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Introduction

e Georg has much more than 100 publications in wide-ranging fields of interest
covering and connecting theory and practical applications.

e To review parts of his work | had to select some main topics without intending
to cover a high percentage of his research topics.

e My selection is

— Statistical inference of stochastic programs
— Risk measures

— Scenario trees for multistage stochastic programs

e Georg organized a number of International Conferences (including WC Bernoulli
Society1996, ICSP 2007 and OR 2015) and of Workshops.

e Georg's talks at some (early) SP Conferences are passed in revue, too.
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Stochastic Minimization with constant Step - size

- Asymptotic laws

G. Pflug (GieBen)

A multidimensional markovian process of the form

a _ a _ a
Xper = Tg X, a vy M

is considered. Here HS denotes the projection operator onto
the closed convex set S and Y: is a sequence of stochastic
gradients. We are interested in the behavior of the invariant
distribution of (1) as a tends to zero. Two different cases

have to be distinguished:

(a) the tangent cone CO at the minimal point xO (with
respect to S) contains a subspace of dimension greater than 0.

2 tends to a

In that case the invariant law, normalized by a~
degenerated normal distribution, if the curvature of S at Xo
is guadratic.

(b) if S is "pointed" at x
1

o then the invariant law,

normalized by a~ ' tends to a non-normal limiting distribution.
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PENALTY FURCTIONS TECHNIQUE IN TWO-STAGE
STOCHASTIC PROGRAMMING

Novikova N.M.

Let us consider the problem to search the value andYreali-

zation of the following stochastic minimum

§ g 2) T(dy),

o el g
where Z(ﬁ’-yy)={zéz|%(ﬁ‘,\a.i>é 0%, functions § ana g ars convex
with respect to %, T , sets X ,\f,Z are compact in Buclid space.
We introduce the function

2y L’“‘d’ §(xv,1)—www{f(xgz)+48+(x (31}

Z(r w€Z,

It is continuous

£ Z(a,y\: Y7 is continuous by Housdorf. The

sense of this construction is in better analytical properties of
ul) accordingly to the function angwn ” )f(x gir), used

o
Vith tnditional transformation. Ls poblend () o

§Cayy, 2(gy) 6(d
xs)( z(@m.(rg) VM Sr ~4 "j> y)

With the help of (2) the problem (1) transformes to the
search of vm'mf“‘(;j\'y(fy}over %,u(y, under the corstraint uhd\ > { i,
Yl d g (oge) Veel deRyequivalent to [§fnyadrdgrGy@d-uyilt=p vae
5,4€R*, or S[f(x.,q,?)n{ﬂ'(u-,xa,i)vu(p]*di s vdert (o eee),

Now cn theLbase cf integral penalty function e# the problem {1}

became g S {ugpet 5[5(3: predgting -
oo o x6X, U0
o oo dfes xeKue) ~ui 1y Yo ().

imizing function in (3] is convex, functionsU are contiruous,

RS R

uniformly boundered:
V‘jg\ﬁ min {13,412 & U(Y) & max §ix,y,w),
XY, 2 X2
Therefore to solve the problem {3) let's apply stochastic gra-
dients technique.
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Optimization of simulated Markov Processes

G. Pflug, JLU Gielen

We consider a discrete-time contiruous-state Markovian process

on B" with transition

Boap = A28 ()

x is a centrol vector and [‘n are i.i.d. random variables.
Suppose that iy is the unigue invariant neasure of (%}. The
pexrformance of this stochastic system is described by a real-
valued function II(Zn,X)‘ We are interested in optimizing the
expected value of H under the steady state law By with respect

to the contrel x, i.e.

[ Biz,x) dp, = maxi (or minl) (2)

x €8

where § is a convex set of comstraints. If ny is known, and

the integral (2} may be evaluated, the problem is a deterministic
constrained optimization problem. If the integral is complicated,
but a random generatoxr for Hy is available, a Monte-Caric like
technique {the Stochastic Quasigradient Technique) may be used.
Very ofter however, even .y is unknown and the only thing we

can do is to simulate the process 2y .

A method of on~line optimizaticn is presented, which consists
in a certain interplay of simulation {tc get an approximation of
the steady-state law ux] an¢ a gradient technigue (to approach the
optimal control xz*), The convergence properties of this new kind
of procedure are studied and the nice behavior is demonstrated

by some practical examples.

-27-
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covariance between objective function and RHS coefiicients,
ignored by the SQP model.

Stockastic Minimal Time Vessel Weather Routing

A.N. Perakis
University of Michigan

The stochastic minimal time vessel weather routing prob-
lem is defined. A p d ing the isoch line,
summarizing the exact knowledge of the sea state patlerns
dominating the initial part of the routing space is described.

This line is the first stage in a DP network. The rest
of the routing space is characterized by stochastic sea states,
which are estimated at the beginning of the voyage, utilizing
past observations, current forecasts and seasonal statistical
propeties. -

The DP formulation in a Markovian context, the associ-
ated recursive equation, and their relation to the determinis-
tic problem previously analyzed and published by the authors
is next presented.

Bounds on the optimal state evolution, resulting in a
serious reduction of the dimensionality of the problem, are
finally derived.

Stochastic Optimization by Stockastic Approzimation: Com-
puler Intensive Methods Combining Simulation and Opti-
mization

Georg Pflug
University of Vienna

Consider the problem of finding the solution of the stochastic
program

F(z) / H(2,€)dps(€) = min!

z€eS

Remark that in our problem formulation, not only the inte-
grand H, but also the probability measure Jt may depend on
. We discuss Stochastic - Approximation type algorithms
of the general form

Xnt1 = 75(Xp = an¥y)

where 75 is the projection onto S, @y, are stepsize constants
and Y, is a stochastic quésigradient, i.e.,

E(Y,) = VF(Xn)+ o(1)

The first part of the lecture is concerned with convergence
properties of the recursion { X, } (speed of convergence, asymp-

toticlaws, large deviations, stopping times and stepsize choices).

