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Introduction

e Standard approach for solving stochastic programs are variants
of Monte Carlo (MC) for generating scenarios (i.e., samples).

e Recent alternative approaches to scenario generation in stochas-
tic programming besides MC:

(a) Optimal quantization of probability distributions (Pflug-Pichler

2010).
(b) Quasi-Monte Carlo (QMC) methods (Koivu-Pennanen 05, Homem-
de-Mello 06).

(c) Sparse grid quadrature rules (Chen-Mehrotra 08).

e While the justification of MC and (a) may be based on avail-
able stability results for stochastic programs, there is almost no

reasonable justification of applying (b) and (c).

e Known convergence rates: MC O(n_%), (a) O(n‘é)

(b) O(n~t(logn)?), recently: O(n='*%) (§ small)

(d dimension of random vector, n number of scenarios).
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Two-stage linear stochastic programs

Two-stage stochastic programs arise as deterministic equivalents of
improperly posed random linear programs

min{(c,z) : x € X, Tx = £},

where X is a convex polyhedral subset of R™, T" a matrix, £ is a
d-dimensional random vector.

A possible deviation & — T'x is compensated by additional costs
O (x, &) whose mean with respect to the probability distribution P
of £ is added to the objective. We assume that the additional costs
represent the optimal value of a second-stage program, namely,

O(z,€) = inf{(q,y) -y €eR", Wy =€ — T,y > 0},

where ¢ € R™, W a (d, m)-matrix (having rank d).
The deterministic equivalent then is of the form

min {<c, )+ /Rdcb(x,g)P(dg) 1z C X}.
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We assume that the additional costs are of the form

O(x,8) = (€ — Tx)

with the second-stage optimal value function

p(t) =inf{{q,y) : Wy =t,y >0} (t e W(RY]))

= sup{(t, z) : W'z < q} =sup(t, z),
z€D

There exist vertices v/ of the dual feasible set D and polyhedral
cones K;, 7 =1,...,¢, decomposing dom ¢ such that

p(t) = (v, 1), Vt € K;, and o(t) = Iqaxg(vﬂt}.
j=1,...,

Hence, the integrands are of the form

f(&) = max (/& —Tx) if &€—Txe W(RD).

j=1,...0
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Quasi-Monte Carlo methods

We consider the approximate computation of

Io(f) = f(&)dg or Iu(f) = Rdf(f)pd(ﬁ)dﬁ

[0,1]¢
by a QMC algorithm

Qualf) == S FE) o Qualf) == > FEIpE)
i=1 i=1
with (non-random) points &, i = 1,...,n, from [0, 1]? or RY.

We assume that f belongs to a linear normed space F; with norm
| - [|¢ and unit ball B,;. Worst-case error of Q,, 4 over By:

e(Qna) = sup [L4(f) — Qna(f)

feBy
Example: F is a weighted tensor product Sobolev space, a par-
ticular kernel reproducing Hilbert space.

Problem: Integrands in stochastic programming are not in F}.
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ANOVA decomposition of multivariate functions
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Idea: Decompositions of f may be used, where most of the terms

are smooth, but hopefully only some of them relevant. _ Terue |
o d Contents

Let D ={1,...,d} and f € Ly ,,(R?) with ps(§) = [Ti21 pi(&)), eea]

where I 5T
Feln®) @ [ 1@FugaE <o o2

Let the projection Py, k € D, be defined by
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Clearly, P f is constant with respect to &;. For u C D we write

rf=(T17) ), s |
keu —

where the product means composition, and note that the ordering
within the product is not important because of Fubini's theorem. Que |
The function P, f is constant with respect to all zj, k € w.



ANOVA-decomposition of f:
f= Z fus
where fy = I;(f) = Pp(f) and recursively
f) o Z fv
vCu

or (due tO Kuo-Sloan-Wasilkowski-Wozniakowski 10)
o= D (SRR = 2 F) D (=IHTE ))

vCu vCU

where P_,, and P,_, mean integration with respect to §;, j € D\ u
and j € u \ v, respectively. The second representation motivates
that f, is essentially as smooth as P_,(f).

If f belongs to Lo, (R?), the ANOVA functions {f,}.cp are or-
thogonal in Lo, (RY).
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We set o%(f) = [1f - Id(f)||%2 and a%f) - IIfUH% and have

o*(f) = Ifllz, - =) o

0AuCD

Sobol’s global sensitivity indices of f:

Si=— S o).

o’ (f) vNu#£(

Owen'’s dimension distribution (superposition or truncation) of f:

Probability measure vg (vr) defined on the power set of D

VS(S> = Z % (I/T(S) = Z %) (S c D)

Mean superposition dimension of f:

p d
ds= > 1“103%:;5&}-

0#uCD

lu|=s max{j:jEu}t=s

Efficient truncation dimension dr(g) of f is the (1 — €)-quantile of
vr.



ANOVA decomposition of two-stage integrands

Assumption:

(A1) W(RT) = R? (complete recourse).

