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To our knowledge there is only one paper on conditioning in stochastic programming:
A. Shapiro, T. Homem-de-Mello and J. Kim: Conditioning of convex piecewise
linear stochastic programs, Math. Progr. 94 (2002), 1-19.



General definition of a condition number

Let a mapping ¢ : D C R™ — R? be given, where the (data) set D is open.

The condition number of ¢ is defined by

, rel err(p(d))
d,(d) =1
cond,(d) 51—r>r(l)releil(s)§5 rel err(d)

or to avoid the limit by the estimate

rel err(¢(d)) < cond,(d)rel err(d) + o(rel err(d)),

where relerr(d) := Hcﬁ;ﬁ”' for some d € D etc.

The condition number of an input is the worst possible magnification of the
output error with respect to a small input perturbation.

On the other hand, it provides information on the distance to the nearest ill-posed
problem.



Linear systems

We set for r, s € [1,00] and A € R"™*™

[A]lrs = max || Az]s.

lz]lr=1
For m = n let 2 denote the set of ill-posed matrices, i.e.,
Y ={A e R™™:det(A) = 0},
and for all A € A =R"™"\ X Turing's condition number
firs = [| Allrs | A lsr-
Distance to ill-posedness:

dy(A, ) = inf{||A — Bl,s : B € T}

Theorem: (Eckart-Young 1936)
Let A € R™*™\ . Then it holds

LAls

do(A,Z) = [ A7 and, hence, —r(4) = 7 FE s



Matrices in R"*™:

For A € R"*™
“TS(A) = HAHTS HAJFHST

is Turing's condition number, where AT € R™*" is the Moore-Penrose inverse

of A.
Let X = {A € R"" : rank(A) < min{n, m}} be the set of ill-posed matrices.

Proposition:
For A € R™ \ ¥ it holds
d(A, ) = opin(A) = ||AT]| 7! = sup{é > 0: 6B, C A(B,,)},

where B,, and B, are the closed unit balls in R™ and R", respectively, w.r.t.
| - |l2 and omin(A) the smallest positive singular value of A.



Polyhedral conic systems

For A € R""™ and a closed convex cone K C R"™ with polar cone K*
we consider the homogeneous primal and dual feasibility problem.

Jr € R™\ {0} Az =0, ze€ K, (PF)
Jy e R"\ {0} A'ye K*. (DF)

We assume n < m and define

P ={AeR"": AK)=R"},
D ={AcR™: A'R" + K* =R™},
Y, = R™™\ (PUD) is the set of ill-posed matrices.

Proposition:

AePiff {r e R": Ax =b,x € K} # () for every b € R".
AcDiff {ycR":c— ATy € K*} # () for every c € R™.
If n < m then both P and D are open and P ND = 0.



Definition: (Renegar)
The condition number of the homogeneous conic system with respect to K given
by A € R™™\ ¥ is defined by

| Al]rs
dyo(A,5)

Condition number of the inhomogeneous conic system with respect to K:

cond(A, b, ¢) = max {COHd(A, —b), cond ( AT ) }

=C

cond(A) =

Proposition: (Renegar)
If A€ P then d, (A, X) =sup{d >0:B, C A(B,,NK)}.
If A€ D thend, (A X)=sup{d>0:06B, CA'B,+ K*}.

Here, B,, and B,, are the unit ball w.r.t. ||-||s in R™ and || ||, in R™, respectively.



Conditioning of set-valued mappings and equations

Let X and )V be finite-dimensional normed spaces, F' : X XD = ) and consider
a parametric generalized equation

0€ F(x,d).

Then F(-,d)"!(y) is the solution set of the parametric generalized equation
y € F(z,d). Next we fix d and consider F' = F(-,d).

F' is metrically regular at  for y € F(z) if there is a constant x > 0 such that

d(z, F(y)) < kd(y, F(z)) for all (z,y) close to (z,7). (%)

The condition number of y € F(Z) is the regularity modulus defined by
reg F'(z|y) = inf{k : k satisfies condition (x)}.

F~! has the Aubin property at i for 7 € F~1(y) iff F is metrically regular at Z

for ¢y and it holds
lip F~(g]z) = reg F(zy).