The second part deals with the problem of finding appro-
priate quasigradients for stationary distribution of stochas-
tic systems. We review the Kiefer-Wolfowitz method, the
IPA (infinitesimal perturbation analysis}), the notion of weak
derivatives and the scores method. Finally, implementation
details, including random number techniques and techinques
which are appropriate for parallel computer architectures are
discussed.

Use of Chance-Constrained Programming to Account for Stochas-
tic Variation in the A-Matriz of Large-Scale Mathematical
Programs

James B. Pickens and John Hof/Brian Kent
Michigan Technological University /USDA Forest Service

Linear programming in widely used to select the manner
in which forest lands are managed. This application has sev-
eral unique characteristics. Because of the nature of forestry,
the models consider many different. management actions over
many years, resulting in very large problems with diverse
data. In addition, almost none of the data are known with
certainty. The most pervasive occurrence of stochastic infor-
mation is in the production coefficients, which indicate the

i ST of the d forest ystem to vari-
ous management options. A “chance- constrained” approach
to handling this uncertainty would often be appropriate in
forestry applications-managers and decision makers would
like to specify a probability with which uncertain constraints
are met. Unfortunately, chance-constrained procedures for
linear programming are currently available only for random
right hand sides, and the random production coefficients en-
countered in forestry applications are almost invariably en-
tered as A-matrix coefficients. This paper will utilize a Monte
Carlo simulation approach (a lincar program will be repeat-
edly solved with randomly perturbed A-matrix coefficients)
to describe the distribution of total output when the indi-
vidual production coefficients are random. And, an iterative
procedure will be developed and demonstrated for “chance-
constraining” feasibility with this sort of random A-matrix.
An iterative approach is required because the mean and vari-
ance of total output is an unknown function of the random
A-matrix coefficients. This paper will be oriented toward
forestry linear programs, but may have applications in other
fields as well.

Deterministic Approzimations of Probability Inequalities

Jénos Pintér
Institute for Transport Sciences, Budapest, Hungary

A simple general framework is presented for deriving var-
a in bability i it

ious approxi i of

of the form P{€ > a} < «. These approximations are
based on limited parametric information about the involved
random variables (such as their mean, variance, range or
upper bound values), as examples of possible applications,
stochastic extensions of the “knapsak problem” and of the
stochastic linear ing problem are i i d: we
provide approximate deterministic surrogates for these prob-
lems.

An Inespensive Basis Recovery Procedure for Karmarkar's
Dual Affine Method

and Anthony Vannelli

Ku y Ponnambal
University of Waterloo

The basis recovery procedure is useful for the following
reasons:
(i) accurate primal and dual solutions are available (an ac-
curate primal solution is difficult to determine if approxi-
mate methods such as the pre-conditioned conjugate gradi-
ent method is used in Karmarkar's Dual Affine (DA) method
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Asymptotic stochastic programs

Georg Ch. Pflug

Univ. of Vienna

Consider the stochastic program
) | W(H(x,8)) + pc(z) = min!
where ¢ is the indicator of the set C and suppose that it has a unique solution

2" = argmin, ¢ IE(H (2, £)).

For practical solution, the program (P) is approximated by the ”empirical program”
P
") (@) = — ST H(x,&) + te(x) = mint

where (€;) is a sequence of i.i.d random variables with the same distribution as €. Any measurable
selection

X € arg min, Fo(z)
is called an ”empirical” solution and the guality of X,, (which is a random variable) may be judged
by looking at the asymptotic distribution of

Ty =K — 27,

where T, is a sequence of regular matrices with nonnegative entries which converge to zero. By a
simple change of coordinates
Ty € arg min, Z,(2),

where Z, (1) is the stochastic process
n
Zn(t) = pp 3 [H(z* + Tut, £) — H(z*, &)] + pc(a” + Tat).
i=1

with (pn) being an appropriately chosen sequence of positive constants. Under general assumptions
Zn(+) epi-converges in distribution to a limiting process

Z(:) = D()+ S() + ¥re (),

where D(t) is a regularly varying deterministic function and S(t) is an infinitly divisible mean zero
stochastic process on IR™. The stochastic program

D(t) + $(¢) = mint
) H te K C IR

is called the asymplotic stochastic progam associated to (P).

The aim of the talk is to identify classes of stochastic processes Z(-) which may occur as limits.
Under some regularity assumptions, the limiting process S(-) has one of the following structures

i) S@t)y=tY where Y ~ N(0,5),
(i) S(2) = W(1), the m~dimensional Wiener process,

(iii) S(t) is a Poisson-Hyperplane process
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ASYMPTOTIC STOCHASTIC PROGRAMS

GEORG CH. PFLUG

Consider a stochastic program with unique solution. By the notion of epi-convergence in
distribution in local coordinates, we define the asymptotic stochastic program ;{3.\'00;.1:d to u:
Stochastic programs may be classified nccmding lo.lhc type of the pertaining a:'ympnz:‘xt
program. In particular, three such types are studied in detail: the normal shift program. the
Wiener-type program and the Poisson-hyperplane program. Conditions for the convergence
to each of the three types are given.

1. Introduction. We consider the stochastic program

Minimize E( H(x, ¢)),
M ) reCcRY,
where ¢ is a random variable and C is a closed convex set. Suppose that (P) has a
unique solution

=argminE(H(x, ¢)).
xeC
By introducing the indicator function

e(x) =

k=

. otik
we may write -

i
A X =argminF(x),

( ) : Postfach 1297, Berlin, 1086

Site: Unter den Linden 6

where

F(x) = E(H(x, £)) + ().

For a practical solution, the program (1) is approximated by the “empirical program”
1
o) (P")  IMinimize Fy(x) = + Y H(x, &) + ve(x),
i1

where (¢) is a sequence of i.i.d. random variables with the same distribution as ¢.

