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Abstract— Modern electricity portfolio and risk management
models represent multistage stochastic programs. The infwf
such programs consists in a finite set of scenarios having tlerm
of a scenario tree. They model the probabilistic information on
random data (electrical load, stream flows to hydro units, maket
prices of fuel and electricity). Since the corresponding derminis-
tic equivalents of multistage stochastic programs are mokt large
scale, one has to find significant tree-structured scenario®ur ap-
proach to generate multivariate scenario trees is based orecur-
sive deletion and bundling of scenarios out of some given (psibly
large) scenario set originating from historical or simulated data.
The procedure makes use of certain Monge-Kantorovich trans
portation distances for multivariate probability distrib utions. We
report on computational results for generating load-inflow sce-
nario trees based on realistic data of EDF Electricié de France.

Index Terms— Stochastic programming, power management,
scenario reduction, scenario tree construction

I. INTRODUCTION

(iif) the moment-matching principlg.9], [20],
(iv) optimalapproximations based on probability metri@s],

[18], [7], [13], and
(v) the use ofntegration quadraturef?3].
A systematic comparison, both theoretical and computatjon
of these approaches has not been undertaken so far. Some prin
ciples for the evaluation of scenario tree generation nuittaoe
presented in [22]. Potential shortcomings of the approaigh (
are discussed in [18].

We propose a technique that belongs to the group (iv) and
is based on probability metrics that are associated witlstde
bility of the underlying stochastic program. The input oéth
method consists in a finite number of scenarios that are pro-
vided by the user and, say, are obtained from historical data
by data analysis and resampling techniques or from statisti
cal models calibrated to the relevant historical data. Tihen
method constructs a scenario tree by recursive (optimal) sc
nario reduction [13], [14].

The operation of power systems under deregulated market

conditions leads to an increasing interest in incorpogatin-

certainty and risk into optimization models (see [12], [33]
[34]). The corresponding stochastic optimization models r

quire decisions on the basis of given probabilistic infotiora

Il. GENERATION OF SCENARIO TREES

A. Approximation of stochastic programs

on random data. Typically, such models use a finite number ofThe recent paper [28] surveys quantitative stability ressul

scenarios to model uncertainty of relevant data, e.g.,[8l],

for stochastic programs. It is shown there that the distance

[9], [10], [14], [30], [32]. Each scenario can be viewed agoni,., » > 1, of multivariate probability distributions given by

realization of a certain multi-dimensional stochasticadatto-

Monge-Kantorovich (mass) transportation problems [2§ ar

cess of the model. All scenarios and their probabilitieseep relevant for the stability of two-stage models. More prelyis

sent an approximation of the probability distribution givey

11 is relevant if either right-hand sides or prices are statihas

the random data. Clearly, a good approximation may invohand/i, is important if both are stochastic. In case of multistage
a very large number of scenarios. But, due to computatiorsibchastic programs the distangis as well as a functional
complexity for most practical problems, the number of scenaneasuring the 'distance’ of the information structuresiagés-

ios must be restricted to have the continuing ability to sahe

pensable for stability [17]. In the present paper, we cotreés

stochastic model. The main challenge of scenario tree genasn the functionalgi,.. The effects of distances of information
tion is to effect a compromise between a good approximationstructures are discussed in [17] and the forthcoming pd@r [

the probability distribution and the dimension of the stastic
model.

Let us consider the important case that both, the original
and approximate probability distributidhand@), respectively,

During the last few years scenario modelling and the gengrave a finite support, i.e., a finite number of scenarios inesom
ation of scenario trees became a very active field of resea@iiclidean spacér®. Let the supports be given by

in stochastic programming (see the survey [6]). Recently,

respectively, for generating scenario trees for multistagpd-
els. We mention here in chronological order
(i) bound-based approximatianethods [11], [8], [4],

(i) Monte Carlo-basedampling schemes [21], [5], [2], [31],

e
isting methods and new techniques were refined and proposed, supg P) = {¢*,.

€N, suppQ) = {€h,... &M,

and the probabilities by

pi =P({¢'}) and ¢ =QU{&Y}).
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The Monge-Kantorovich functionai, for » > 1 is defined as  strategy consists in the opposite approach, namely, irtidgle
recursively only one scenario.

