
Generating spectral gaps by geometry

Fernando Lledó and Olaf Post

Abstract. Motivated by the analysis of Schrödinger operators with periodic
potentials we consider the following abstract situation: Let ∆X be the Lapla-
cian on a non-compact Riemannian covering manifold X with a discrete iso-
metric group Γ acting on it such that the quotient X/Γ is a compact manifold.
We prove the existence of a finite number of spectral gaps for the operator
∆X associated with a suitable class of manifolds X with non-abelian cover-
ing transformation groups Γ. This result is based on the non-abelian Floquet
theory as well as the Min-Max-principle. Groups of type I specify a class of
examples satisfying the assumptions of the main theorem. (15th July 2005)

1. Introduction

It is a well known fact that a Schrödinger operator −∆ + V on Rd, d ≥ 2,
with a suitable periodic potential V has gaps in its spectrum. This is a quite
natural situation in solid state physics, where — for example in insulators — the
particles described by the Schrödinger operator have some unreachable energy
regions (gaps). This behaviour is ensured by the following two crucial properties:
first, the fact that V is periodic. This means that there is a basis {εi}

d
i=1 of Rd

such that the potential satisfies

V (x + εi) = V (x) , i = 1, . . . , d .

In other words, the periodicity of V introduces an action of the discrete abelian
group Zd on Rd and the potential is completely specified on a fundamental domain
D ⊂ X. A typical example for a fundamental domain is the parallelepiped
D = (0, 1)ε1 + · · ·+ (0, 1)εd. Second, the potential V has a high barrier near the
boundary of D. In this way, the potential V essentially decouples the fundamental
domain D from the neighbouring domains εi + D, i = 1, . . . , d (see [HeP03] for
an overview).

A natural question in this context is whether one can replace the effect of the
periodic potentials on the spectrum of the Laplace operator by using geometry.
Specifically, can we replace Rd with some Riemannian manifold X with a suitable
discrete group action on it, such that the corresponding Laplace operator ∆X also
has gaps in its spectrum (which is purely essential spectrum)? In other words,
has spec ∆X more than one component as a subset of [0,∞)? A positive answer
to this question was given in the context of abelian groups in [P03] (see also
the references cited therein). The intuitive idea is that the junctions of the
fundamental domains that build up X are small enough (see Figure 1 below).
This has a similar effect on the energy of the particles as the high barriers of
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the potential in the case of the Schrödinger operator on Rd. Note that the case
d = 1 is uninteresting in our context since every Laplacian on a one-dimensional
(non-compact) Riemannian manifold is unitary equivalent to the standard one,
which has no gaps (cf. [DaH87]). Moreover, for one-dimensional Schrödinger
operators any non-constant potential produces gaps [RS78, Theorem XIII.91].

We will show in this paper that this simple idea of scaling down the junctions
also works for many non-abelian discrete groups Γ. The analysis in the non-

abelian case is more involved because the structure of the dual object Γ̂ (i.e.,
the set of equivalence classes of unitary irreducible representations of Γ) is less
transparent from an algebraic and measure theoretic point of view. The purpose
of the present paper is to stress the fundamental ideas that allow to extend
the previous result to non-abelian group actions. Technical details and further
developments will be published in [LP05]. We will not study the nature of the
spectrum outside the gaps. Some papers related to the problem of the band-gap
structure of elliptic operators on covering manifolds are e.g. [BSu92] or [Gr01].
In contrast with the Schrödinger operator case, the present geometric setting
allows the freedom to choose the dimension d of the manifold and the number
of “period directions” r (i.e., number of generators of Γ) independently from
each other. This observation can probably be useful in further investigations on
spectral properties common for periodic Schrödinger operators and Laplacians
on manifolds.