Received July 5, 1993: revised June 28, 1994.
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We consider the stochastic program

min {/Ef(x,@p(dg) T € X},

where f is a normal integrand on R™ x R? X a closed subset of R” and P a
probability distribution on RY.
The empirical approximation of the stochastic program is

min {%Zf(a?,gz) +x(x) :x € Rm} (n € N),

where Jy denotes the indicator function of X and &/, i € N are i.i.d. random
variables in R? with common distribution P.

Assume that the original SP has a unique solution z* € X and let (p,) be a
positive sequence and (I';,) be a sequence of regular m x m matrices converging
to zero. Consider the stochastic process

Zn(t) = pn Y _[f(a* + Tt &) — f(a*,€)] + ox(a* + Tt)) (£ € R™).
i=1
Pflug 95 derives conditions under which the sequence (Z,,) epi-converges in distri-
bution to some stochastic process Z which is explicitly characterized.
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STOCHASTIC PROGRAMS AND EMPIRICAL PROCESS THEORY

G. Ch. Pflug, Vienna

If 4 is some probability measure and (X;) is a sequence of independent random
variables distributed according to u, then
N 1&
fin == 8x,
™=

is the emprical measure (8, denotes the point mass at point z). Notice that (i,) is
a sequence of measure-valued random variables. Under mild regularity conditions, fin
converges almost surely weakly to p.

This general fact is often used in stochastic programming, where the original pro-
gram containing the measure u is approximated by the emprirical program, which
contains the emipirical measure f,. The empirical program is easier to solve and the
quality of this approximation is an important issue.

Probabilists have developed a variety of fundamental results, which deal with the
emprical process and its analytic properties. One group of results concern uniformity
properties: What are the conditions for sets of functions F or families of sets C to
guarantee that

dt — dp| — 0
ig;!/f i /f ul
or
sup [an(C) — u(C)| — 0
cec

as n — oo?
Other results concern the asymptotic normality of
Valf fain— [ £ ).

What is the speed of convergence? Here, Banach-space-valued stochastic processes
come into play. Also, strong approximations and the KMT-construction are relevant.

The laws of iterated logarithm deal with the pointwise asymptotic behavior of

s [ 7 din - [ 14 ] .
Vv2Ioglogn f din fdn
Finally, the large deviations results give informations about
P{) [ f din — [ faul = o).
All these results can be applied to yield interesting results about the approximation
quality of emprirical stochastic programs. Some results will be presented, some not yet

investigated areas will be pointed out.
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ON THE GLIVENKO-CANTELL! PROBLEM IN STOCHASTIC
PROGRAMMING: LINEAR RECOURSE AND EXTENSIONS

GEORG CH. PFLUG, ANDRZE] RUSZCZYNSKI anp RUDIGER SCHULTZ

Integrals of optimai values of random optimization problems depending on a finite dimensjonat
parameter are approxintted by using empirical distributions instead of the criginal measure, Under
fairly broad conditians, it is proved that uniform gence of empirical approximations of the
right hand sides of the constraints implies uniform convergence of the optimal vatues in the linear
and convex case.

1. Intreduction. Real-world decision problems are usually associated with high un-
certainty due to unavailability or inaccuracy of some data, forecasting errors, changing
environment, etc., There are many ways to deal with uncertainty; one that proved suc-
cessful in practice is to describe uncertain quantities by random variables.

Using the probabilistic description of uncertainty within optimization problems leads
to stachastic programming models. There is a large variety of such models, depending
on the nature of information about the random quantities aid on the form of objective
and constraints. One of the most popular models, which found numerous applications in
operations research practice, is the fwo-stage problem. In its simplest lincar form, it can
be formulated as follows:

(L) min[ X+

ff(«\‘, W)P[dw)] ,

XEX

where X C R™ is the first stage feasible set and £: R™ x Q — R denotes the recourse
Junction dependent on x and on an elementary event in some probability space (2, £, P).
The recourse function is defined as the optimal value of the second siage problem

(1.2} F(x,w)=min{g(w)y | W(w)y =b(x,w),y=0}.

Here, the vector y € R™ is the second stage decision {which may, in general, depend on
x and ), g(w) is a random vector in R*, W(w) is a random matrix of dimension my
X nyand b i R™ X = R™ is a measurable function.

There is a vast literature devoted to properties of (he two-stage problem (1.1)~(1.2)
and to solution methods (see Ermoliev/Wets (1988) or Kall/Wallace (1994) and the
references therein). It is usually assumed tha! W is a deterministic matrix and

(1.3) b(x, w) = h(w) - T(w)x.

For example, 1(w) may be inerpreted as a random demand/supply and 7(w) as a cextain
“technology matrix’* associated with the first stage decisions. Then b(x, w) is the dis-

Received April 30, 1995; revised March 4, 1996, and May 13, 1997
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crepancy between the technology input/output requirernents and the demand/supply ob-
served, and some corrective action y has to be undertaken to account for this discrepancy.

However, in some long-term planning problems in a highly uncertain environment, it
is the data referring o the future that are random. For example, in long-term investment
planning, where x denotes the invesument decisions o be made now, while y represents
future actions, the costs ¢ and the technological characteristics W of the future investments
are usually uncertain. Moreover, new technologies may appear that may increase our
recourse capabilities. Therefore we focus on the random recourse case in 2 generalized
sense, 1.¢e. a sithation when besides W and ¢ also the number of columns of W is random.

Next, our model allows much more general relations between the first stage variables
and the second stage problem than the linear relation (1.3). In (1.2) we aflow, for ex-
ample, nonlinear and random technologies 7(x, w); moreover, the supply/demand vector
may be dependent on both x and w. Apart from a broader class of potential applications,
such a model appears to be interesting in its own right. In §6, we shail show how to apply
results for (1.2) to some more general canvex problems.

The fundamental question that will be analysed in this paper is the problem of approx-
imation. Nanely, given an i.i.d. sample s = {5;}7; € 07 = Q", we consider forn € N
the empirical measures

(14) Ps) ==X &,

where &, denotes point mass at s;. Ar empirical measure can be employed to approximate
the expected recourse function

(1.5 Flx) = ff(x, w)P(dw)
by the empirical mean
(1.6) Fy(x) = [fu WP (5)(dw) = “Zf(v‘ 5.