(A2) D # 0 (dual feasibility).

(A3) [y €1 P(dg) < o0

(A4) P has a density of the form p,(&) = H?ﬂ p;(&) (€ € RY)
with p; €e C(R), 7 =1,....,d.

(A1) and (A2) imply that dom = R and D is bounded and,
hence, it is the convex hull of its vertices. Furthermore, the cones
IC; are the normal cones to D at the vertices v, e,

Ki = {tecR: (t,z ') <0,Vz€D} (j=1,...,0
= {teRY: (t,v' =) <0, Vi=1,....0,i#j}.

.....

K; N IKC;r is a common closed face of dimension d — 1 iff the two
cones are adjacent. The intersection is contained in

{t e RY: (t,0/" — ) =0}
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Home Page |
To compute projections Py (f) fork € D. Let§ e R, i=1,....,d,

i # k, be given. We set £¥ = (&1,...,&_1,&11, - - -, €4) and | e |
fs = (517-..7€k—1787€]€+17-..7€d) c Rd — szl 77777 glcj Contents |

Assuming (A1)—-(A4) it is possible to derive an explicit representa- [« | % |
tion of P.(f) depending on &* and on the finitely many points at

which the one-dimensional affine subspace {£, : s € R} meets the L4 |[v]
common face of two adjacent cones. This leads to

Page 10 of 17 |
Proposition:
Let k € D. Assume (A1l)—(A4) and that all adjacent vertices of D L
have different £th components. Fut s |

The kth projection P f is infinitely differentiable if the density py
is in C>°(R) and all its derivatives are bounded on R, in particular, coe |
if py. is the normal density.
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Theorem:
Let u C D. Assume (Al)—-(A4) and that all adjacent vertices of D

have different kth components for some k € D \ .
The ANOVA term f, belongs to C*(R4=I) if p; € C*(R) and

all its derivatives are bounded on IR.

Example:
Let m = 3, d = 2, P denote the two-dimensional standard normal
distribution and let the following vector ¢ and matrix W

1
11 0
W‘<1 1—1) 1= (1)

be given. Then (A1) and (A2) are satisfied and the dual feasible
set D is the triangle (in R?)

D:{ZERQI—Zl—l—ZQS1,21+Z2§1,—Z2§0},

with the vertices

) ) ()
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v? 0 v

Ko Ky

Figure 1: lllustration of D, its vertices v/ and the normal cones KC; to its vertices

1

Hence, the second component of the two adjacent vertices v* and

v? coincides. The function ¢ is of the form

o(t) = .mla2x3<vi, t) = max{ty, —t1, o} = max{|t1|, {2}
Z: b) b)

and the integrand is

f(€) = max{|& — [Tzhl, & — [Tz]o}
The ANOVA projection P f isin C'*, but P f is not differentiable.
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Remark: Under the assumptions of the theorem the function

far®) = D> fu=f—fo

lu|<d—1

is in C°(RY) if pr € C°*°(R) and all its derivatives are bounded
on R for every k € D. For which two-stage stochastic programs
is || fp||z, small, i.e., the efficient truncation dimension is less than

d—17

Remark: If £ is normal with covariance matrix Y, there exists an
orthogonal matrix () such that ¥ = QDQ " with a diagonal matrix
D containing the eigenvalues. Hence, we may assume that h(§) is
of the form

h(€) = Q€ with & satisfying (A4).

Then the geometric condition on the vertices of D is generically
satisfied in the following sense: The set of all orthogonal matrices
() such that QD satisfies the geometric condition is representable
as the countable intersection of open dense subsets.
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Sensitivity and the reduction of efficient dimension

Proposition:
Assume (A1)—(A4) and let o? denote the variance of &;, i =
1,...,d. Then it holds

2

Q g, J2 .
S{Z} S 0_2(f> ]r:nlz?u><’€]02| (2_17"'7d)7
where v/, j =1, .../, are the vertices of the dual polyhedron.

Hence, the transformation of a N (p, >}) random vector in the form
> = B B! should be organized such that the o; are decreasing and
the first few variances o; are (strongly) dominating if possible.

Standard Cholesky decomposition B = L is not useful.

Principal component analysis (PCA), i.e., B = (v/A1v1, . . ., VAqua),
where \; > --- > )\; are the eigenvalues of X in decreasing order
and v;, ¢ = 1,...,d, the corresponding orthonormal eigenvectors,
is very useful in financial applications (Wang-Fang 03, Wang-Sloan 07).
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Conclusions

e The results provide a theoretical basis for applying QMC ac-
companied by efficient dimension reduction techniques to stochas-
tic programs with low efficient dimension.

e The results are extendable and will be extended to more general
two-stage and to multi-stage situations.

e Numerical experiments using randomly shifted lattice rules (Kuo,
Sloan) and digitally shifted polynomial lattice rules (Dick, Pil-
lichshammer) are in preparation.

Thank you !
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