The paper is organised as follows: In the following section we set up the prob-
lem, present the geometrical context and state some results that will be needed
later. In Section 3 we introduce in detail the non-abelian Floquet theory, which
is at the basis of our analysis. We will also illustrate the general formulas in the
special case Γ = Zd and X = Rd. In the next section we prove our main result:
the existence of spectral gaps in the spectrum of ∆X for suitable manifolds X. In
Section 5 we specify a family of discrete groups, so-called groups of type I, that
satisfy the assumptions of our theorem. For convenience of the reader we have
included in an appendix a short review of the main results concerning direct in-
tegral decompositions of unitary group representations. This technique is crucial
for the Floquet theory.

2. Notation and background

2.1. Periodic manifolds and Laplacians. We begin fixing our notation
and recalling some results that will be useful later on. We denote by X a non-
compact Riemannian manifold of dimension d ≥ 2. We also assume the action
on X of a finitely generated, discrete group Γ of isometries of X such that the
quotient M := X/Γ is a compact Riemannian manifold which also has dimension
d. In other words, X is a periodic manifold or Riemannian covering space of M
with covering transformation group Γ. Moreover, we fix a fundamental domain
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Figure 1. A periodic (or covering) manifold X with group Γ gen-
erated by two elements ε1, ε2 and fundamental domain D (in grey).
Here, the group Γ is abelian.

D, i.e., an open set D ⊂ X such that γD and γ ′D are disjoint for all γ 6= γ ′ and⋃
γ∈Γ γD = X (cf. Figure 1).

As a prototype for an elliptic operator we consider the Laplacian ∆X on X
acting on a dense subspace of the Hilbert space L2(X) with norm ‖·‖X . The
positive self-adjoint operator ∆X can be defined in terms of a suitable quadratic
form qX (see e.g. [K95, Chapter VI], [RS80] or [Da96]). Concretely we have

qX(u) := ‖du‖2
X =

∫

X

|du|2dX , u ∈ C∞
c (X) . (2.1)

In coordinates we write the pointwise norm of the 1-form du as

|du|2 =
∑

i,j

gij∂iu ∂ju ,

where (gij) is the inverse of the metric tensor (gij) in a chart. Taking the closure
of the quadratic form we can extend qX onto the Sobolev space

H1(X) = { u ∈ L2(X) | qX(u) < ∞} .

As usual the operator ∆X is related with the quadratic form by the formula
〈∆Xu, u〉 = qX(u), u ∈ C∞

c (X). Since the metric on X is Γ-invariant, the
Laplacian ∆X (i.e., its resolvent) commutes with the translations on X given by

(Tγu)(x) := u(γ−1x), u ∈ L2(X), γ ∈ Γ. (2.2)

Operators with this property are called periodic.
For an open, relatively compact subset D ⊂ X with sufficiently smooth

boundary ∂D (e.g. Lipschitz) we define the Dirichlet (respectively, Neumann)
Laplacian ∆+

D (resp., ∆−
D) via its quadratic form q+

D (resp., q−D) associated to
the closure of qD on C∞

c (D), the space of smooth functions with compact sup-
port, (resp. C∞(D), the space of smooth functions with continuous deriva-

tives up to the boundary). We also use the notation
◦

H1(D) = dom q+
D (resp.,

H1(D) = dom q−D). Note that the usual boundary condition of the Neumann
Laplacian occurs only in the operator domain via the Gauß-Green formula. Since
D is compact, ∆+

D has purely discrete spectrum λ+
k , k ∈ N. It is written in
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ascending order and repeated according to multiplicity. The same is true for the
Neumann Laplacian and we denote the corresponding purely discrete spectrum
by λ−

k , k ∈ N.
One of the advantages of the quadratic form approach is that one can easily

read off from the inclusion of domains an order relation for the eigenvalues. In
fact, by the the min-max principle we have

λ±
k = inf

Lk

sup
u∈Lk\{0}

q±D(u)

‖u‖2
, (2.3)

where the infimum is taken over all k-dimensional subspaces Lk of the corre-
sponding quadratic form domain dom q±D. Then the inclusion

dom q+
D =

◦

H1(D) ⊂ H1(D) = dom q−D (2.4)

implies λ+
k ≥ λ−

k , i.e., the Dirichlet eigenvalue is in general larger than the Neu-
mann eigenvalue and this justifies the choice of the labels +, respectively, −.