The main question is the following: can uniform convergence of F, 10 F take place for
almost all s (with respect to the product probability P* en )7 We shall show that a
positive answer to this question can be given for a very broad class of functions b(x, w}
in (1.2). To this end we shall use some results on the Glivenke-Cantelli problen: devel-
oped in Gine/Zinn (1984), Talagrand (1987), Vapnik/Cervonenkis (1981)

Compared with related contributions to the stability of two-stage stochastic programs,
the scope of the present paper is novel in two respects: we allow recourse matrices with
random entries and random size, anc we are able to treat discontinuous and non-convex
integrands in the expected recourse function. The tools from probability theory that we
use here lead to uniform convergence. The approaches in Dupacova/Wets (1988), Kall
(1987), Robinson/Wets (1987) utilize milder types of convergence (such as cpigraphical
convergence), and hence they can handle extended-real-valued functions. As in (he pres-
ent paper, the accent in King/Wels (1991) is on convergence of expected recourse func-
tions in the context of empirical measures. The authors obtain consisitency results that
cover convex stochastic programs with a fixed recourse matrix W. Perturbations going
beyond empirical measures are studied in Kall (1987), Robinson/Wets (1987) for fixed-
recourse problemts with continuous integrands. Further related work is contained in Vogel
(1992, 1994, where random approximations to random opfimization problems are con-
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Stochastic programs and statistical data

Georg Ch. Pflug
Department of Statistics and OR, University of Vienna,
Universitdtsstrasse S, A-1010 Vienna, Austria

E-mail: pflug@smc.univie.ac.at

Using statistical data instead of true undertying distributions in a stochastic optimization
problem leads to an approximation error. We discuss how bounds for this error can be derived
from results on uniformity in the law of large numbers.

Keywords: risk functionals, confidence regions, metric entropy

AMS subject classification: 90C1S5, 62G15

1. Risk functionals

A stochastic optimization problem is characterized by the fact that the costs
associated with the decision x are uncertain in the sense that they depend on a random
variable (or random vector) & We denote these costs by f(x, £). The function f is
known to the decision maker. The distribution of & is typically unknown, but a sample
&,..... &€, is available, which follows this distribution. Therefore, a statistical estimation
problem is associated with the optimization problem.

The cost variable Y, = f(x, &) is a real-valued random variable. Let G, be its

distribution function
Go(u) = P{Y, < u}.

For decision making, preference relations for cost distributions must be defined:
Let ¥ be a set of measurable functions and define

Gy, ‘;’ Gy, iff fl;/(u)deI (u) < J- Y (u)dG,, (u) forall y € W,

Examples are:

» Stochastic dominance of order 1 (imonotonic dominance).
Here, W is the set of all bounded, monotonic functions.

© J.C. Baltzer AG, Science Publishers



Let v(P) and S(P) denote the optimal value and solution set of the original
stochastic program. It holds

/f@f?@@—/f@fwwﬂ
/?mf (d€) - /fwg d&D

where X is assumed to be compact, B is the unit ball in R™, () is a probability
distribution approximating P and W p is the growth function of the objective near

[v(P) —v(Q)] < sup

0#SQ) < S(P) Gw

zeX

the solution set, i.e.,

Up(t) ;= inf {/:f(x,f)P(df) —v(P):x € X,d(x,S(P)) < t}.

Hence, the uniform distance dz with F := {f(x,-) : * € X} becomes important
45(P.Q)i=sup| [ 16 &’L/f i)
feF

when studying approximations of the original stochastic program.



With P, denoting the empirical measure to P, it is, hence, of interest whether
the function class F is a P-Glivenko-Cantelli class, i.e.,

lim dg(P, P,) =0 as.

n—oo

Pflug-Ruszczynski-Schultz 1998 provide sufficient conditions such that integrands from
linear two-stage stochastic programming and its extensions are Glivenko-Cantelli-
classes using tools from the work by Talagrand 1987.

The empirical process {n%(Pn — P)f} ter is called uniformly bounded in proba-
bility with tail C'z(-) if the function Cr is decreasing on (0, 00) and the estimate

P(n2dz(P, P,) > ¢) < Cx(e)

holds for all £ > 0 and n € N. In his seminal work Talagrand 1994 proved that the
tail can be chosen as

Cr(e) = p(e) exp (—2¢%) (e > 0)

with a polynomial p if the class F is uniformly bounded and satisfies some met-
ric entropy condition. Pflug 1999 showed that integrands from linear two-stage
stochastic programming satisfy the metric entropy conditions.



Linear two-stage stochastic programs:

win{ (e:2) + | @(a(€). () - TODP(E) € X |

where ¢ € R™, = and X are polyhedral subsets of R? and R™, respectively, P

]

is a probability measure on = and the s x m-matrix T(-), the vectors ¢(-) € R™
and h(-) € R? are affine functions of .
The function ® denotes the parametric infimum function of the linear second-
stage program

O(u,t) =inf {{u,y) : Wy=t,y € Y},

which is finite and continuous on D x W (Y'), where D is the dual feasibility set
D={uecR": {zeR: W'z —uecY*}#£0},

where W is the s X T recourse matrix, W ' the transposed of W and Y* the
polar cone to the polyhedral cone Y in R™.

The function ® is concave-convex polyhedral and finite and locally Lipschitz
continuous with linearly growing local Lipschitz moduli on D x W(Y').
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: Chapter 7

Stochastic Optimization and Statistical Inference

G.Ch. Pflug

Depariment of Statistics and Decision Support Systems, University of Vienna,
Universitdtssirasse S, A-1090 Vienna, Austria

Abstract

If' the distribution of the random parameters of a stochastic program is
unknown, the empirical distribution based on a sample may be used as a proxy.
This empirical approximation is related to the “true” stochastic program in the
same way as a statistical estimate is related to the truc parameter value.
Properties of statistical estimators, like consistency, asymptotical distributions
and the construction of confidence regions are reviewed in the realm of
stochastic optimization. The entropic size of a stochastic program determines
the quality of the approximation. In case that random constraints are present,
the notion of epiconvergence replaces in a natural way the notion of uniform
convergence of functions. The asymptotic structures are described by the
asymptotic stochastic program associated to the sequence of empirical
programs.

