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Introduction

• Standard approach for solving stochastic programs are variants

of Monte Carlo (MC) for generating scenarios (i.e., samples).

• Recent alternative approaches to scenario generation in stochas-

tic programming besides MC:

(a) Optimal quantization of probability distributions (Pflug-Pichler

2010).

(b) Quasi-Monte Carlo (QMC) methods (Koivu-Pennanen 05, Homem-

de-Mello 06).

(c) Sparse grid quadrature rules (Chen-Mehrotra 08).

• While the justification of MC and (a) may be based on avail-

able stability results for stochastic programs, there is almost no

reasonable justification of applying (b) and (c).

• Known convergence rates: MC O(n−
1
2), (a) O(n−

1
d)

(b) O(n−1(log n)d), recently: O(n−1+δ) (δ small)

(d dimension of random vector, n number of scenarios).
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Two-stage linear stochastic programs

Two-stage stochastic programs arise as deterministic equivalents of

improperly posed random linear programs

min{〈c, x〉 : x ∈ X, Tx = ξ},

where X is a convex polyhedral subset of Rm, T a matrix, ξ is a

d-dimensional random vector.

A possible deviation ξ − Tx is compensated by additional costs

Φ(x, ξ) whose mean with respect to the probability distribution P

of ξ is added to the objective. We assume that the additional costs

represent the optimal value of a second-stage program, namely,

Φ(x, ξ) = inf{〈q, y〉 : y ∈ Rm̄, Wy = ξ − Tx, y ≥ 0},

where q ∈ Rm̄, W a (d, m̄)-matrix (having rank d).

The deterministic equivalent then is of the form

min
{
〈c, x〉 +

∫
Rd

Φ(x, ξ)P (dξ) : x ∈ X
}

.
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We assume that the additional costs are of the form

Φ(x, ξ) = ϕ(ξ − Tx)

with the second-stage optimal value function

ϕ(t) = inf{〈q, y〉 : Wy = t, y ≥ 0} (t ∈ W (Rm̄
+))

= sup{〈t, z〉 : W>z ≤ q} = sup
z∈D

〈t, z〉 ,

There exist vertices vj of the dual feasible set D and polyhedral

cones Kj, j = 1, . . . , `, decomposing dom ϕ such that

ϕ(t) = 〈vj, t〉, ∀t ∈ Kj, and ϕ(t) = max
j=1,...,`

〈vj, t〉.

Hence, the integrands are of the form

f (ξ) = max
j=1,...,`

〈vj, ξ − Tx〉 if ξ − Tx ∈ W (Rm̄
+).
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Quasi-Monte Carlo methods

We consider the approximate computation of

Id(f ) =

∫
[0,1]d

f (ξ)dξ or Id(f ) =

∫
Rd

f (ξ)ρd(ξ)dξ

by a QMC algorithm

Qn,d(f ) =
1

n

n∑
i=1

f (ξi) or Qn,d(f ) =
1

n

n∑
i=1

f (ξi)ρd(ξ
i)

with (non-random) points ξi, i = 1, . . . , n, from [0, 1]d or Rd.

We assume that f belongs to a linear normed space Fd with norm

‖ · ‖d and unit ball Bd. Worst-case error of Qn,d over Bd:

e(Qn,d) = sup
f∈Bd

|Id(f )−Qn,d(f )|

Example: Fd is a weighted tensor product Sobolev space, a par-

ticular kernel reproducing Hilbert space.

Problem: Integrands in stochastic programming are not in Fd.
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ANOVA decomposition of multivariate functions

Idea: Decompositions of f may be used, where most of the terms

are smooth, but hopefully only some of them relevant.

Let D = {1, . . . , d} and f ∈ L1,ρd
(Rd) with ρd(ξ) =

∏d
j=1 ρj(ξj),

where

f ∈ Lp,ρd
(Rd) iff

∫
Rd
|f (ξ)|pρd(ξ)dξ < ∞ (p ≥ 1).

Let the projection Pk, k ∈ D, be defined by

(Pkf )(ξ) :=

∫ ∞

−∞
f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd).

Clearly, Pkf is constant with respect to ξk. For u ⊆ D we write

Puf =
( ∏

k∈u

Pk

)
(f ),

where the product means composition, and note that the ordering

within the product is not important because of Fubini’s theorem.

The function Puf is constant with respect to all xk, k ∈ u.
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ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = PD(f ) and recursively

fu = P−u(f )−
∑
v⊆u

fv

or (due to Kuo-Sloan-Wasilkowski-Woźniakowski 10)

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f ) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f )),

where P−u and Pu−v mean integration with respect to ξj, j ∈ D\u

and j ∈ u \ v, respectively. The second representation motivates

that fu is essentially as smooth as P−u(f ).

If f belongs to L2,ρd
(Rd), the ANOVA functions {fu}u⊆D are or-

thogonal in L2,ρd
(Rd).
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We set σ2(f ) = ‖f − Id(f )‖2
L2

and σ2
u(f ) = ‖fu‖2

L2
, and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

σ2
u(f ) .

Sobol’s global sensitivity indices of f :

S̄u =
1

σ2(f )

∑
v∩u 6=∅

σ2
v(f ).

Owen’s dimension distribution (superposition or truncation) of f :

Probability measure νS (νT ) defined on the power set of D

νS(s) :=
∑
|u|=s

σ2
u(f )

σ2(f )

(
νT (s) =

∑
max{j:j∈u}=s

σ2
u(f )

σ2(f )

)
(s ∈ D).

Mean superposition dimension of f :

d̄S =
∑

∅6=u⊆D

|u|σ
2
u(f )

σ2(f )
=

d∑
i=1

S{i}.