2.2. Spectral gaps in the abelian case. Due to the previous inequality
relating the Dirichlet and Neumann eigenvalues for any k ∈ N, we may introduce
the following intervals

Ik := [λ−
k , λ+

k ] , k ∈ N . (2.5)

Here, λ±
k denotes the k-th Dirichlet/Neumann eigenvalue on a fundamental do-

main D.
In this context the existence of spectral gaps of ∆X can be reduced to the

question whether Ik ∩ Ik+1 = ∅ for some k. A class of manifolds with abelian
group actions satisfying the previous intersection condition is specified in [P03]:

Theorem 2.1. Given a finitely generated abelian group Γ we can always find
a covering space X → X/Γ =: M and a fundamental domain D with the following
property: For every K ∈ N there exists a metric g = gK on M such that

Ik ∩ Ik+1 = ∅ (2.6)

for at least K indices k ∈ N, where Ik is defined as in (2.5) for the manifold D
with metric g = gK. In particular, the Laplacian ∆X corresponding to the lifted
metric on X has at least K gaps.

It is important to note that the construction of the covering space X and the
metric g only depends on the quotient M , not on the cover X. It is therefore
independent whether Γ is abelian or not (see the sketch of the proof of Theo-
rem 4.2). Roughly speaking, we have replaced the high potential barrier in the
case of Schrödinger operators on Rd by small junctions between the fundamental
domains. We can say that now geometry is partly decoupling one fundamental
domain from its neighbours.
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3. Non-abelian Floquet theory

In this section we will introduce in several steps the Floquet theory for non-
abelian groups. The main idea is to use the group action on X and a partial
Fourier transformation to decompose the Hilbert space L2(X) and the periodic
operators on it into a direct integral of simpler components that can be analysed
more easily. For convenience of the reader we have summarized in the appendix
the main results on the direct integral decompositions of unitary group represen-
tations.

3.1. Non-abelian Fourier transformation. Consider first the right, re-
spectively, left regular representation R, resp., L on the Hilbert space `2(Γ):

(Rγa)eγ = aeγγ , (Lγa)eγ = aγ−1eγ , a = (aγ)γ ∈ `2(Γ), γ, γ̃ ∈ Γ. (3.1)

Let R be the von Neumann algebra generated by all unitaries Rγ, γ ∈ Γ, i.e.,

R = {Rγ | γ ∈ Γ }′′,

and denote by R′ the commutant of R in B(`2(Γ)); similarly, we define L =
{Lγ | γ ∈ Γ }′′.

In this context, we may generalise the Fourier transformation to the unitary
map

F : `2(Γ) −→

∫ ⊕

Z

H(z) dz (3.2)

that transforms the right regular representation R into the following direct inte-
gral representation

R̂γ = FRγF
−1 =

∫ ⊕

Z

Rγ(z) dz, γ ∈ Γ. (3.3)

By a suitable choice of the measure space (Z, dz) corresponding to an maximal
abelian algebra A in R′ (see the appendix) we can assume that the unitary
representations Rγ(z) are irreducible on the Hilbert space H(z) a.e. In addition,
operators commuting with all Lγ (γ ∈ Γ), i.e., operators in L′, are decomposable,
since one can show that L′ = R and therefore L′ ⊂ A′ (cf. the appendix).