Key words:  Empirical program, statistical estimates, asymptotic statistics, risk
functionals, entropic size, epiconvergence, asymptotic stochastic programs.

1 Uncertain and ambiguous optimization problems

i In deterministic optimization, a decision x must be found, which minimizes
a known cost function f{x) among all possible candidates x lying in the feasible
set XS RY, a closed subset of the euclidean d-dimensional space

/

Min f(x).

427




Some Remarks on the Value-at-Risk and the
Conditional Value-at-Risk

Georg Ch. Pflug (georg.pflug@univie.ac.at)
Department of Statistics and Decision Support Systems
University of Vienna

Abstract

The value-at-risk (VaR) and the conditional value-at-risk (CVaR) are two com-
monty used risk measures. We state some of their properties and make a com-
parison. Moreover, the structure of the portfolio optimization problem using
the VaR and CVaR objective is studied.

Keywords: Risk measures, Value-at-Risk, Conditional Value-at-Risk, Portfolio
optimization

1 Introduction

Let Y be arandom cost variable and let Fy be its distribution function, i.e. Fy(u) =
P{Y < u}. Let Fyy ' (v) be its right contintous inverse, L.e. Fy'(v) = inf{u : Fy(u)) >
v}. When no confusion may eccur, we write simply F instead of Fy.

For a fixed level o, we define (as usual) the value-at-risk VaR, as the c-quantile,
ie.

VaR,(Y) = F(a). (1)

The conditional valve-at-risk CVaR, is defined as the solution of an optimization
problem

1
CVaR. (Y} = inf{a+ TiE]E[Y ~at:a € R} 2
Here {2]* = max(z,0). Uryasev and Rockafellar (1999) have shown that CVaR
equals the conditional expectation of ¥, given that ¥ > VaR,, i.e.
CVaR,(Y) 2 E(Y|Y > VaRa(Y)). ®)
2m

S.P. Uryasev (ed.), Probabilistic Co ined Oprimization, 272-281,
© 2000 Kluwer Academic Publuhers Printed in the Netherlands.

In fact, (3) is the usual definition of CVaR,.

We will prove some properties of CVaR and VaR and study the relation between
these two measures of risk. To begin with, we show that the minimizer in (2) is
VaRg, even if F is not differentiable.

Proposition 1. Suppose that F(b) > & and F{b~) < o. Then

1 1
bt e Y = 0 < g o e[V — o]t
Ty B 8 S a+ By —q)

for all a.
Proof. Suppose first that b < a. Then

BY Lpeyy) = BY Tacry] = EY Iyeyey)
alF(a) ~ F(3)) < alF(e) - & — 0IF(b) ~ a).

Therefore -

IA

o1~ a] b1~ PO + BY Lpey)] < afl ~ o] ~ afl - P(a)] + EY Lper)]
b1 = ] + (Y ~ lpar) < afl - o} + BV — ) ljeey)

1 . 1
bt BV = 0lper] < ot TR ~ )l
Let now @ < b. Then

EY Yery] = EY Dpary] = EY Yucyp]
alf(b=) = Fa)] 2 [F(b~) - o] - a[F(a) ~ o

v

Therefore

afl = ] ~ af1 ~ F(a)] + EY Tuer))
{l - oz} +E (Y - (L)Jl(a<y)}

b+ ~—-—IE[(Y D) ey

BL = &) = b1 = F(b=)] + E[Y Tpeyy]
1= o] + E[(Y - 0)Lpery] ~ b[L — F(b-))
a-+ I%—&]EKY = 6)Laeyy).

2
P4

As a consequence, one sees that

VaRo(Y) = F(a) € argrin {a+ K[ - a*).
-
Alternative, equivalent representations of CVaR are therefore

CVaR.(Y) = E[Y]Y 2 F(a)]

= 1_a/F‘1\u»du

= udF( ).

1-a Pia)
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Risk measures, convexity and the associated risk processes
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Abstract

Risk measures map distribution functions of random variables to the rcal line. We
jntroduce some concepts of monotonicity and convexity for such measures. Three notions
of monotonicity (first order stochastic dominance, second order stochastic dominance and
concave dominance) are discussed as well as three notions of convexity (compound convexity,
convolution convexity and comonotone convexity)-

The second half of the talk deals with tree processes and optimization problems defined
on these processes. The optimal solution process and the clairvoyant process are identified.
Their properties depend on the convexity structures of the considered risk measure. Con-
volution convexity translates into convexity of the associated multistage stochastic program
whereas compound convexity translates into supermartingale structures for the optimal
value process and the clairvoyant process. This generalizes earlier work of Dempster on
EVPI (expected value of perfect information)- processes.
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often all natural candidates for a true model are infinite-dimensional optimization problems involving
mathematical concepts that practitioners are not always familiar with, Indeed, in many problems, there
are essential (not just technical) features that can be captured only in terms of infinite-dimensional spaces.
Such general stochastic programming models were well-developed already in the 1970’s, but it seems that,
as stochastic programming gained popularity among practitioners, they were partly forgotten. Nowadays,
stochastic programming models of real-life problems are often formulated in terms of scenario trees
constructed in an ad-hoc manner. This has resulted in vague formulations of stochastic programs that lack
interpretation.