Radius of metric regularity at & for ¥: (Dontchev-Lewis-Rockafellar 2003)

rad F'(z|y) = inf {lipG(x): F' 4+ G is not metrically regular at x for y + G(x)}.
%5

Proposition: Let /': X = ) be locally closed at (Z,y) € gph F'. Then
1
rad F(z|y) = —— and reg F(z|y) = |D*F(z|y) ||,
@19 = ) = |10 F(alg) |

where D*F(z|y) : Y* — X* is the Mordukhovich coderivative, i.e.,

D'F(lg)(y) = {=" : (&, ") € N #(Z,9)},

and

|ID*F(z|g) ' I" =sup  sup  yll.
v€B ye D*F(z]7) ()



Parametric convex differentiable program with polyhedral constraints:
min{ f(z,d) : x € X} (d € D)
and the optimality condition in form of a parametric set-valued equation
0€ F(x,d) =V f(z,d)+ Nx(z).
with the solution mapping S(d) = {x € X : 0 € Vf(x,d)+ Nx(x)} ford € D.

We know that the conditioning of the program is characterized by

lip S (cﬂ:i') = sup sup ",
v*€B preD*S(d|z)(a*)

Proposition:
Let (d,z) € gph S with d € D and € X. Assume that the multifunction

y—{(d,x) yeVf(x,d)+ Nx(z)}
is calm at (0,d,z). Then
D*S(d|z)(x*) C {p* : Fv* with
(=%, p") € (D*V)f(z,d)(v") + D*Nx(z, -V f(z,d))(v") x {0}}



Linear-quadratic two-stage stochastic optimization problems

min {{(c, z) + 1 (z,Cz) + E (®(z,§)) |z € X},

where x is the first-stage decision and

O(x,€) = max {(z,h(§) — Tz) — 1 (2,Bz)}.
We assume that X and Z are nonempty convex polyhedra in R™ and R”, respec-
tively, B and C' are symmetric positive definite matrices, ¢ € R™, h(§) is a ran-
dom vector in R*, T" a k x m matrix, Z is of the form Z = {z€eR": Wiz < q}
with a k£ x r matrix W and ¢ € R", and E denotes expectation with respect to
a probability distribution P on R”.
Here, we assume that P is a discrete probability distribution of the form

1 n
P:ﬁ;(sg

with scenarios ' € R*, i =1,...,n.



Aim: Conditioning of the two-stage model with respect to P.

So, we have d = (£!,...,£") € R™ and
f(z,d) = (c,z) + 5 (z,Cz) + Ep (2(z,8)) .

Proposition:
The function f(-,d) is Frechet differentiable and its gradient locally Lipschitz
continuous, but, in general, not twice differentiable.

Proposition: Let (d,Z) € gph S, T be surjective and h(¢) = HE + h. Then

lipS(djz) =sup  sup [p"],
r*eB p*eD*S(cﬂi‘)(w‘*)

where D*S (d|z) (z*) C

(| Fv*, Ju* € D*Nx(Z, —c— CT+n'TT S0 2(v;)) (
32 - B2 + Tw* € D*Ny(2(5;), Bz(vz))( %)

n
n TN 2z =CTv*+2* +u*

1=1 _ B
pr=ntH' 2z}, v;,=H¢+h—-Tz (i=1,...,n)

\

with z(v) = arg max,ez{(z,v) — 2(z, B2)}.



Special case: C =01, B=71 and Z = |—q,q"| (simple recourse),
where o > 0, 7 > 0.

Theorem:
Assume that strict complementarity holds at . Let 7' be surjective and let o
and 7 satisfy

ot >n"'AT,d,z)|T| .

Then the condition number lip S(d|Z) can be estimated by

ol T | H ||
lip S(d|z) < _
o)) < AT, d, 7)ot —||T||°

where A(T) is defined by

7,d,2) ZA N IR S B 1
=1
Zj(HgiJr}_l*Ti)
is not active in Z
with ¢; denoting the rows of 7. Note that n'/AA(T',d, ) refers to the mean

number of non strongly active components of z(H¢ +h —Tzx),i=1,...,n



Conclusions

e Characterization of the condition number in the general two-stage case is
open. Which quantities influence its size and what are the consequences of
large condition numbers 7 Of course, the Lipschitz constants of the second-
stage solution mapping

(z,Bz}}

DO [ —

v — z(v) = arg max {(z,v} —
2€Z

become important.

e The relations to the results in (Shapiro-Homem-de-Mello-Kim 02) and in the recent
paper (Zolezzi 15) need to be explored.

e Extension of the results to more general linear-quadratic two-stage models
and to linear two-stage models are desirable, but not straightforward. In
the linear case, uniqueness of solutions and, hence, differentiability of the
recourse function is lost in general.

e Extension of characterizing the conditioning by considering metric subreg-
ularity instead of metric regularity is of interest.
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