Efficient truncation dimension dT (ε) of f is the (1− ε)-quantile of

νT .
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ANOVA decomposition of two-stage integrands

Assumption:
(A1) W (Rm̄

+) = Rd (complete recourse).

(A2) D 6= ∅ (dual feasibility).

(A3)
∫

Rd ‖ξ‖P (dξ) < ∞.

(A4) P has a density of the form ρd(ξ) =
∏d

j=1 ρj(ξj) (ξ ∈ Rd)

with ρj ∈ C(R), j = 1, . . . , d.

(A1) and (A2) imply that dom ϕ = Rd and D is bounded and,

hence, it is the convex hull of its vertices. Furthermore, the cones

Kj are the normal cones to D at the vertices vj, i.e.,

Kj = {t ∈ Rd : 〈t, z − vj〉 ≤ 0, ∀z ∈ D} (j = 1, . . . , `)

= {t ∈ Rd : 〈t, vi − vj〉 ≤ 0, ∀i = 1, . . . , `, i 6= j}.
It holds that ∪j=1,...,`Kj = Rd and for j 6= j′ the intersection

Kj ∩ Kj′ is a common closed face of dimension d − 1 iff the two

cones are adjacent. The intersection is contained in

{t ∈ Rd : 〈t, vj′ − vj〉 = 0}.
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To compute projections Pk(f ) for k ∈ D. Let ξi ∈ R, i = 1, . . . , d,

i 6= k, be given. We set ξk = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) and

ξs = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) ∈ Rd = ∪j=1,...,`Kj.

Assuming (A1)–(A4) it is possible to derive an explicit representa-

tion of Pk(f ) depending on ξk and on the finitely many points at

which the one-dimensional affine subspace {ξs : s ∈ R} meets the

common face of two adjacent cones. This leads to

Proposition:
Let k ∈ D. Assume (A1)–(A4) and that all adjacent vertices of D
have different kth components.

The kth projection Pkf is infinitely differentiable if the density ρk

is in C∞(R) and all its derivatives are bounded on R, in particular,

if ρk is the normal density.
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Theorem:
Let u ⊂ D. Assume (A1)–(A4) and that all adjacent vertices of D
have different kth components for some k ∈ D \ u.

The ANOVA term fu belongs to C∞(Rd−|u|) if ρk ∈ C∞(R) and

all its derivatives are bounded on R.

Example:
Let m̄ = 3, d = 2, P denote the two-dimensional standard normal

distribution and let the following vector q and matrix W

W =

(
−1 1 0

1 1 −1

)
q =

 1

1

0


be given. Then (A1) and (A2) are satisfied and the dual feasible

set D is the triangle (in R2)

D = {z ∈ R2 : −z1 + z2 ≤ 1, z1 + z2 ≤ 1,−z2 ≤ 0},
with the vertices

v1 =

(
1

0

)
v2 =

(
−1

0

)
v3 =

(
0

1

)
.
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Figure 1: Illustration of D, its vertices vj and the normal cones Kj to its vertices

Hence, the second component of the two adjacent vertices v1 and

v2 coincides. The function ϕ is of the form

ϕ(t) = max
i=1,2,3

〈vi, t〉 = max{t1,−t1, t2} = max{|t1|, t2}

and the integrand is

f (ξ) = max{|ξ1 − [Tx]1|, ξ2 − [Tx]2}

The ANOVA projection P1f is in C∞, but P2f is not differentiable.
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Remark: Under the assumptions of the theorem the function

fd−1(ξ) =
∑

|u|≤d−1

fu = f − fD

is in C∞(Rd) if ρk ∈ C∞(R) and all its derivatives are bounded

on R for every k ∈ D. For which two-stage stochastic programs

is ‖fD‖L2 small, i.e., the efficient truncation dimension is less than

d− 1 ?

Remark: If ξ is normal with covariance matrix Σ, there exists an

orthogonal matrix Q such that Σ = QDQ> with a diagonal matrix

D containing the eigenvalues. Hence, we may assume that h(ξ) is

of the form

h(ξ) = Qξ with ξ satisfying (A4).

Then the geometric condition on the vertices of D is generically

satisfied in the following sense: The set of all orthogonal matrices

Q such that QD satisfies the geometric condition is representable

as the countable intersection of open dense subsets.
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Sensitivity and the reduction of efficient dimension

Proposition:
Assume (A1)–(A4) and let σ2

i denote the variance of ξi, i =

1, . . . , d. Then it holds

S̄{i} ≤
σ2

i

σ2(f )
max

j=1,...,`
|vj

i |
2 (i = 1, . . . , d),

where vj, j = 1, . . . , `, are the vertices of the dual polyhedron.

Hence, the transformation of a N (µ, Σ) random vector in the form

Σ = B B> should be organized such that the σi are decreasing and

the first few variances σi are (strongly) dominating if possible.

Standard Cholesky decomposition B = L is not useful.
Principal component analysis (PCA), i.e., B = (

√
λ1v1, . . . ,

√
λdvd),

where λ1 ≥ · · · ≥ λd are the eigenvalues of Σ in decreasing order

and vi, i = 1, . . . , d, the corresponding orthonormal eigenvectors,

is very useful in financial applications (Wang-Fang 03, Wang-Sloan 07).
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Conclusions

• The results provide a theoretical basis for applying QMC ac-

companied by efficient dimension reduction techniques to stochas-

tic programs with low efficient dimension.

• The results are extendable and will be extended to more general

two-stage and to multi-stage situations.

• Numerical experiments using randomly shifted lattice rules (Kuo,

Sloan) and digitally shifted polynomial lattice rules (Dick, Pil-

lichshammer) are in preparation.

Thank you !
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