Our aim is to describe an analytical version of the stochastic programming approach for practical decision
making. In our approach, both the modeling and solution phases are broken down into two sub- phases:

1.1 Modeling the decision problem as an optimization problem,

1.2 Modeling the uncertainty,
2.1 Discretization of the optimization problem,

2.2 Numerical solution of the discretized problem.

The first step consists of modeling the decision problem as a stochastic optimization problem over a general
probability space. The second step consists of specifying the probability distribution of the uncertain data.
The purpose of the third step is to construct finite-dimensional, numerically solvable, consistent.
approximations of the optimization model specified in the first two steps. The discretized model is then
solved in the fourth step using appropriate techniques for stochastic programs over finite scenario trees.

This kind of approaches to problem solving are familiar from other fields of applied mathematics such as
ordinary or partial differential equations. Indeed, there also one models real phenomena by
infinite-dimensional models, after which solutions are sought through discretization and numerical
computation. Our approach has several advantages. First, it facilitates the solution process by
decomposing it into more easily manageable pieces. Second, having a well-defined model allows for rigorous
analysis of the problem and solution techniques. Third, it allows one to use well-developed models from
various fields of stochastics where stochastic processes are not restricted to finite scenario trees. Fourth,
this approach relates closely with other dis ciplines, making stochastic programming more attractive to a
wider range of researchers and practitioners.

(ThE, Grand Ballroom)

Pflug, Georg. University of Vienna

Risk measures as solutions of stochastic programs

Practically all risk measures proposed in the literature can be seen as solutions of linear stochastic
programs. This means that they have primal and dual representations, are monotone w.r.t. information
and exhibit convexity properties. Also monotonicity properties may often be easily deduced from these
representations. /

We review representations of one- and multi-period risk measures and, following Kusuoka (2000),
investigate special representations of risk measures which depend only on the distribution of the involved
stochastic processes.

(MF, South Baliroom)

Philpott, Andy. University of Auckland

On unit commitment in electricity pool markets

‘We consider an electricity generator making offers of energy into an elect icity pool market. The generator
runs a set of generating units with given start-up costs and operating ranges. For a given time period, it
must submit to the pool system operator a supply function, typically consisting of a fixed number of
quantities of energy and prices at which it wants these dispatched. The.amount of dispatch depends on the
stack offered along with the offers of the other generators and market démand, both of which are random,
but are assumed have known market distribution functions. After dispatch the generator determines which
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Measuring Risk for Income Streams

GEORG CH. PFLUG georg pllug@univie.ac.at
Department of Statistics and Decision Support Systems, Universitactssivasse S, University of Vienna, 1090 Wien-
Vieana, Austria

ANDRZE) RUSZCZYNSKI rusz@ruteorrutgers.edu
Department of Management Science and information Svstems and RUTCOR, Ruigers University, 99 Rockefetler
Rd, Piscataway, NJ 08854, USA

Abstract. A measure of risk is introduced for a sequence of random incomes adapted to some filtration. This
measure is formulated as the optimal nel present value of a stream of adaptively planned commitments for
consumption. The new measure is calculated by solving a stochastic dynamic linear optimization problem which,
for finite filtrations, reduces to 4 deterministic lincar programming problem.

We analyze propertics of the new measare by exploiting the convexity and duality structure of the stochastic
dynamic tinear problem. The measure depends on the full distribution of the income process (nat only on its
marginal distibugions) as well as on the filtration, which is interpreted as the available information about the
fature, The features of the new approach are illustrated by a numerical example.

Keywords:  dynamic risk measure, muitistage stochastic programming, multiperiod mean-isk models, value of
perfect information, conditional value at risk

Motivation N

Since the seminal work of Markowitz it is well understood that consequences of economic
activity with uncertain success must be judged in two different and well distinguished

dimensions. The mean refers to the average result among a set of possible scenarios, while
the risk dimension describes the possible variation of the results under varying scenarios.
In the Markowitz model the risk is measured by the variance of the outcome (cf.

[11, 123).
In the mean-risk setting the decision maker is faced with a two-objective situation: he/she
wanls (o maximize (he mean return and to minimize the risk at the same time. As for all
multi-objective situations, there is in general no uniquely defined best decision, which is
optimal in both dimensions and one has to seek for compromises. The set of solutions which
are Pareto-efficient in the sense of these two objectives is called the mean-risk efficient
frontier. In some models for optimal decision making the two dimensions are often mixed
by introducing a nondecreasing concave utility function. Risk aversion, i.e. the degree of
taking the risk dimension into account, can be modeled by the negative curvature of the
utility function.

However, it is highly desirable to clearly separate the two dimensions and to make
the ising strategy as as possible, and the efficient frontier approach
provides such a transparency. In the first step, the efficient frontier is calculated for a given
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Abstract. Measures of risk appear in two categories: Risk capital meastres serve to detertmine the necessary
amourt of risk capital in order to avoid ruin if the outcomes of an economic activity are uncertain and their
negative values may be interpreted as ptabili (safety ). Pure risk (risk devi-
ation ) are natural generalizations of the standard deviation. While puse risk measures are typically
convex, aceeptability measures are typically concave, In both cases, the convexity (concavity) implies under
mild conditions the existence of subgradients (supergradients). The present paper investigates the relation
between the subgradient (supergradient) reptesentation and the propetties of the corresponding risk mea-
sures. In particular, we show how monotonicity properties are reflected by the subgradient representation.
Once the subgradient (supergradient) ion has been established, it is mely easy to desive these
monotonicity propertics, We give a list of Examples.

Key words. Risk ~Duality - hastic d

1. Introduction

Inrecent years, starting from the seminal paperby Artzneretal. [ 1], axiomatic approaches
(o the definition of appropriate measures of risk for random variables and stochastic pro-
cesses have been in the center of interest of many authors ([5, 8,7, 9, 15, 170). Tt is
common sense, thal convexity (concavity) plays a key role among the required prop-
erties for risk measures. A convex lower semicontinuous function is characterized by
the fact that it is the dual of its own dual, hence completely characierized by its dual
function. A concave function is characterized by the fact that its negative is convex,

Concavity (convexily) of risk functionals has been recently investigated by
Ruszczyfiski and Shapiro [19]. They show the continuity and super(sub)-differentia-
bility of risk functionals under mild conditions, i.e. the existence of dual representa-
tions. Moreover they investigate the dual structure of optimization problems involving
super(sub)differentiable risk functionals, For positive homogeneous risk deviation mea-
sures (see below), Rockafellar et al. [18] have shown the existence dual representations
and characterize the subgradient set, calling it the risk envelope,

In this paper, we show how for super(sub)differentiable risk functionals, the dual

representation can be used to derive some properties (in patticular monotonicity) of

the risk functional in a very simple manner. Morcover we give many examples of dual
representations of well knowa risk functionals.

