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leads to a tremendous increase in the complex-ity of the traditional power optimization mod-els. The remedy we propose is decompositionwhich we will elaborate in two di�erent ways.The �rst is based on stochastic Lagrangian re-laxation of coupling constraints and leads tosingle-unit multi-stage stochastic programs oftractable size. The second aims at decomposingthe full model according to scenarios and leadsto single-scenario problems that are quite simi-lar to traditional deterministic power schedulingmodels. For both decomposition approaches wewill present the theoretical underpinnings andsome initial computational experience.2 MODELLINGWe consider a power generation system compris-ing (coal-�red and gas-burning) thermal units,pumped-storage hydro plants and delivery con-tracts and describe an optimization model for itsleast-cost operation. In our model, T denotesthe number of time intervals of the optimiza-tion horizon and fdt : t = 1; :::; Tg the electricalload forming a stochastic process (on some prob-ability space (
;A;P)). We assume that theload is known (at least) during the �rst time pe-riod(s). Denoting by At the ���eld generatedby (d1; :::; dt), we obtain a nested sequence (�l-tration) of ���elds: A1 = f;;
g � A2 � : : : �At � : : : � AT � A.Let I denote the number of thermal and Jthe number of pumped storage hydro units. De-livery contracts are regarded as particular ther-mal units. According to the stochasticity of theelectrical load, the decisions for all units arediscrete-time stochastic processes as well:fxt = (pt;ut; st;wt) : t = 1; :::; Tg:1



Here, the decision variable uti 2 f0; 1g indicateswhether the thermal unit i is in operation attime t, pti (i = 1; :::; I; t = 1; :::; T ) denotesthe output of the thermal unit i at time t andstj , wtj (j = 1; :::; J; t = 1; :::; T ) are the gen-eration and pumping levels, respectively, of thepumped-storage hydro plant j at time t. Thefollowing box constraints re
ect output limita-tions of all unitsutipmini � pti � utipmaxi ;0 � stj � smaxj ;0 � wtj � wmaxj ;0 � `tj � `maxj ; t = 1; :::; T; (1)where pmini ; pmaxi ; smaxj ; wmaxj ; `maxj denote min-imal and maximal outputs of the units and themaximal storage volumes in the upper reser-voirs, respectively. The dynamics of the storagevolume, which is measured in electrical energy,is modeled by the equations:`tj = `t�1j � stj + �jwtj ; t = 1; :::; T;`0j = `inj ; `Tj = ` endj ; j = 1; :::; J: (2)Here, `inj and `endj denote the initial and �nalvolumes in the upper reservoir, respectively, and�j is the cycle (or pumping) e�ciency of plantj. The cycle e�ciency is de�ned as the quotientof the generation and of the pumping load thatcorrespond to the same volume of water. Theequalities (2) show, in particular, that there oc-cur no in- or out
ows with the upper reservoirsand, hence, that the pumped storage plants ofthe system operate with a constant amount ofwater. Constraints avoiding simultaneous gen-eration and pumping in the hydro plants are dis-pensable since it can be shown that such a de�-ciency can not occur in optimal points.Further single-unit constraints are minimum up-and down-times and possible must-on/o� con-straints for each thermal unit. Minimum up-and down-time constraints are imposed to pre-vent the thermal stress and high maintenancecosts due to excessive unit cycling. Denoting by�i the minimum down-time of unit i, the cor-responding constraints are described by the in-equalities:ut�1i � uti � 1� u�i ;� = t+ 1; :::;minft+ �i � 1; Tg; (3)t = 1; :::; T:

Analogous constraints can be formulated de-scribing minimum-up times.The subsequent load and reserve constraintscouple di�erent power units. The load con-straints say that the sum of the output powersis greater than or equal to the load demand ineach time period t:IXi=1 pti + JXj=1(stj �wtj) � dt; t = 1; :::; T: (4)In order to compensate unexpected eventswithin a speci�ed short time period, a spinningreserve, describing the total amount of genera-tion available from all units synchronized on thesystem minus their present load, is prescribed.The corresponding constraints are given by thefollowing inequalities:IXi=1(pmaxi uti � pti) � Rt; t = 1; :::; T; (5)where Rt > 0 is a speci�ed spinning reserve inperiod t.Final constraints model the non-anticipativityof the stochastic decision process. They saythat, at time t, decisions xt = (pt;ut; st;wt)must not depend on future realizations of theprocess fdt : t = 1; :::; Tg. In other words,(pt;ut; st;wt) is At-measurable;t = 1; :::; T: (6)The objective function is given by the expectedtotal costs for operating the thermal units overthe whole time horizon, i. e.,F (x)=F (p;u; s;w)=IE( IXi=1 TXt=1hFCi(pti;uti)+SCti (ui)i); (7)where IE denotes expectation, FCi are the fuelcost functions and SCti are the start-up costsfor switching unit i online during period t. Weassume that each FCi is piecewise linear convex(in the �rst variable) and each SCti is piecewiseconstant in time re
ecting the dependence onthe cooling time of the unit.Altogether, the model (1) - (7) amounts toa mixed-integer multi-stage stochastic programwhich is loosely coupled with respect to oper-ating units. The number of (stochastic) deci-sion variables of the model, which computes as2



2(I+J)T , is (very) large even for power systemsof medium size. Figure 1 shows a typical weekly(deterministic) load curve and the correspond-ing cost-optimal hydro-thermal schedule.
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Figure 1: Load and hydro-thermal scheduleFor the numerical solution of the model wenow assume that the stochastic load processhas �nitely many realizations (or scenarios).It is well known (cf. [1, 2]) that the non-anticipativity constraint (6) can be expressed bylinear equations for the scenarios x� ; � = 1; :::; r;of the decision vector x (cf. Section 4) and that(6) leads to a tree structure of the load scenarios.Since the decision vector x exhibits the sametree structure as the load, the model may easilybecome extremely large if the number of nodesin the scenario tree increases. Table 1 showsthe dimensions of the model for a weekly timehorizon (T = 168) and a medium size genera-tion system (I = 25 and J = 7) and for scenariotrees with equidistant binary branches.Since the huge size of the model (1) - (7) pre-vents the application of state-of-the-art mixed-integer LP solvers, decomposition techniquesmay provide a practicable alternative. NestedBenders decomposition approaches are used in[13, 14, 7, 8] for models without integralityrequirements and more recently (augmented)Lagrangian-type approaches are described in[4, 17, 16] for models that are similar to (1) -(7). In the following we present two types of(dual) decomposition schemes. The �rst one isbased on dualizing constraints coupling acrossunits (i.e. on a stochastic version of the La-grangian relaxation technique) and the secondon a dualization of the non-anticipativity con-straints (i.e. on scenario decomposition).

3 STOCHASTIC LAGRANGIANRELAXATIONThe �rst decomposition approach to solving themulti-stage stochastic programming model inSection 2 makes use of the fact that the num-ber of unit coupling (stochastic) constraints (4)and (5) is small compared with the dimension ofthe (stochastic) decision vector x = (p;u; s;w).As in classical Lagrangian relaxation we asso-ciate Lagrange multipliers � and � with thesecoupling constraints. Since the constraints arestochastic, the multipliers � and � have to beselected stochastic as well. Justi�ed by generalduality results for convex multi-stage stochasticprograms (see [15]) we consider the LagrangianL, the dual function D and the correspondingdual problem (10):L(x;�;�) = F (x)+IE TXt=1f�t(dt� IXi=1 pti� JXj=1(stj �wtj)) (8)+�t(Rt� IXi=1(utipmaxi � pti))gD(�;�) = min(p;u;s;w)L(p;u; s;w;�;�) (9)max(�;�)D(�;�) (10)where the minimization in (9) is subject to theremaining constraints (1), (2), (3) and (6) andthe maximization in (10) is subject to the con-straints that �t and �t are At-measurable andnonnegative, and have �nite �rst moments fort = 1; :::; T . In particular, this means that both� and � exhibit the same tree structure as d andthat the dimension of the dual problem (10) istwice the number of nodes in the scenario tree.For a more detailed discussion of the stochas-tic Lagrangian relaxation technique and its the-oretical underpinnings it is referred to [6, 12].The dual function decomposes into the follow-ing formD(�;�) = IXi=1Di(�;�) + JXj=1 D̂j(�)+IE TXt=1[�tdt + �tRt]; (11)where Di(�;�) and D̂j(�) are the optimalvalues of stochastic single-unit thermal and3



