Musterlösungen zur 4. Serie

1. Aufgabe Überprüfen Sie, ob für die folgenden Funktionen $f:]0, \infty[\times]0, \infty[\to \mathbb{R}$ die Grenzwerte

$$\lim_{(x,y)\to(0,0)} f(x,y) \tag{1}$$

und/oder

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) \tag{2}$$

und/oder

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) \tag{3}$$

existieren, und berechnen Sie diese gegebenenfalls:

- (a) $f(x,y) = x \sin 2^y,$
- (b) $f(x,y) = (x^2 + y^2)^{xy}$,

(c)
$$f(x,y) = \frac{x^2}{x^2 + y^2}$$
,

(d)
$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
.

Lösung für (a) Es gilt

 $\lim_{x\to 0} x \sin 2^y = 0 \text{ gleichmäßig bzgl. } y, \text{ weil } |\sin 2^y| \le 1 \text{ für alle } y.$

Folglich existieren die Grenzwerte (1) und (3) und sind gleich Null. Der Grenzwert (2) allerdings existiert nicht, weil $\lim_{y\to 0} x \sin 2^y$ nicht existiert für $x\neq 0$.

Lösung für (b) Wir benutzen den bekannten Grenzwert $\lim_{z\downarrow 0} z \ln z = 0$. Daraus folgt

$$|xy\ln(x^2+y^2)| \le \frac{1}{2}|(x^2+y^2)\ln(x^2+y^2)| \to 0 \text{ bei } (x,y) \to (0,0).$$

Also gilt

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to 0} e^{xy\log(x^2+y^2)} = e^0 = 1.$$

Die beiden iterierten Grenzwerte (2) und (3) existieren ebenfalls und sind gleich (1):

$$\lim_{x \to 0} \lim_{y \to 0} (x^2 + y^2)^{xy} = \lim_{y \to 0} \lim_{x \to 0} (x^2 + y^2)^{xy} = 1.$$

Lösung für (c) Die beiden iterierten Grenzwerte (2) und (3) existieren und sind verschieden:

$$\lim_{x \to 0} \lim_{y \to 0} = \frac{x^2}{x^2 + y^2} = 1 \text{ und } \lim_{y \to 0} \lim_{x \to 0} = \frac{x^2}{x^2 + y^2} = 0.$$

Folglich existiert der Grenzwert (1) nicht.

Lösung für (d) Es gilt

$$\left|\frac{x^3}{x^2+y^2}\right|=|x|\left|\frac{x^2}{x^2+y^2}\right|\leq |x|\to 0 \text{ für } x\to 0 \text{ gleichmäßig bzgl. } y.$$

Folglich existieren die Grenzwerte (1) und (3) und sind gleich Null. Ferner gilt

$$\lim_{x \to 0} \lim_{y \to 0} = \frac{x^3}{x^2 + y^2} = \lim_{x \to 0} x = 0.$$

- **2.** Aufgabe Es seien (X, ρ) und (Y, σ) zwei metrische Räume. Beweisen Sie oder widerlegen Sie (durch ein Gegenbeispiel), dass für alle Abbildungen $f: X \to Y$ die folgenden Behauptungen gelten:
- (a) Wenn f stetig ist, so ist f(M) offen für alle offenen Mengen $M \subseteq X$.
- (b) Wenn f stetig ist, so ist f(M) abgeschlossen für alle abgeschlossenen Mengen $M \subseteq X$.
- (c) Wenn f stetig ist, so ist $f^{-1}(N)$ offen für alle offenen Mengen $N \subseteq Y$.
- (d) Wenn $f^{-1}(N)$ offen ist für alle offenen Mengen $N \subseteq Y$, so ist f stetig.
- (e) Wenn f stetig ist, so gilt $f(\overline{M}) \subseteq \overline{f(M)}$ für alle Mengen $M \subseteq X$.
- (f) Wenn $f(\overline{M}) \subseteq \overline{f(M)}$ für alle Mengen $M \subseteq X$ gilt, so ist f stetig.

Dabei sind $f(M) := \{f(x) \in Y : x \in M\}$ bzw. $f^{-1}(N) := \{x \in X : f(x) \in N\}$ die Bildmenge bzw. die Urbildmenge von M bzw. N bzgl. f, und $f(\overline{M})$ ist analog definiert.