3.2. Equivariant Laplacians. We will introduce next a new operator that
lies “between” the Dirichlet and Neumann Laplacians and that will play an im-
portant role in the following section. Consider on almost each fibre smooth
R(z)-equivariant functions, i.e., smooth functions h : X −→ H(z) satisfying

h(γx) = Rγ(z)h(x), γ ∈ Γ, x ∈ X. (3.4)

We denote the corresponding space of smooth R(z)-equivariant functions re-
stricted to a fundamental domain D by C∞

eq (D, H(z)). Note that we need vector-
valued functions h : X −→ H(z) since the representation R(z) acts on the Hilbert
space H(z). If Γ is non-abelian, then some of its unitary irreducible representa-
tions must be of dimension greater than one.
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We introduce next the so-called equivariant Laplacian (w.r.t. the representa-
tion R(z)) on L2(D, H(z)) ∼= L2(D) ⊗ H(z). Consider the quadratic form given
by

‖dh‖2
D :=

∫

D

‖dh(x)‖2
H(z)dX (3.5)

for h ∈ C∞
eq (D, H(z)), where the integrand is locally specified by

‖dh(x)‖2
H(z) =

∑

i,j

gij(x) 〈∂ih(x), ∂jh(x)〉H(z), x ∈ D.

This generalises Eq. (2.1) to the case of vector-valued functions. We denote
the closure by qeq

D and its domain by H1
eq (D, H(z)). The corresponding non-

negative operator on L2(D, H(z)), the so-called R(z)-equivariant Laplacian, will
be denoted by ∆D(z).

3.3. Non-abelian Floquet transformation. Next, we analyse the Floquet
transformation

U : L2(X) −→

∫ ⊕

Z

L2(D, H(z)) dz,

which is the composition of the following three unitary transformations (denoted
with horizontal arrows)

Tγ

y
Lγ⊗

�

y
bLγ⊗

�

y

L2(X) → `2(Γ)⊗L2(D)
F⊗id
→

∫ ⊕

Z
H(z) dz⊗L2(D) →

∫ ⊕

Z
L2(D, H(z)) dz

u 7→
∑

γ δγ⊗(Tγ−1u�D) b⊗f 7→ (b(ρ)f)ρ ,

where (δγ)γ is the canonical orthogonal basis of `2(Γ) and Tγ is the translation
by γ of functions on X given by (2.2). Each of these transformations intertwines
with the unitary representation of Γ which are denoted with curved arrows in
the previous diagram. The first horizontal unitary transformation just splits a
function on L2(X) into a sequence of γ-translates over the fundamental domain
D. The second horizontal unitary is essentially the Fourier transformation on the
group part and the last horizontal unitary is clear, since L2(D) is independent of
z ∈ Z.

Note that periodic operators on L2(X), i.e, operators commuting with Tγ , are
those commuting with Lγ ⊗

�
on `2(Γ) ⊗ L2(D). Therefore, periodic operators

are also decomposable (recall that L′ = R ⊂ A′). Note in addition that if Γ is

not abelian then L̂γ = FLγF
−1 does not decompose with respect to the direct

integral specified in Section 3.1.
The Floquet transformation U is given explicitely in the following theorem

(see also [Su88] and [RS78, Section XIII.16]):
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Theorem 3.1. The map

(Uu)(z)(x) =
∑

γ∈Γ

u(γx) Rγ−1(z)v(z), where v := Fδe, (3.6)

is a unitary transformation that intertwines the representations T and
∫ ⊕

Z
R(z) dz.

In addition, U maps C∞
c (X) into

∫ ⊕

Z
C∞

eq
(D, H(z)) dz and operators on L2(X)

commuting with all Tγ ’s are decomposable when transformed onto the direct inte-

gral. In particular, the Laplacian ∆X is unitary equivalent to
∫ ⊕

Z
∆D(z) dz and

spec ∆X ⊆
⋃

z∈Z

spec ∆D(z). (3.7)

3.4. The special case Γ = Zd and X = Rd. In this case the dual is

simply given by the d-dimensional torus, i.e., Γ̂ = Td. Therefore, we can choose
Z = Td with Lebesgue measure dθ. The Fourier transformation (3.2) reduces to
the standard formula