Scenarios Nodes Variables Constraints Nonzerosbinary continuous1 168 4200 6552 13441 1965710 756 18900 29484 60490 8846220 1176 29400 45864 94100 13761250 2478 61950 96642 198290 289976100 4200 105000 163800 336100 491500Table 1: Dimension of the model depending on the number of scenariospumped-storage hydro subproblems, respec-tively. The stochastic single-unit subproblemstake the following form:Di(�;�) = minuj TXt=1fminptj [FCi(pti;uti)�(�t � �t)pti]� �tutipmaxi + SCti (ui)g (12)D̂j(�) = min(sj ;wj) IE TXt=1[��t(stj �wtj)] (13)Here, the inner minimization in (12) with re-spect to the one-dimensional variable pti sat-isfying upper and lower bounds (1) can becarried out explicitly by examining all kinksin the piecewise linear fuel cost function FCi.Hence, (12) represents a combinatorial multi-stage stochastic program where the decision usatis�es the constraints (3). The subproblem(13) is a linear multi-stage stochastic programand the minimization is subject to the con-straints (1) and (2).The algorithm based on this stochastic La-grangian relaxation technique consists of the fol-lowing ingredients:(a) Construction of a scenario tree for thestochastic load process,(b) maximization of the nondi�erentiable con-cave dual function D by proximal bundlemethods using function and subgradient in-formation ([9, 10]),(c) e�cient solvers for the stochastic single-unit subproblems: stochastic dynamic pro-gramming for (12) and a descent algorithmfor (13),(d) Lagrange heuristics for determining a fea-sible approximate solution for the optimal�rst-stage decision of (1)-(7).For a detailed discussion of state-of-the-art al-gorithms, in particular proximal bundle meth-ods, for nondi�erentiable optimization problems

in the context of Lagrangian relaxation we re-fer to [6]. A description of the algorithms in(c) and their implementations can be found in[11, 12]. After having solved the dual problem(10), its optimal value max(�;�)D(�;�) pro-vides a lower bound for the optimal costs of themodel (1)-(7). In general, however, the corre-sponding decision vector (pt;ut; st;wt) violatesthe constraints (4) and (5). To �nd a feasi-ble �rst-stage solution the Lagrange heuristicsin (d) begins with taking the mean value func-tion of the stochastic processes �, �, s and w.This is followed by a water rescheduling proce-dure in order to �nd improved hydro schedulesand by a thermal Lagrangian heuristics whichgoes essentially back to [18]. After having the bi-nary decisions �xed for the whole time horizon, afast economic dispatch algorithm (see [12]) com-pletes the procedure in (d).Test results for a hydro-thermal power systemwith T=168, I=25 and J=7, and with randomlygenerated scenario trees having di�erent num-bers of scenarios and nodes are displayed in Ta-ble 2. Test runs were performed at an HP 9000Workstation (770/J280). In addition to CPU-times Table 2 shows the relative optimality esti-mates (gaps) obtained from the (deterministic)costs of the primal solution and the optimal dual(stochastic) costs.4 SCENARIO DECOMPOSITIONIn this section we view the multi-stage stochas-tic program from Section 2 as a large-scalemixed-integer linear program (MILP) consistingof single-scenario MILPs coupled by the non-anticipativity constraints. More speci�cally, themodel can be written in the following compoundformminn rX�=1��cx� : x� 2 P� ; rX�=1H�x� = 0o: (14)4



Scenarios Nodes time[s]/gap[%] Nodes time[s]/gap[%]10 781 31.2 / 0.274 1043 52.93 / 0.13810 1232 50.36 / 0.201 975 54.21 / 0.72320 1982 89.13 / 0.149 1627 93.62 / 0.10120 1651 67.94 / 0.367 1805 84.73 / 0.06630 2643 139.71 / 0.528 2643 138.61 / 0.52830 2548 147.51 / 0.849 2515 162.14 / 0.17550 4530 475.29 / 0.175 4060 274.43 / 0.09650 4041 312.86 / 0.099 4457 288.03 / 0.430100 9230 1183.25 / 0.108 9224 1072.18 / 0.131100 7727 929.68 / 0.087 8867 1234.12 / 0.304Table 2: Numerical resultsHere x� (� = 1; : : : ; r) stands for the decisionvector corresponding to the scenario �. Thesets P� (� = 1; : : : ; r) are the constraint setscorresponding to the individual scenarios. It isimportant to note that these are solution setsto systems of linear inequalities with integerrequirements to certain variables, e.g., to theon/o� decisions for the thermal units. The loadscenarios enter the mentioned inequality sys-tems as parts of the right-hand sides. By the lin-ear equation Pr�=1H�x� = 0 with suitable ma-tricesH� we model the non-anticipativity condi-tions. Since the load scenarios do not enter theobjective function we have the same vector c forall scenarios. Finally, �� (� = 1; : : : ; r) denotethe probabilities for the individual scenarios.It is easy to see that problem (14) were decom-posable with respect to the scenarios if it wasn'tfor the coupling constraint Pr�=1H�x� = 0.This motivates to set up a Lagrangian relaxationof the mentioned constraint. To this end we for-mulate the Lagrangian functionL(x;�) = rX�=1��cx� + � rX�=1H�x�= rX�=1(��cx� + �H�x�)= rX�=1L�(x� ;�)where � is the Lagrange multiplier vector froma Euclidean space of suitable dimension andL�(x� ;�) = ��cx� + �H�x� for all �.

