Musterlösungen zur 3. Serie

1. Aufgabe Beweisen Sie oder widerlegen Sie (durch ein Gegenbeispiel), dass in jedem metrischen Raum (X, ρ) und für alle Mengen $A, B \subseteq X$ gilt:

$$(a) \quad \overline{A \cap B} = \overline{A} \cap \overline{B},$$

(b)
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
,

(c)
$$\overline{A \setminus B} = \overline{A} \setminus \stackrel{o}{B}$$
.

Lösung für (a) Die Behauptung ist falsch, wie das folgende Gegenbeispiel zeigt: Wir wählen $X = \mathbb{R}$ mit der Standartmetrik $\rho(x,y) = |x-y|$, $A = \mathbb{Q}$ und $B = \mathbb{R} \setminus \mathbb{Q}$. Dann gilt $\overline{A} = \overline{B} = \mathbb{R}$, weil jede reelle Zahl sowohl Grenzwert einer Folge rationaler Zahlen als auch einer Folge irrationaler Zahlen ist. Daraus folgt

$$\overline{A \cap B} = \emptyset \neq \overline{A} \cap \overline{B} = \mathbb{R}.$$

Man kann aber leicht zeigen, dass anstelle von (a) stets gilt

$$\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$$
.

Lösung für (b) Die Behauptung ist richtig, wie der folgende Beweis zeigt: Es sei $x \in \overline{A \cup B}$. Dann existiert eine Folge $x_1, x_2, \ldots \in A \cup B$ mit $x_n \to x$. In wenigstens einer der beiden Mengen A und B müssen unendlich viele Folgenglieder liegen, z.B. in A. Das existiert also eine Teilfolge mit $x_{n_k} \in A$ für alle $k \in \mathbb{N}$. Wegen

$$x_{n_k} \xrightarrow{k \to \infty} x$$

folgt dann $x \in \overline{A}$, also $x \in \overline{A} \cup \overline{B}$.

Und umgekehrt: Es sei $x \in \overline{A} \cup \overline{B}$, z.B. $x \in \overline{A}$. Dann existiert eine Folge $x_1, x_2, \ldots \in A$ mit $x_n \to x$. Wegen $x_1, x_2, \ldots \in A \cup B$ folgt $x \in \overline{A \cup B}$.

Lösung für (c) Die Behauptung ist falsch, wie das folgende Gegenbeispiel zeigt: Wir wählen $X = \mathbb{R}$ mit der Standartmetrik und $A = B = \mathbb{Q}$. Dann folgt wegen $\overset{\circ}{\mathbb{Q}} = \emptyset$

$$\overline{A \setminus B} = \emptyset \neq \overline{A} \setminus \overset{o}{B} = \mathbb{R}.$$

Man kann aber wieder leicht zeigen, dass anstelle von (c) stets gilt

$$\overline{A \setminus B} \subseteq \overline{A} \setminus \stackrel{o}{B}.$$

2. Aufgabe Beweisen Sie oder widerlegen Sie (durch ein Gegenbeispiel), dass in jedem metrischen Raum (X, ρ) , für alle $x_0 \in X$ und für alle r > 0 gilt:

(i) Die Menge

$$\{x \in X : \rho(x, x_0) < r\}$$
 (1)

ist offen.

(ii) Die Menge

$$\{x \in X : \rho(x, x_0) \le r\} \tag{2}$$

ist abgeschlossen.

- (iii) Die Menge (2) ist die Abschließung der Menge (1).
- (iv) Wenn X ein Vektorraum ist und ρ durch eine Norm auf X erzeugt ist, so ist die Menge (2) die Abschließung der Menge (1).