F : `2(Z
d) −→ L2(T

d) =

∫ ⊕

Td

H(θ) dθ , with (Fa)(θ) =
∑

γ

e−iθ·γaγ

where H(θ) = C for a.e. θ ∈ Td = Rd/Zd and a = (aγ) ∈ `2(Z
d). Here, we

only need scalar functions since every irreducible representation of an abelian
group is one-dimensional. In this case, we can decompose both the left and
the right regular representation simultaneously; each fibre of R, resp., L is the
multiplication with a phase factor

R̂γ(θ) = eiθ·γ, resp., L̂γ(θ) = e−iθ·γ

The equivariant condition becomes

h(x + γ) = e−iθ·γh(x) (3.8)

for all x ∈ Rd and γ ∈ Zd. A fundamental domain is the cube D := (0, 1)d and
the Floquet transformation is given by

(Uu)(θ)(x) =
∑

γ∈Zd

u(x + γ)eiθ·γ, x ∈ D, θ ∈ T
d.

4. Existence of spectral gaps for non-abelian group actions

We will present in this section a method to show the existence of finitely
many spectral gaps for the Laplace operator ∆X in the case of non-abelian group
actions. Our main assumption on the group is the fact that the irreducible
representation appearing in the decomposition (3.2) are finite-dimensional a.e.,
in other words

dim H(z) < ∞ for a.e. z ∈ Z. (4.1)
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The operators ∆+
D(z), ∆D(z), resp., ∆−

D(z) corresponding to the quadratic

form (3.5) on
◦

H1(D, H(z)), H1
eq (D, H(z)), resp., H1(D, H(z)) have purely dis-

crete spectrum which we denote by λ+
m(z), λm(z), resp., λ−

m(z), m ∈ N. Recall

that the space
◦

H1(D, H(z)) is the H1-closure of the space of smooth functions
h : D −→ H(z) with compact support and H1(D, H(z)) is the closure of the space
of smooth functions with derivatives continuous up to the boundary (cf. Sec-
tion 2).

As in (2.4) we obtain from the inclusion of the three domains

H1(D, H(z)) ⊃ H1
eq (D, H(z)) ⊃

◦

H1(D, H(z))

that the corresponding eigenvalues satisfy the following reverse inequalities

λ−
m(z) ≤ λm(z) ≤ λ+

m(z)

for all m ∈ N and a.e. z ∈ Z.
From the definition of the quadratic form in the Dirichlet, resp., Neumann

case we have that the corresponding vector-valued Laplacians are a direct sum
of the scalar operators since there is no coupling between the components on the
boundary. In particular, if n = dim H(z), then ∆±

D(z) is a n-fold direct sum of the
scalar operators ∆±

D on L2(D). Therefore the eigenvalues of the corresponding
vector-valued Laplace operators consist of n-times repeated eigenvalues of the
scalar Laplacians. We can therefore arrange the former in the following way:

λ±
m(z) = λ±

k , m = (k − 1)n + 1, . . . , kn ,

where λ±
k denotes the (scalar) k-th Dirichlet/Neumann eigenvalue on D.

Recall the definition of the intervals Ik := [λ−
k , λ+

k ] in Eq. (2.5). We may now
collect the n eigenvalues of ∆D(z) which lie in Ik:

Bk(z) := {λm(z) |m = (k − 1)n + 1, . . . , kn } ⊂ Ik, n := dim H(z) . (4.2)

Moreover we put together all eigenvalues corresponding to operators over the
base point z ∈ Z that act on Hilbert spaces with the same dimension:

Bk(n) :=
⋃

z∈Z,dim H(z)=n

Bk(z) ⊂ Ik. (4.3)

Theorem 4.1. Let Γ be a finitely generated (in general non-abelian) group
satisfying dim H(z) < ∞ for a.e. z ∈ Z in the decomposition (3.2). Then

spec ∆X ⊆
⋃

k∈N

Ik.