The Lagrangian relaxation of (14) then readsD(�) = minfL(x;�) : x�2P�; � = 1; : : : ; rg= rX�=1minfL�(x� ;�) : x� 2P�g;and the Lagrangian dual is the optimizationproblem max�D(�).From duality in mixed-integer linear program-ming it is well known that the optimal valueof the Lagrangian dual rather provides a lowerbound for the optimal value of (14) than co-incides with this number. However, the La-grangian dual is a non-smooth concave maxi-mization problem for which powerful algorithmsincluding implementations are available (see [9,10]). Moreover, computing D(�) bene�ts fromthe decomposition indicated in the above for-mula. Instead of solving full-sized MILPs thefar smaller problems minfL�(x� ;�) : x� 2 P�ghave to be solved. The latter corresponding tothe individual scenarios the method is termedscenario decomposition. Note further that thescenario subproblems are very similar to powerscheduling problems for each individual loadpro�le. The only di�erence is in the term �H�x�that enters the objective. Therefore, experiencegathered with deterministic counterparts to ourstochastic power scheduling model can be im-mediately exploited when solving the scenariosubproblems.After having solved the Lagrangian dual weobtain a lower bound to the optimal value of (14)and together with the optimal � we have solu-tions x� (� = 1; : : : ; r) to the scenario subprob-lems. In the rare event where in addition it holdsPr�=1H�x� = 0 we know that x� (� = 1; : : : ; r)5



solve problem (14) as well. In general one hasto expect that the non-anticipativity conditionis violated by the solutions to the scenario sub-problems. Then heuristics are employed usingthe scenario subproblem solutions as input andyielding feasible non-anticipative points whoseobjective function values provide upper boundsfor the optimal value of (14), see [2] for a moredetailed description.The (relative) di�erence between the upperbound obtained by the above mentioned heuris-tics and the lower bound from the Lagrangiandual provides an optimality estimate for the out-put of the heuristics. This can be further im-proved by a branch-and-bound scheme on topof the Lagrangian dual whose details are de-scribed in [2]. Here the basic idea is to par-tition the feasible region of (14) and to applythe above scheme (lower bounding by the La-grangian relaxation of non-anticipativity, upperbounding by heuristics starting from subprob-lem solutions) to each of the members of the par-tition. As in traditional LP-based branch-and-bound or global-optimization-related branch-and-bound we obtain tighter and tighter boundstogether with feasible points that are closer andcloser to the optimum. In theory, convergence tothe optimum may be ensured. In practice how-ever, there is a substantial tradeo� between thespeed of convergence and the computing time.This tradeo� is very much depending on the con-crete problem at hand and has to be explored intest runs. The �nal part of this section is de-voted to a �rst step in that direction.In [3] a power scheduling problem with uncer-tain load is modeled as a two-stage stochasticprogram. For lack of space we have to refer to[3] for model details. Instead Table 3 gives animpression on the sizes of the binary and integermodels from [3]. The columns correspond to thenumbers of scenarios, constraints, (integer andcontinuous) variables, integer variables, and thedimension of �, respectively.For each of the model types, load scenar-ios were generated to cover uncertainty causedby generator failures and by forecast inaccu-racy, see [3] for details. In the implementationof our scenario decomposition method we usedCPLEX [5] for solving mixed-integer linear pro-grams arising in the Lagrangian relaxation andNOA 3.0 [9, 10], an implementation by K.C. Ki-
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