Übungsaufgaben Analysis II*

Serie 4: Konvergenz von Abbildungen. Stetigkeit Abgabetermin: 18.5.

1. Aufgabe (8 Punkte) Überprüfen Sie, ob für die unten angegebenen Funktionen $f:]0, \infty[\times]0, \infty[\to \mathbb{R}$ die Grenzwerte

$$\lim_{(x,y)\to(0,0)} f(x,y) \text{ und/oder } \lim_{x\to 0} \lim_{y\to 0} f(x,y) \text{ und/oder } \lim_{y\to 0} \lim_{x\to 0} f(x,y)$$

existieren, und berechnen Sie diese gegebenenfalls:

- (a) $f(x,y) = x\sin 2^y,$
- (b) $f(x,y) = (x^2 + y^2)^{xy}$,

(c)
$$f(x,y) = \frac{x^2}{x^2 + y^2}$$
,

(d)
$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
.

- **2.** Aufgabe (12 Punkte) Es seien (X, ρ) und (Y, σ) zwei metrische Räume. Beweisen Sie oder widerlegen Sie (durch ein Gegenbeispiel), dass für alle Abbildungen $f: X \to Y$ die folgenden Behauptungen gelten:
- (a) Wenn f stetig ist, so ist f(M) offen für alle offenen Mengen $M \subseteq X$.
- (b) Wenn f stetig ist, so ist f(M) abgeschlossen für alle abgeschlossenen Mengen $M\subseteq X$.
- (c) Wenn f stetig ist, so ist $f^{-1}(N)$ offen für alle offenen Mengen $N \subseteq Y$.
- (d) Wenn $f^{-1}(N)$ offen ist für alle offenen Mengen $N \subseteq Y$, so ist f stetig.
- (e) Wenn f stetig ist, so gilt $f(\overline{M}) \subseteq \overline{f(M)}$ für alle Mengen $M \subseteq X$.
- (f) Wenn $f(\overline{M}) \subseteq \overline{f(M)}$ für alle Mengen $M \subseteq X$ gilt, so ist f stetig.

Dabei sind $f(M) := \{f(x) \in Y : x \in M\}$ bzw. $f^{-1}(N) := \{x \in X : f(x) \in N\}$ die Bildmenge bzw. die Urbildmenge von M bzw. N bzgl. f, und $f(\overline{M})$ ist analog definiert.

- *Aufgabe (10 Punkte) Es seien $X, Y \subseteq \mathbb{R}$ und $f: X \to Y$ stetig und bijektiv. Beweisen Sie oder widerlegen Sie (durch ein Gegenbeispiel) die folgenden Behauptungen:
- (a) Die inverse Funktion f^{-1} ist ebenfalls stetig.
- (b) Wenn X ein Intervall ist, so ist die inverse Funktion f^{-1} ebenfalls stetig.