In particular, the spectrum of ∆X has a gap between Ik and Ik+1 provided

Ik ∩ Ik+1 = ∅ .

Proof. The proof is a consequence of the following chain of inclusions

spec ∆X ⊆
⋃

z∈Z

spec ∆D(z) =
⋃

z∈Z

⋃

k∈N

Bk(z) =
⋃

n∈N

⋃

k∈N

Bk(n) ⊆
⋃

k∈N

Ik . (4.4)
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For the first inclusion, we have applied (3.7). For the second equality we have
used dim H(z) < ∞. Note finally that

⋃
k Ik is closed since λ±

k → ∞ for k → ∞
implies that (Ik)k is a locally finite family of closed sets. �

We formulate our main result, i.e., an analogue of Theorem 2.1 in the case of
non-abelian groups Γ satisfying the conditions stated in Section 2:

Theorem 4.2. Let Γ be a finitely generated (in general non-abelian) group
satisfying dim H(z) < ∞ for a.e. z ∈ Z in the decomposition (3.2). Then we
can always find a covering space X → X/Γ and a fundamental domain D with
the following property: For each K ∈ N there exist a Riemannian covering space
X → X/Γ =: M with metric g = gK such that the Laplacian on X has at least
K gaps, i.e., spec ∆X ⊂ [0,∞) has at least K components.

Sketch of the proof: Suppose that Γ has r generators εi. To construct
X we begin with a d-dimensional compact manifold M with at least r handles
which we may take diffeomorphic to (0, 1) × Sd−1. Then D ⊂ M is the open
subset obtained from M by removing a section {1/2} × Sd−1 from each of the r
handles. The set D has therefore 2r cylindrical ends, for each generator a “left”
and a “right” one. Then there exists a covering X → X/Γ ∼= M with fundamental
domain D: Intuitively, one can build up X by glueing Γ copies (γD)γ of D, where
one has to identify properly the points on the boundary (cf. Fig. 1 in the case
r = 2). Concretely, we identify the “left” boundary part of the i-th cylindrical
end of γ1D with the “right” one of γ2D iff γ2 = εiγ1. Finally, we change the
metric on the handles in order to scale down the junctions between neighbouring
copies of the fundamental domain (cf. [P03]). Note that the metric depends on
the minimal number K of gaps. This implies that Eq. (2.6) is satisfied for at
least K indices k ∈ N and the proof is concluded by Theorem 4.1.

Note that we have spectrum in each interval Ik, i.e., spec ∆X ∩ Ik 6= ∅ for
all k, since a group satisfying (4.1) is amenable (cf. the next section); therefore,
spec ∆M ⊂ spec ∆X (see e.g. [Su88, Prop. 7–8]). Finally, spec ∆M ∩ Ik 6= ∅. �

Note that the previous statement does not give information on the maximal
number of spectral gaps. It still remains an open question if there are (connected)
covering spaces X with an infinite number of spectral gaps. This problem is
related to the so-called Bethe-Sommerfeld conjecture (cf. [Sk87]).

5. Examples

We begin defining a class of a discrete groups that have particularly simple
properties (cf. [Th64]). A discrete group Γ is of type I iff there is an exact
sequence

0 −→ A −→ Γ −→ Γ0 −→ 0,

where A is a finitely generated abelian normal subgroup of Γ and Γ0 = Γ/A is a
finite group (cf. [Th64]). Simple examples of groups of type I are abelian groups
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(in this case Γ0 is trivial) or direct, resp., semi-direct products of an abelian group
with a finite (in general non-abelian) group.

For these type of groups we have that all irreducible representations are fi-
nite dimensional. In addition, such groups are also amenable (as extensions of
amenable groups), cf. [Br81]. Note that the converse is also true: A discrete
group such that all irreducible representations are finite dimensional is of type I
(cf. [Mo72]).