G. Ch, Pflug: Depariment of Statistics and Decision Support Systems, Universititsstrasse 3,
University of Vienna, 1090 Wien-Vicnna, Austria.
e-mail: georg.pflugbunivie.ac.at

Statistics & Decisions 24, 45-60 (20063 / DOT 10.1524/5tnd.2006.24,1.45
© R. Oldenbourg Verlag, Miinchen 2006

On distortion functionals

Georg Ch, Pflug

Received: November 11, 2005; Accepted; March 19, 2006

Summary: Distorled measures have been used in pricing of insurance contracts for a fong time. This
paper reviews properties of related acceptability functionals in risk management, called distortion
functionals. These functionals may be characterized by being mixtures of average values-at-risk.
We give a dual representation of these functionals and show how they may be used in portfolio
optimization. An iterative numerical procedure for the solution of these portfolio problems is given
which is based on duality.

1 Introduction: Distortion functionals as insurance pre-
mia

Let L be a random variable deseribing the (nonnegative) loss distribution of an insurance

contract. Let Gy, be the pertaining distribution function Gy, (u) = P{L < u}. How much

premium should the insurance company ask for coverage of L? Obviously, the premium

should be greater than B[] otherwise the insurance company will go bankrupt for sure.
Based on the well known formula

fesl
]E[_L]:/ (I~ Gp(w) du

]
a safe insurance premium can be defined by

o0

gl L] :/ Wl — Gr.(u)) du, (1.1
0

where 1 is function, mapping [0,1] to [0,1], such that

¥(p) = p for p e [0,1). (1.2)

The condition (1.2) guarantees that the premium is not smaller than the expectation,
However one usually considers more specific functions V.
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Asymptotic distribution of law-invariant risk
functionals
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Abstract Law-invariant or version-independent coherent risk or acceptability func-
tionals do not explicitly depend on the underlying probability space and can be con-
sidered as functionals of the distribution function. In this paper, we consider estimates
of these functionals based on the empirical distribution function and investigate their
asymptotic properties.

Keywords Risk functionals - Law-invariance - Asymptotic normality - M-theorems
Mathematics Subject Classification (2000) 91B30 - 62E20 - 6G0F05 - 91B28

JEL Classification D81 - G32

1 Introduction

In this paper, we consider the asymptotic properties of coherent version-independent
risk functionals. Such functionals have wide ranging applications in the financial in-
dustry, e.g. in portfolio optimization, asset pricing, capital allocation problems, per-
formancé analysis and evaluation (see {2, 6,7, 13, 18, 27]).

The property of version independence, also known as faw-invariance, states that
the risk functional igns the same value to random variables following the same
distribution, i.e., for random variables X and Y following the same distribution F,
A(X) = A(Y). In this case since the risk measure does not explicitly depend on the

G. Pflug - N. Wozabal (53)
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1010 Vienna, Austria
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Multi-period risk functionals assign a risk value to discret
While convexity and monotonicity extend in straightforward manner from the single-
period case, the role of information is more problematic in the multi-period situation,
In this paper, we define multi-period functionals in such a way that the development of
available information over time (expressed as a filtration) enters explicitly the definition
of the functional. This allows to define and study the property of information monotonic-
ity, i.e. icity w.r.t. filtrations. On the other hand, time consistency of
valuations is a favorable property and it is well-known that this requirement, essentially
leads to compositions of conditional mappings. We demonstrate that generally spoken
the intersection of thme consistent and information monotone valuation functionals is
alone are quite rich. In particular, the paper give
a e cssary and sufficient condition for information monotonicity of additive composi-
of p $ risk /acceptability Within the class of d

Int. J. Theor. Appl. Finan. 2014.17. Downloaded from www.worldscientific.com
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tortion fi i only i of i or essential infima are informat
monotone. Purthermore, we give a sufficient ition and les for it
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Consider a probability space (€2, F,IP), a filtration 7y C F; C --- C Fp of
o-fields and let § = (Fy, ..., Fr) represent the observable relevant information.
Let p(-,§) denote a multi-period risk functional defined on some normed space
Y = xleyt of random vectors Y, where Y, is F;-measurable, with values in
the extended reals R = RU {+o00}, i.e., p(-,§) is convex on ) and satisfies the
monotonicity property p(Y,§) < p(X,§) if X; <Y, P-as, t=1,...,T.

The multi-period risk functional p(-, ) is called information monotone if
p(V,F) < p(Y,§) holdsforall Y ey if FCF,t=1,...,T,

where § = (Fy,..., Fr) and §' = (F{, ..., Fp).

Now, consider a sequence of (risk) mappings p/)( -, ") from xL, .,V to Y,

fort =0,...,7 — 1, where 9 = (F,,..., Fr)and YO = (Y}, ..., Y7).

Such a sequence is called time consistent if

pD(X D 0y < pOy D &) and X, > Y, implies
P D(x W F=y < =Ly ) =)

forall X, Y € Yandt=1,...,T — 1 (Kovacevic-Pflug 14).



Multi-period risk functionals p(-, §) are typically constructed by composing (risk)
mappings in a suitable way.

Examples:

(a) SEC risk functionals: p(Y,§) = S Elpi(Yi1]F)],
where the p:(-|F;) : Vi1 — Yy are conditional risk mappings. Such func-
tionals are composed by a sequence of time consistent risk mappings and is
information monotone if each p;(-|F;) is information monotone.