Lösung für (i) Die Behauptung ist richtig, wie der folgende Beweis zeigt: Es sei x Element der Menge (1), d.h. $x \in K(x_0, r)$. Zu zeigen ist, dass x innerer Punkt von $K(x_0, r)$ ist, d.h. dass ein s > 0 existiert mit

$$K(x,s) \subseteq K(x_0,r). \tag{3}$$

Wir zeigen nun (3) mit $s := r - \rho(x, x_0)$: Es sei $y \in K(x, r - \rho(x, x_0))$, d.h. $\rho(x, y) < r - \rho(x, x_0)$. Dann folgt

$$\rho(y, x_0) < \rho(y, x) + \rho(x, x_0) < (r - \rho(x, x_0)) + \rho(x, x_0) = r$$

d.h. $y \in K(x_0, r)$.

Lösung für (ii) Die Behauptung ist richtig, wie der folgende Beweis zeigt: Es sei x_1, x_2, \ldots eine Folge von Elementen der Menge (2), d.h. $\rho(x_n, x_0) \leq r$, und es existiere ein $x \in X$ mit $x_n \to x$. Dann folgt

$$\rho(x, x_0) \le \rho(x, x_n) + \rho(x_n, x_0) \le \rho(x, x_n) + r,$$

d.h. $\rho(x, x_0) \leq r$, d.h. x ist Element der Menge (2).

Lösung für (iii) Die Behauptung ist falsch, wie das folgende Gegenbeispiel zeigt: Wir wählen $X = \{0, 1\}$ mit der Standartmetrik $\rho(x, y) = |x - y|, x_0 = 0$ und r = 1. Dann ist

$$\{x \in X : \rho(x, x_0) < r\} = \{0\} = \overline{\{x \in X : \rho(x, x_0) < r\}} \neq \{x \in X : \rho(x, x_0) \le r\} = \{0, 1\}.$$

Lösung für (iv) Die Behauptung ist richtig, wie der folgende Beweis zeigt: Es sei $\rho(x, x_0) \leq r$. Für $n \in \mathbb{N}$ setzen wir

$$x_n := x_0 + \left(1 - \frac{1}{n}\right)(x - x_0).$$

Dann gilt $x_n \to x$ und

$$||x_0 - x_n|| = \left(1 - \frac{1}{n}\right) ||x - x_0|| \le \left(1 - \frac{1}{n}\right) r < r,$$

d.h. die x_n sind Elemente der Menge (1) und approximieren x. Also ist x Element der Abschließung der Menge (1). Damit haben wir gezeigt, dass die Menge (2) eine Teilmenge der Abschließung der Menge (1) ist.

Und umgekehrt: Es sei x Element der Abschließung der Menge (1). Dann existiert eine Folge x_1, x_2, \ldots von Elementen von (1), d.h. mit

$$||x_n - x_0|| < 1, (4)$$

so dass $x_n \to x$ gilt. Durch Grenzübergang in (4) erhalten wir

$$||x - x_0|| \le 1$$
,

d.h. x ist Element der Menge (2).

- **3.** Aufgabe (i) Zeigen Sie, dass keine nichtleere Menge $A \subset \mathbb{R}$ mit $A \neq \mathbb{R}$ existiert, die offen und abgeschlossen ist.
- (ii) Geben Sie einen metrischen Raum (X, ρ) und eine nichtleere Menge $A \subset X$ mit $A \neq X$ an so dass A offen und abgeschlossen ist.

Lösung für (i) Es se A eine solche Menge. Es existieren $a \in A$ (weil $A \neq \emptyset$) und $b \in \mathbb{R} \setminus A$ (weil $A \neq \mathbb{R}$). Es sei z.B. a < b. Dann betrachten wir die Menge

$$C := \{ x \in [a, \infty[: [a, x] \subseteq A \}.$$

Wegen $a \in C$ ist C nichtleer, und b ist eine obere Schranke von C. Also ist sup C eine endliche Zahl. Es sei $c_1, c_2, \ldots \in C$ eine Folge mit $c_n \to \sup C$. Dann gilt $[a, c_n] \subseteq A$, also insbesondere $c_n \in A$. Weil A abgeschlossen ist, folgt

$$\sup C \in A$$
.

