maximal
operator A if the quadratic form associated to the Neumann operator AN = A↾Γ′=0 is non-
negative (a ≥ 0) and if (A.6) and (A.1b) hold. We refer to equation (A.6) as (abstract)
Green’s formula (associated to the quadratic form a).

Remark A.8. Boundary triples associated to quadratic forms are introduced in [P09,
Sec. 3.4]. The concept is in particular useful when the boundary maps Γ and Γ′ are
not surjective, but have dense range only. This is e.g. the case if A is an elliptic differ-
ential operator like the Laplacian on a manifold with boundary. For a related concept
and more references we refer to [BeL07]. Boundary triples associated to a quadratic form
as introduced here are called bounded, elliptic boundary triples associated to a quadratic
form in [P09, Sec. 3.4].

We end this section with the construction of an extended self-adjoint operator associated
to a boundary triple.

Definition A.9. Let (Γ, Γ′, G ) be a boundary triple associated to the quadratic from a

and the maximal operator A. Moreover, let L be a bounded operator on G . The associated
extended Hilbert space is given by Ĥ := H ⊕ G , and similarly, the extended quadratic
form âL is defined by

âL(f̂) := a(f), f̂ = (f, F ) ∈ dom âL := Ĥ
1

L ,

where

Ĥ
1

L :=
{

(f, F ) ∈ H
1 ⊕ G

∣∣Γf = LF
}
. (A.9)

Proposition A.10. Assume that (Γ, Γ′, G ) is a boundary triple associated to the quadratic
form a and the maximal operator A. Moreover, assume that L is a self-adjoint bounded
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operator on G . Then the extended quadratic form âL is closed and non-negative. Moreover,
the associated self-adjoint operator is given by

ÂLf̂ = (Af, LΓ′f) for f̂ = (f, F ) ∈ dom ÂL

where
dom ÂL :=

{
(f, F ) ∈ dom A ⊕ G

∣∣ Γf = LF
}
.

Proof. The closeness of âL follows from the fact that Ĥ 1
L is a closed subspace of H 1 ⊕ G ,

since Γ: H 1 −→ G and L are bounded. The statement on the associated operator follows
by an obvious calculation, using Green’s formula (A.6). �

We mention the special case L = 0:

Corollary A.11. Assume that (Γ, Γ′, G ) is a boundary triple associated to the quadratic
form a and the maximal operator A. Then the extended quadratic form â0 and the corre-
sponding extended operator Â0 associated to L = 0 are given by

â0 = a
D ⊕ 0 and Â0 = AD ⊕ 0,

where 0 and 0 are the trivial form and operator on G , respectively.

Let us now relate the spectrum of ÂL with the one of Λ(z):

Theorem A.12. Assume that (Γ, Γ′, G ) is a boundary triple associated to the quadratic
form a and the maximal operator A. Moreover, assume that L is a self-adjoint bounded
operator on G . Then the following assertions are true:

(i) For z /∈ σ(AD), we have

ker(ÂL − z) = Ŝ(z) ker
(
LΛ(z)L − z

)
(A.12)

where Ŝ(z) : G −→ dom ÂL ⊂ dom A ⊕ G and Ŝ(z)F := (S(z)LF, F ). Moreover,

Ŝ(z) is an isomorphism between the above spaces.

(ii) Assume that λ ∈ R \ σ(AD), then λ is an eigenvalue of ÂL iff ker(LΛ(z)L − z) is
non-trivial. Moreover, the multiplicity of the (eigen)spaces is preserved.

(iii) Assume that (a, b) ∩ σ(AD) = ∅, i.e., (a, b) is a spectral gap for AD. Moreover,
assume that L = L0 idG for some L0 ∈ R \ {0}. Assume finally, that the Dirichlet-
to-Neumann map has the special form

Λ(z) =

...
∆ − m(z)

n(z)
,

where
...
∆ is a bounded, self-adjoint operator on G and where m, n are functions

on (C \ R) ∪ (a, b) such that n(λ) 6= 0 for λ ∈ (a, b). Then for λ ∈ (a, b),

λ is an eigenvalue of ÂL ⇔ m̂L0(λ) is an eigenvalue of
...
∆,

where
m̂L0(λ) = L−2

0 zn(z) + m(z).

Proof. (i) Note first, that Ŝ(z)F = (S(z)LF, F ) fulfils the coupling condition, since LF =

ΓS(z)LF . Let (f, F ) ∈ dom ÂL such that (Â−z)(f, F ) = 0, then (A−z)f = 0, LΓ′f = zF

and Γf = LF . In particular, f = S(z)Γf = S(z)LF , so that Ŝ(z)F = (f, F ). Moreover,
LΛ(z)LF = LΓ′S(z)LF = LΓ′f = zF by the definition of Λ(z) (see Definition A.3).
In particular, the inclusion “⊂” follows. The other inclusion can be seen similarly. In
addition, Ŝ(z) is bijective on the given spaces. (ii) follows immediately from (i), as well
as (iii). �

Remark A.13.
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(i) For brevity, we do not provide a resolvent formula similar to the one given in
Theorem A.5. Moreover, as in [BGP08], one may prove similar results for other
spectral types.

(ii) Formally, the above extended operator converges to the Neumann operator AN in
H if L0 → ∞, and to the decoupled case of Corollary A.11 if L0 → 0. The limits
can be given a precise meaning. For example, the function m̂L0(λ) tends to m(λ)
if L0 → ∞.
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[BGP07] J. Brüning, V. Geyler, and K. Pankrashkin, Cantor and band spectra for periodic quantum
graphs with magnetic fields, Comm. Math. Phys. 269 (2007), 87–105.

[BGP08] , Spectra of self-adjoint extensions and applications to solvable Schrödinger operators,
Rev. Math. Phys. 20 (2008), 1–70.
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Birkhäuser, Basel, 2007, pp. 105–116.

[Pan06] K. Pankrashkin, Spectra of Schrödinger operators on equilateral quantum graphs, Lett. Math.
Phys. 77 (2006), 139–154.

[P06] O. Post, Spectral convergence of quasi-one-dimensional spaces, Ann. Henri Poincaré 7 (2006),
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