Recall that this was an important assumption in Section 4. Moreover in the
direct integral decomposition of Subsection 3.3 we may take as measure space Z
the dual Γ̂ of Γ. For these reasons we have

Proposition 5.1. Suppose Γ is a finitely generated group of type I. Then
for each K ∈ N there exist a Riemannian covering space X → X/Γ with metric
g = gK such that the Laplacian on X has at least K gaps, i.e., spec ∆X ⊂ [0,∞)
has at least K components.

Of course, not all groups are of type I. For example, free groups with more
than one generator are not of type I. In [LP05] we provide different methods and
further classes of groups including the free groups for which the conclusions of
the above proposition remain true.

Appendix: Direct integral decomposition of unitary group

representations

In the present appendix we will describe in more detail the direct integral
decomposition of the right regular representation given in Eqs. (3.1) and (3.2)
of Section 3. It is an application of the direct integral decomposition of von
Neumann algebras. General references are e.g. [W92, Chapter 14] or [M76,
Chapter 2].

In this appendix we will consider a more general frame that includes the
particular situation considered in Eqs. (3.2) and (3.3), where Γ is a discrete group
satisfying the conditions of Section 2 and R is the right regular representation on
`2(Γ).

Let G be a separable locally compact group and let V be a continuous unitary
representation of G on a Hilbert space H. Denote by

M := {Vg | g ∈ G}′′

the von Neumann algebra generated by the representation V and let

M′ = (V, V ) := {M ′ ∈ B(H) | M ′Vg = VgM
′ , g ∈ G}

be the von Neumann algebra of operators commuting with the representation V .
If A is an abelian von Neumann subalgebra of M′, then there exists a compact,
separable Hausdorff space Z, a regular Borel measure dz on Z and a unitary
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transformation onto a direct integral Hilbert space

F : H −→

∫ ⊕

Z

H(z) dz, (A.1)

such that
FAF−1 = {Mf | f ∈ L∞(Z, dz) }

(Mf being the multiplication operator with f). The von Neumann algebra
FA′F−1 consists of all decomposable operators w.r.t. the direct integral (A.1),
i.e., if D ∈ FA′F−1 then we can write

D =

∫ ⊕

Z

D(z) dz.

In particular, Vg ∈ M ⊂ A′, and therefore

FVgF
−1 =

∫ ⊕

Z

Vg(z) dz,

where V (z) is a unitary representation of G on H(z) a.e. (see [W92, Sec-
tion 14.8 ff.]). There are several natural choices for the abelian von Neumann
algebra A:

(i) If A = M∩M′ is the centre of M, then, for a.e. z ∈ Z, the von Neumann
algebra generated by the representations V (z) are factors, i.e.,

M(z) ∩M(z)′ := {Vg(z) | g ∈ G}′′ ∩ {Vg(z) | g ∈ G}′ = C
�
H(z).

This choice is due to von Neumann.
(ii) If A is maximal abelian in M′, i.e., A = A′ ∩M′, then the components

V (z) of the direct integral decomposition of V are irreducible a.e. This
choice is due to Mautner and was used in Eqs. (3.2) and (3.3) of Section 3.

Finally, we mention a class of groups, where the previous decomposition re-
sults become particularly simple. A group G is of type I if all its unitary con-
tinuous representations V are of type I, i.e., each V is quasi-equivalent to some
multiplicity free representation. Compact or abelian groups are examples of type I

groups. If G is of type I, then the dual Ĝ (i.e., the set of all equivalence classes
of continuous unitary irreducible representations of G) becomes a nice measure
space (“smooth” in the terminology of [M76, Chapter 2]). In this case one can

take Ĝ as the measure space Z in the Mautner decomposition (ii). For discrete
groups the previous definition of Type I is equivalent to the one given in Section 5
(cf. [Th64]).
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