Weil A offen ist, existiert ein r > 0 mit

$$[\sup C - r, \sup C + r] \subseteq A.$$

Daraus folgt

$$[a, \sup C + r] \subseteq A,$$

also sup $C + r \in C$, das ist aber ein Widerspruch zur Definition des Supremums.

Lösung für (ii) Wir wählen $X = \{0,1\}$ mit $\rho(x,y) = |x-y|$ und $A = \{0\}$. Die Menge A ist einelementig, also abgeschlossen. Außerdem ist sie offen, denn das einzige Element von A, die Null, liegt in A gemeinsam mit der Kugel um Null mit dem Radius 1/2:

$$K(0,1/2) = \left\{ x \in X : |x| < \frac{1}{2} \right\} = \{0\} = A.$$

*Aufgabe (10 Punkte) Es seien x und y zwei reelle Zahlen ungleich Null, x sei rational, und y sei irrational. Zeigen Sie, dass dann die Abschließung der Menge $\{kx + ly : k, l \in \mathbb{Z}\}$ ganz \mathbb{R} ist.

Lösung Es sei $z \in \mathbb{R}$ beliebig vorgegeben. Zu zeigen ist, dass gilt

Für alle
$$n \in \mathbb{N}$$
 existieren $k_n, l_n \in \mathbb{Z}$ mit $|k_n x + l_n y - z| < \frac{1}{n}$. (5)

Für (5) ist hinreichend dass gilt

Für alle
$$n \in \mathbb{N}$$
 existieren $r_n, s_n \in \mathbb{Z}$ mit $|r_n x + s_n y| < \frac{1}{n}$, (6)

denn wenn (6) richtig ist, so ist der Abstand von mindestens einer der Zahlen $j(r_nx + s_ny)$, $j \in \mathbb{Z}$, zur Zahl z kleiner als 1/n.

Wir beweisen nun (6): Es sei $n \in \mathbb{N}$ beliebig fixiert. Wir betrachten die folgenden n+1 Zahlen

$$0, \frac{x}{y} - \left\lceil \frac{x}{y} \right\rceil, 2\frac{x}{y} - \left\lceil 2\frac{x}{y} \right\rceil, \dots, n\frac{x}{y} - \left\lceil n\frac{x}{y} \right\rceil. \tag{7}$$

Dabei bezeichnen wir wie üblich für $a \in \mathbb{R}$ mit

$$[a] := \max\{m \in \mathbb{Z} : m \le a\}$$

den ganzen Anteil von a. Die Zahlen (7) liegen alle im Intervall [0,1], und, weil x/y irrational ist, sind sie alle verschieden. Folglich besitzen wenigstens zwei von ihnen einen Abstand, der kleiner als 1/n ist, d.h. es existieren ganze Zahlen $r_n \neq s_n$ mit

$$0 < \left| \left(r_n \frac{x}{y} - \left[r_n \frac{x}{y} \right] \right) - \left(s_n \frac{x}{y} - \left[s_n \frac{x}{y} \right] \right) \right| < \frac{1}{n},$$

d.h.

$$0 < \left| (r_n - s_n)x + \left(\left[r_n \frac{x}{y} \right] - \left[s_n \frac{x}{y} \right] \right) y \right| < \frac{|y|}{n}.$$

Wir setzen

$$\bar{r}_n := r_n - s_n \text{ und } \bar{s}_n := \left[r_n \frac{x}{y} \right] - \left[s_n \frac{x}{y} \right]$$

und erhalten folgendes:

Für alle
$$n \in \mathbb{N}$$
 existieren $\bar{r}_n, \bar{s}_n \in \mathbb{Z}$ mit $|r_n x + s_n y| < \frac{|y|}{n}$. (8)

Aber (8) ist offenbar äquivalent zu (6).