N M
1 =i LS AV
fir (P, Q) = inf { z; ;Cr(g &)mis | mij = 0, (1) Algorithm 1—Forward Reduction:
1=1 j=
M N . 0
Step0: J":={1,...,N}
Til = Dis nl':qﬁi:lw"aNaj:lw"aM . m .
1:21 ; ! ’ Stepm+1: u™tle arg min D g\ g}
Thus, the functiongl, represents the optimal value ofiaear = g\ fum
transportation problem The non-negative cost functian is End: Optimal redistribution (3) w.r.t/ := J"

defined by
cr(€,€) = max{1,[|¢ = &l 1€ = LI} HIE =€l @) .
Step0:  J:=10

whereg, is some fixed element ifi*. The cost function can be Step m+1: o™+l
viewed as a certain distance function on the set of all stesar
In caser = 1 the cost functiorr,. coincides with the metric Jml = gmy {v™ )

induced by the norm off”. End:  Optimal redistribution (3) w.r.tl := J¥ "

Algorithm 2—Backward Reduction:

€ in D jmg,
arg Urg;{lﬂ Jmu{v}

B. Optimal scenario reduction

The scenario reduction approach was first developed in [9]
and enhanced in [15]. Let us recall its main ideas: We conside Next we describe two approaches for constructing scenario
a discrete distributio® with scenariog’ and probabilitiep;, trees based on recursive scenario reduction. The first ane ha
i = 1,...,N, and another discrete distributigp supported been given already in [13]. Both approaches fit into the gen-
by a subset of scenarigs, j € {1,...,N} \ J, of P and eral tree generation scheme given in [6]. The strategy stsi
probabilitiesg;, j ¢ J, i.e, the index set/ describes the set in modifying a givenfan of individual scenarios by bundling
of deleted scenarios. The main result in [7] provides the begsenarios according to the scenario reduction techniduanl
possible distancg,. (P, Q) if the index set/ is fixed, but the be shown that the constructed trees are much smaller than the
weightsg; vary. The optimal distributio)* is given by the given scenario fans, and nevertheless, they are good &pprox

Scenario tree construction

optimal redistribution mations with respect to the Monge-Kantorovich distaface
Let P be the probability distribution of a fan of multivari-
q; =pj+ Zp“ jéJ, (3) ate data scenario§ = (&,...,&5) with probabilitiesr?,
i€J; i =1,...,N, i.e., all scenarios coincide at the starting point
t=1,ie., =...=¢& = £. The fan may be regarded as a

where the index set$; are given by
Ji={ieJ:j=i)}

and;(i) is a selection of the index set of closest scenarigs to

§(i) € argmin ¢, (¢, &), i € J.
Jg¢J

Hence, the optimal scenario reduction consists in addich ea
deleted scenario weight to that of some of those scenaring be
closest with respect tg.. The distance oP and@* is given by

Dy = jn(P,Q") = pi H;Zi}}cr(fi,éj)- (4)
; j
i€J Fig. 1. Scenario fan of individual scenarios.

To determine an optimal index sét with a prescribed number ) . .
of N —n elements, one has to solve the combinatorial optimiz&¢enario tree with + N (7' — 1) nodes Given P ande > 0 we

tion problem are looking for a probability distributio®. such that its sce-
narios form a scenario tree with root no§le less nodes than
J* €argmin{D;: #J = N —n}, P, and
i (P; Pa) <e.

which is N'P-hard. To determine a nearly optimal index set

J with given cardinality in reasonable time, fast heuristic Again there exist a backward and a forward variant. Let us
algorithms of forward and backward type are given in [15] anstart with the backward version. It is based on recursive sce
[13]. The forward strategy is adapted to the special sitmati nario reduction on the time horizdm, ..., ¢}, where the time

of deleting recursively all but one scenarios. The backwaphrametet is reduced recursively from= T to ¢t = 2. For the
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time horizon{1, .. .,t} we consider the relative costs
t
c(6,6) =Y ll& — &, (5)
=1

which corresponds to (2) of1, ..., ¢} forr = 1.