(b) Additive conditional risk functional compositions:

T
Py FOY = p(|F) o0 PT—l( Z Y,

i=t+1

]—"T_l) (t=0,...,T 1)

p(Y,3) = pOy™, 30

Additive risk functional compositions are time consistent, but lead to infor-
mation monotone multi-period risk measures only in a few cases.

(c) Dynamic programming recursions are time consistent and may be used to
obtain information monotone multi-period risk measures.
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Abstract. Multiperiod financial optimization is usually based on a stochastic model for the possible market
situations. There is arich literature about modeling and estimation of continuous-state financial processes,
but little attention has been paid how to approximate such a process by a discrete-state scenario process and
how to measure the pertaining approximation error.

In this paper we show how a scenario tree may be constructed in an optimal manner on the basis
of a simulation model of the underlying financial process by using a stochastic approximation technique.
Consistency relations for the tree may also be taken into account.

1. Introduction —the approximation problem
A (continuous-state) multistage financial optimization problem with decision periods
1,2,...T isbased on

e astochastic model of the future development of the economic environment (prices,
interests, cash-flows, etc.). This scenario processis expressed as a (possibly vector-

valued) stochastic process &1, &2, ..., &T;

e adecision model for the actions to be taken. The decisions at time stage t, which
may depend on the past observations &1, ...,&_1 are Xi, X2(&1), X2(&1, £€2),
oo XT(E, L ETo1)s

e the objective function, which expresses the long-term goals of the decision maker.

Except for extremely simple and unrealistic cases, continuous-state multiperiod
financial optimization problems can only be formulated, but not solved.

The reason for practical unsolvability is the fact that the decisions are functions,
making the problem a functional optimization problem, which cannot be numerically
solved asitis.

Theusual way of reducing the problemto asolvable oneisto restrict to discrete-state
multiperiod financial optimization problems, i.e. these cases in which the random vector
&1, ..., &t takesonly finitely many values. In this case, the decision functionsreduce to
large decision vectors.
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Abstract The quality of multi-stage stochastic optimization models as they appear in asset
liability management, energy planning, transportation, supply chain management, and other
applications depends heavily on the quality of the underlying scenario model, describing the
uncertain processes influencing the profit/cost function, such as asset prices and liabilities,
the energy demand process, demand for transportation, and the like. A common approach
to generate scenarios is based on estimating an unknown distribution and matching its mo-
ments with moments of a discrete scenario model. This paper demonstrates that the problem
of finding valuable scenario approximations can be viewed as the problem of optimally ap-
proximating a given distribution with some distance function. We show that for LlpSChll“l
continuous cost/profit functions it is best to employ the in di The
optimization problem can be viewed as a multi-dimensionat facility location problem, for
which at least good heuristic algorithms exist. For multi-stage problems, a scenario tree is
constructed as a nested facility location p Numerical co g results for ial
mean-risk portfolio selection conclude the paper.

Keywords S i ing - Multi-st: ial scenario generation

1 Introduction
’

A large class of decision problems involves decision stages and uncertainty. Examples are

Iti-stage portfolio opti ion or asset liability management problems, energy production
models, as well as models in telecommunication, transportation, supply chain management.
For arecent overview see Ruszczynski and Shapiro (2003) and Wallace and Ziemba (2005). A
common feature of these models is the fact that a stochastic process describing the uncertain
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A DISTANCE FOR MULTISTAGE STOCHASTIC OPTIMIZATION
MODELS*

GEORG CH. PFLUG! AND ALOIS PICHLER!

Abstract, We describe multistage stochastic programs in a purely in-distribution sciting, i.0.
without any reference 1o a concrete probability space. TJ based on the notion of nested
distributions, which encompass in one mathematical objec o sconatio valucs as woll as the b
formation structure under which de + have (o ba made, The nosted distance between these
distributions is introduced and turns out to be a generalization of the Wasserstein distance for
stochastic two-stage problems. We give characierizations of this distance and show its usefulness
in examples. The main result staies he difference of the optimal values of two multistage
stachastic programs, which are Lipschitz and differ only in the nested distribution of the stochastic
parameters, can be bounded by Lhe ne!st(,d distance of these dl*lllb\ltl(}l]& Ry hl\ (hem(‘m gulelhh/ea
(he ell-k K theorem, which is

ya nlual h for the nested dis The setup is
uppnc,mle both for general stochastic processes and for finite scenario trees. In particular, the nested
distance between general processes and scenario trees is well defined and becomes the important
tool for judging the quality of the scenario tree inimizi ( least heurists i
distance is what good scenario tree generation is all about.

7

Key words. stochastic optimization, quantitative stability, transportation distance, scenario
approximation
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Introduction. Multistage stochastic programming models have been success-
fully developed for the financial sector (banking [9], insurance {5], pension fund man-
agement [18]), the energy sector {electricity production and trading of electricity [15]
and gas [1]), the transportation [6} and communication sectors (10], and airline rev-
enue management [22], among others. In general, the observable data for a multistage
stochastic opfimization problem are modeled as a stochastic process & = (&, ..., &)
(the scenario process) and the decisions may depend on its observed values, making
the problem an optimization problem in function spaces. The general problem is only
in rare cases solvable in an analytic way and for numeris solution the stochastic
process is replaced by a finite valued stochastic scenario process € = (£g,. .., ér). By
this discretization, the decisions become high dimensional vectors, i.e., are themselves
discretizations of the general decision functions. An extension function is then needed
to transforim optimal solutions of the approximate problem to feasible solutions of the
basic underlying problem.

There are several results about the approximation of the discretized problem to
the original problens, for instance, [24, 19, 21, 12]. All these authors assume that both
processes, the original £ and the approximate £, are defined on the same probability
space. This assumption is quite unnatural, since the approximate processes are finite

*Received by the editors February 18, 2011; accepted for publication (in revised form) October
5, 2011; published electronically January 5, 2012.
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