Lösung für (a) (a) Die Behauptung ist falsch, wie das folgende Gegenbeispiel zeigt: Wir setzen n = 1, $X = \mathbb{R}$ und f(x) = 0 für alle $x \in \mathbb{R}$. Dann ist $f(X) = \{0\}$ nicht offen.

Lösung für (b) Die Behauptung ist falsch, wie das folgende Gegenbeispiel zeigt: Wir setzen $X = \mathbb{R}$ und $f(x) = 2^x$ für alle $x \in \mathbb{R}$. Dann ist $f(X) =]0, \infty[$ nicht abgeschlossen.

Lösung für (c) Die Behauptung ist richtig, wie der folgende Beweis zeigt: Es seien $Y \subset \mathbb{R}^n$ offen und $x_0 \in f^{-1}(Y)$. Nach Definition der Menge $f^{-1}(Y)$ existiert ein

Es seien $Y \subset \mathbb{R}^n$ offen und $x_0 \in f^{-1}(Y)$. Nach Definition der Menge $f^{-1}(Y)$ existiert ein $y_0 \in Y$ mit $f(x_0) = y_0$. Weil Y offen ist, existiert ein $\varepsilon > 0$ mit $K(y_0, \varepsilon) \subseteq Y$. Weil f stetig in x_0 ist, existiert ein $\delta > 0$ so dass für alle $x \in K(x_0, \delta)$ gilt $f(x) \in K(y_0, \varepsilon)$, also $x \in f^{-1}(K(y_0, \varepsilon))$, also $x \in f^{-1}(Y)$. Daraus folgt $K(x_0, \delta) \subseteq f^{-1}(Y)$.

Lösung für (d) Die Behauptung ist richtig, wie der folgende Beweis zeigt: Es seien $x_0 \in X$ und $\varepsilon > 0$ beliebig gegeben. Wegen $x_0 \in f^{-1}(K(f(x_0), \varepsilon))$ und weil $f^{-1}(K(f(x_0), \varepsilon))$ offen ist, existiert ein $\delta > 0$ mit

$$K(x_0, \delta) \subseteq f^{-1}(K(f(x_0), \varepsilon)), \text{ d.h. } f(K(x_0, \delta)) \subseteq K(f(x_0), \varepsilon).$$

Daraus folgt $\sigma(f(x), f(x_0)) < \varepsilon$ für alle $x \in M$ mit $\rho(x, x_0) < \delta$, d.h. f ist stetig in x_0 .

Lösung für (e) Die Behauptung ist richtig, wie der folgende Beweis zeigt: Es sei $x \in \overline{M}$, Dann existiert eine Folge $x_1, x_2, \ldots \in M$ mit $x_n \to x$. Weil f stetig ist, folgt $f(x_n) \to f(x)$. Wegen $f(x_1), f(x_2), \ldots \in f(M)$ folgt daraus $f(x) \in \overline{f(M)}$.

Lösung für (f) Die Behauptung ist richtig, wie der folgende Beweis zeigt: Es sei $x_1, x_2, \ldots \in X$ eine Folge mit $x_n \to x_0$. Zu zeigen ist

$$f(x_n) \to f(x_0).$$
 (4)

Wenn das Gegenteil von (4) gilt, so existieren ein $\varepsilon > 0$ und eine Teilfolge mit

$$|f(x_{n_k}) - f(x_0)| \ge \varepsilon \text{ für alle } k \in \mathbb{N}.$$
 (5)

Nach Voraussetzung gilt aber

$$\{f(x_0), f(x_1), f(x_2), \ldots\} = f(\{x_0, x_{n_1}, x_{n_2}, \ldots\}) = f(\overline{\{x_{n_1}, x_{n_2}, \ldots\}}) \subseteq \overline{f(\{x_{n_1}, x_{n_2}, \ldots\})} = \overline{\{f(x_{n_1}), f(x_{n_2}), \ldots\}}, \text{ d.h. } f(x_0) \in \overline{\{f(x_{n_1}), f(x_{n_2}), \ldots\}}.$$

Daraus folgt, dass eine Teilfolge der Teilfoge existiert mit

$$f(x_{n_{k_l}}) \xrightarrow{l \to \infty} f(x_0).$$

Das widerspricht aber (5).