Algorithm 3—Backward Construction:
T

Lete; > 0,t=2,...,T,besuchthad ¢; <e.
t=2 -

Step0: Letlyyy ={1,...,N}andrf,, =7 \
foralli=1,...,N.

Stepm: Set=T+1—m.

Determine a scenario index setC 7,1 Fig. 3. Example of backward tree construction by reducindescof a given
. . . scenario fan recursively by modifying the tree structuregiscenario reduc-
by scenario reduction, i.e., such that tion and bundling. The time horizon consistssgferiods.
> mpamine(§¢7) <e
i€\, Ik _ : o .
Setr! =7l + X i,,, where backward variant, scenario reduction is now applled seplgra
€1 to each cluster, where at tinmteonly &, is taken into account.
Jyy={it e Liyi\I;: j=j:(4)} and Instead of (5), let the costs at tim@ow be defined by
i (1) € argmin ¢, (€%, €9),4 € L1 \1;. - ~
3e(1) € argmin (€', £), € € Ly e(€.8) = & — &l ©®)

Step T:  Construction of.: Determine recursively
mappingsy, : It — I, fort =1T,...,2,
wherear := id|;, and such that

o (4) ::{ Ji(any1(2)), ays1(i) € Lpr\ 1y,

which corresponds to (2) affor » = 1.

Algorithm 4—Forward Construction:

T
Lete; > 0,6t =2,...,T,besuchthad’ ¢ <e.

ar1(i),  else, =
fort:T—l,._.,2.~ 3 Step1: Letl ={1,...,N} be the first cluster and let
Determine scenariad for j € I with & = &, Zy = {I}.
andél = ¢V fort = 2,..., T. Finally, set Stept: LetZ,_, = {I,..., I, ,} the clusters defined
7= ﬁ% andpP. := Y 7?%5@. in Stept — 1.
JEIT le—1
(1) Chosesy, > O such thatd e, < &
i Iy I, I3 I k=1
naex (2)Fork =1,...,1;_1: Determine a subset
1 (yervemmnnans ° .
S B 1 o Ji. C I, and a selectiony, : I, — I\ Jx
3 | A T by scenario reduction such that(i) = i for
‘5‘ . i€ L\JyandY wic(€h, k@) < gy
""""""""" i€J
6 . (3)SetZ; = {j; '(i) i € Li\Jk, 1 <k <141}
T e N r® R . .o .
P I . with ji ' (i) := {j € I, : ji(j) = i}.
9 7 RTINS 5 ISTRR O I ®) (4) Define some mapping; : I — I such that
\ ! ! | Oét|1k = Jk-
t=1 t=2 t=3 t=¢ Step T+1: Construction af.: Let Zp = {I{,... I} }
Fig. 2. lllustration of backward scenario tree construttio and letiq, . . ., ;. be some indices such that
; T —
It can be shown that, (P, P.) < ¢ holds for any scenario ik €Ly fork=1,....Ir.
tree P. constructed by Algorithm 3. Figure 3 displays an exam- Determine scenariad with ¢¥ = ¢ and
ple demonstrating the recursive reduction of nodes by lngdl g — e forg —o . Tandl <k <lr.
scenarios for decreasing time horizon. L T P
Next we focus attention on a new forward variant of scenario Finally, seti* := S miandP. = 3. #%6;,.
tree construction. The idea consists in applying the sienar eIl =t

duction technique repeatedly for increasing time periodmf

t = 2tot = T. The forward method is based on a succedote that all clusters corresponding to one time step, treat a
sive clustering of scenarios, where the number of elememis call setsi;, of Z;, are disjoint and their union cover all indices
tained in a cluster is recursively reduced. Different frdre t of I = {1,..., N}. Hence, the mappings: are well defined.
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Index a 2 % Z4 total number of time periods and the corresponding number of
1 B nodes of the initial scenario fan. The first node (root node) ¢
2 ol-.. responds to the mean value of all scenarios at time perod.
3 ol... The weekly amounts of water inflows have been uniformly dis-
4 of - tributed to the corresponding time steps of the week.
5 "o
6 ol TABLE |
7 ol DISCRETIZATION OF THE TWGYEAR TIME HORIZON FOR THE DATA
8 ol PROVIDED BY EDF.
9 o)~

Random variable Discretization Number time steps
electrical load 3 per day 2184
water inflow weekly 104

Fig. 4. lllustration of forward scenario tree construction
TABLE Il

. . . . . . . DIMENSION OF THE INITIAL SCENARIO FAN PROVIDED BYEDF
Moreover, the values; (i) coincide for all indices contained

in the same cluster. See Figure 4 that shows the principleeof t Number
algorithm. scenarios 456

For Algorithm 4 the same result can be shown as for the pre- time periods 2184
vious Algorithm 3. Namely, the estimafg (P, P-) < ¢ holds initial nodes 995 449

for the probability distributionP. of any tree constructed by
Algorithm 4. Figure 5 displays an example demonstrating the tree series of tests of Algorithms 3 and 4 were performed
recursive reduction of nodes by bundling scenarios usieg th generate scenario trees such that

forward method. (i) branching is allowed at all time steps,

(i) branchingis only allowed at the beginning of a day,
(iii) branching is only allowed at the beginning of a week.
= To measure the distances between the original and apprtexima
probability distributions the relative tolerancg; := Enfm was
used in all test runs, whers,,... is the best possible distance
between the probability distribution of the initial sceioafan
and the distribution of one of its scenarios endowed with uni
mass.

All test runs were performed on a PC with a 3 GHz Intel

Pentium CPU and 1 GByte main memory.

— A. Results of backward construction

For the backward variant of scenario tree constructionindi

vidual tolerances; at branching points were chosen recursively
Fig. 5. Example of forward scenario tree construction byoity nodes of g\ ch that
a given scenario fan recursively by modifying the tree stmecusing scenario
reduction and clustering. The time horizon consistS time periods.

er = e-(1—-¢q), ¢e€(0,1) and
& = {q-&t41, t:Tfl,...,2.

According to our numerical experience a choice;of (0,1)
closer tol leads to a higher number of remaining scenarios and
The scenario tree generation approach was applied to chranching points (stages). Choosingloser to0 leads to the
struct scenario trees out of data scenarios provided by- Elepposite effect. For the test runs of Algorithm 3 we uged
tricité de France (EDF). The data consisted of a finite numbg95.
of scenarios representing realizations of a bivariatehstsiic Tables IlI-V display the numerical results for the series of
process whose components are electrical load and watewinflests (i)—(iii) and different relative tolerances. Themstand
for a time horizon of two years. Since the random data ontitird column compare the sizes of the initial scenario fad an
enter right-hand sides of (in)equality constraints, tHeuvant the constructed scenario tree in terms of the numbers ofscen
probability metric for construction scenario trees is therlde- ios and nodes, respectively. The last but one column cantain
Kantorovich distancg; (cf. Section 1I-A). the number of stages, i.e., the number of time periods where
The time horizon of the data was discretized with three tim&anching occurs. The computing times for constructing the
steps per day, where each time step is associated to a seteds can be found in the last column. The computing time al-
daily hours during which the demand does not change muehady contains the CPU time of (about)0 seconds for com-
Table | and Il show the discretization of the data for the timputing the distances of scenarios which are needed in all tes
horizon of two years and provide the number of scenarios, thens.

IIl. APPLICATION
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TABLE Il
RESULTS FOR BACKWARD TREE CONSTRUCTION WITHOUT BRANCHING

RESTRICTION

| ere || Scenariog Nodes | Stages| Time (sec)]
0.10 442 584270( 151 172.86
0.20 429 371046| 150 129.11
0.30 417 268201| 146 117.42
0.40 405 193014| 135 110.83
0.50 393 140536 115 106.30

TABLE IV —  —
RESULTS FOR BACKWARD TREE CONSTRUCTION WITH DAILY BRANCHING %
RESTRICTION 0 210 420 630 840 1050 1260 1470 1680 1890 2100
| ere || Scenariog Nodes | Stages| Time (sec)] Fig. 6. Generated scenario tree based on EDF-data obtajrie backward
0.10 442 584793 128 134.17 construction witte,..; = 0.2 and weekly branching structure.