- *Aufgabe Es seien $X, Y \subseteq \mathbb{R}$ und $f: X \to Y$ stetig und bijektiv. Beweisen Sie oder widerlegen Sie (durch ein Gegenbeispiel) die folgenden Behauptungen:
- (a) Die inverse Funktion f^{-1} ist ebenfalls stetig.
- (b) Wenn X ein Intervall ist, so ist die inverse Funktion f^{-1} ebenfalls stetig.

Lösung für (a) Die Behauptung ist falsch, wie das folgende Gegenbeispiel zeigt: Wir wählen $X = [0, 1] \times [2, 3], Y = [0, 2]$ und

$$f(x) = \begin{cases} x & \text{für } x \in [0, 1[, \\ x - 1 & \text{für } x \in [2, 3]. \end{cases}$$

Dann folgt

$$f^{-1}\left(1 - \frac{1}{n}\right) = 1 - \frac{1}{n} \xrightarrow{n \to \infty} 1 \neq f^{-1}(1) = 2,$$

also ist f^{-1} in Eins nicht stetig.

Lösung für (b) Die Behauptung ist richtig, wie der folgende Beweis zeigt:

Zunächst beweisen wir, dass f streng monoton ist: Wenn das nicht der Fall wäre, so würden Punkte $x_1 < x_2 < x_3$ in X existieren mit

$$f(x_1) < f(x_2) > f(x_3)$$
 oder $f(x_1) > f(x_2) < f(x_3)$.

Weil X ein Intervall ist, würden nach dem Zwischenwertsatz im ersten Fall Punkte $\xi_1 \in]x_1, x_2[$ und $\xi_2 \in]x_2, x_3[$ existieren mit

$$f(\xi_1) = f(\xi_2) = \min \left\{ \frac{f(x_1) + f(x_2)}{2}, \frac{f(x_2) + f(x_3)}{2} \right\}.$$

Wegen $\xi_1 \neq \xi_2$ widerspricht das aber der Injektivität von f. Analog behandelt man den zweiten Fall.

Es sei f z.B. streng monoton wachesend. Wir nehmen das Gegenteil der Behauptung an, d.h. dass ein $y_0 \in Y$ existiert so dass f^{-1} nicht stetig in y_0 ist. Dann existiert eine Folge $y_1, y_2, \ldots \in Y$ mit $y_n \to y_0$ für $n \to \infty$ so dass gilt:

$$f^{-1}(y_n)$$
 strebt nicht gegen $f^{-1}(y_n)$. (6)

Es gilt $y_n < y_0$ für unendlich viele verschiede Indizes n oder $y_n > y_0$ für unendlich viele verschiede Indizes n. Also können wir eine Teilfolge (y_{n_k}) auswählen so dass alle Elemente dieser Teilfolge auf einer Seite von y_0 liegen, z.B. $y_{n_k} < y_0$ für alle k. Aus dieser Teilfolge können wir eine monoton wachsende Teilfolge auswählen (die wir der Einfachheit halber wieder mit (y_{n_k}) bezeichnen), also

$$y_{n_1} \le y_{n_2} \le \ldots \le y_{n_k} < y_0.$$

Wegen der Monotonie von f folgt

$$f^{-1}(y_{n_1}) \le f^{-1}(y_{n_2}) \le \ldots \le f^{-1}(y_{n_k}) < f^{-1}(y_0).$$

Also ist die Folge $(f^{-1}(y_{n_k}))$ monoton wachsend und nach oben beschränkt, also konvergent: Es existiert ein

$$x_0 \ge f^{-1}(y_{n_k})$$
 für alle $k \in \mathbb{N}$ (7)

mit

$$f^{-1}(y_{n_1}) \le f^{-1}(y_{n_2}) \le \dots \le f^{-1}(y_{n_k}) \to x_0 \le f^{-1}(y_0) \text{ für } k \to \infty.$$
 (8)

Wegen (6) gilt $x_0 \neq f^{-1}(y_0)$, und deshalb liefert (8) $x_0 < f^{-1}(y_0)$. Weil der Definitionsbereich von f ein Intervall ist und weil $f^{-1}(y_1) \leq x_0 < f^{-1}(y_0)$ gilt, ist x_0 im Definitionsbereich von f. Also folgt wegen der Monotonie $f(x_0) < y_0$. Wegen $y_n \to y_0$ für $n \to \infty$ folgt daraus $f(x_0) < y_n$ für alle großen Indizes n, d.h. $x_0 < f(y_n)$ für alle großen Indizes n. Das widerspricht aber (7).