0.20 429 373569| 124 115.47

0.30 417 269850 125 110.41 ‘ ‘ ‘ ‘
040| 405 |196182| 120 | 107.4 = ——
0.50 393 144009| 110 104.93 <
TABLE V !—<_< ——
RESULTS FOR BACKWARD TREE CONSTRUCTION WITH WEEKLY ’é
BRANCHING RESTRICTION %
: : =
| ere || Scenarios Nodes | Stages| Time (sec)| =——
0.10 442 589575 88 118.47 < — —
0.20 429 397047 83 110.65 =
0.30 416 293403 86 108.40 = —
040 405 219 714 83 10615 0 2‘10 4‘20 6‘30 8‘40 1[;50 12‘60 14170 16;80 18‘90 21‘00
0.50 393 170520 81 105.16

Fig. 7. Generated scenario tree based on EDF-data obtaynibe backward

It turns out that for a small relative tolerance an approxfonstruction witfe,; = 0.5 and weekly branching structure.
mate scenario tree can be constructed that contains only 50%
of the original nodes. The pictures of Figure 6 and 7 show the
structure of two generated scenario trees with weekly tlrrancs
ing structure and epsilon tolerancgs; = 0.2 ande,.; = 0.5,
respectively.

The numerical results illustrate that the forward variaht o
cenario tree construction performs as well as the backward
version. Nevertheless, there are certain differences. diam
it turns out that, for small relative tolerances, the tre@stain
) less nodes in case of the backward tree construction cochpare
B. Results of forward construction to the forward variant. For increasing relative tolerantes

In a second series of tests scenario trees were construgtednew forward construction algorithm provides trees coritan
of the EDF data by the new Algorithm 4. In case of forward treless nodes than the backward counterpart.
construction individual tolerances at branching points were  Figure 8 and 9 illustrate the generated scenario trees with

chosen such that weekly branching structure far..; = 0.4 ande,; = 0.5. For
c " these trees it turns out that abaduii% of all nodes are suffi-
& = T {1 +7q (1 - Tﬂ , t=2,....T, cient to guarantee0% accuracy, while6% of the nodes still

guarante&0% accuracy.

whereg € [0, 1] is a parameter, that affects the branching struc-
ture of the constructed trees very similar to the case oflvand
construction. For the test runs we useg 1. ACKNOWLEDGMENT
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TABLE VI
RESULTS FOR FORWARD TREE CONSTRUCTION WITHOUT BRANCHING

RESTRICTION

| ere || Scenariog Nodes | Stages| Time (sec)]
0.10 378 743087 129 108.11
0.20 305 529994 162 109.15
0.30 216 289324| 161 114.18 <
0.40 145 138175| 121 134.11
0.50 93 67 696 84 202.42

TABLE VI
RESULTS FOR FORWARD TREE CONSTRUCTION WITH DAILY BRANCHING 1 1 : : : 1 ; 1 ; 1
RESTRICTION 0 210 420 630 840 1050 1260 1470 1680 1890 2100
| ere || Scenariog Nodes | Stages| Time (sec)] Fig. 8. Generated scenario tree based on EDF-data obtajnttk iorward
0.10 380 739545 101 106.72 construction witte,..; = 0.4 and weekly branching structure.

0.20 309 521871 131 107.33
0.30 217 299520 137 108.99 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.40 144 139236| 108 115.95
0.50 92 64569 74 149.43

TABLE VI
RESULTS FOR FORWARD TREE CONSTRUCTION WITH WEEKLY BRANCHING { (
RESTRICTION

| ere || Scenarios Nodes | Stages| Time (sec)|

0.10 389 746613] 49 106.53
0.20 300 509103| 57 106.84
0.30 228 310653| 64 107.59

0.40 163 151809| 69 109.78 O 20 4% 630 840 1080 1260 1470 1680 1890 2100
0.50 92 60501 | 46 119.12

Fig. 9. Generated scenario tree based on EDF-data obtayntiek forward
construction witte,..; = 0.5 and weekly branching structure.
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