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Abstract Quasi-Monte Carlo (QMC) algorithms are studied for generating scenar-
ios to solve two-stage linear stochastic programming problems. Their integrands are
piecewise linear-quadratic, but do not belong to the function spaces considered for
QMC error analysis. We show that under some weak geometric condition on the
two-stage model all terms of their ANOVA decomposition, except the one of high-
est order, are continuously differentiable and second order mixed derivatives exist
almost everywhere and belong to L2. This implies that randomly shifted lattice rules
may achieve the optimal rate of convergence O(n−1+δ) with δ ∈ (0, 1

2 ] and a con-
stant not depending on the dimension if the effective superposition dimension is less
than or equal to two. The geometric condition is shown to be satisfied for almost all
covariance matrices if the underlying probability distribution is normal. We discuss
effective dimensions and techniques for dimension reduction. Numerical experiments
for a production planning model with normal inputs show that indeed convergence
rates close to the optimal rate are achieved when using randomly shifted lattice rules
or scrambled Sobol’ point sets accompanied with principal component analysis for
dimension reduction.
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316 H. Leövey, W. Römisch

1 Introduction

During the last decademuch progress has been achieved inQuasi-Monte Carlo (QMC)
theory for computing multidimensional integrals. Appropriate function spaces of inte-
grands were discovered that allowed to improve classical convergence rates. We refer
to the classical books [31,49] for providing an overview of earlier work, and to the
monographs [5,27] and the recent surveys [4,22] for presenting much of the more
recent achievements.

Many stochastic programming problems may be formulated in the form

min

{∫
Rd

f (x, ξ)P(dξ) : x ∈ X

}
, (1)

where the integrand f is convex with respect to the first and measurable with respect
to the second variable, X is a closed convex subset of R

m and P is a probability
distribution on R

d . We assume that P has a density ρ with respect to the Lebesgue
measure λd . For linear two-stage stochastic programming problems the integrand f
is of the form

f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ) − T (ξ)x) ((x, ξ) ∈ X × R
d), (2)

where c ∈ R
m , q(·), h(·) and T (·) are affine mappings defined onR

d ,Φ is the optimal
value function of the second stage linear program (see Sect. 3) and X is convex
polyhedral.

Most solution methods for (1) require an approximation of P by a probability
measure based on a finite (possibly random or randomized) sample ξ1, . . . , ξn with
probabilities p1, . . . , pn and on solving the convex program

min

⎧⎨
⎩

n∑
j=1

p j f (x, ξ
j ) : x ∈ X

⎫⎬
⎭

by suitable decomposition methods. So far only a few papers applied Quasi-Monte
Carlo methods to stochastic programs and established, for example, convergence
results (see [7,18,20,41]).

The aim of the present paper is to make use of the enormous progress in Quasi-
Monte Carlo theory and practice, in particular, of randomly shifted lattice rules (see
Sect. 2) and to provide theoretical arguments of their superiority over standardMonte

Carlo methods with slow convergence rate O(n− 1
2 ). Randomly shifted lattice rules

are known to lift the curse of dimension in numerical integration [23] if the integrands
belong to certain mixed Sobolev spaces. Although typical integrands (as function of
ξ ) of linear two-stage stochastic programming problems do not belong to such spaces,
we provide theoretical arguments that explain why randomly shifted lattice rules may
converge with nearly the optimal rate O(n−1). In comparison with our earlier work
[15] the present paper extends the range of two-stage models considerably.
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QMC methods for linear two-stage stochastic programs 317

As a first step of our arguments we introduce ANOVA representations of multivari-
ate functions and discuss the notion of effective dimension of such functions in Sect. 4.
Section 5 contains our main theoretical results. We show that integrands f (x, ·) given
by (2) may be approximated in the L2 sense by a function belonging to the relevant
Sobolev space. More precisely, it is shown that all ANOVA terms of f (x, ·) except the
one of highest order are continuously differentiable and possess second order partial
derivatives almost everywhere under some geometric condition on the dual of the sec-
ond stage program. Moreover, the first and second order ANOVA terms belong to the
Sobolev space and approximate the integrand if the effective superposition dimension
is at most 2 (Remark 2). Error estimates show that the QMC convergence rate domi-
nates the error in that case. In addition, we show in Sect. 6 that the geometric condition
is satisfied for almost all covariancematrices if the underlying randomvector is normal.
In Sect. 7 we discuss techniques for reducing the effective (superposition) dimension.
In accordance with the theory in Sect. 5 our computational results in Sect. 8 show that
scrambled Sobol’ sequences and randomly shifted lattice rules applied to a large scale
two-stage stochastic programming problem achieve convergence rates close to the
optimal if principal component analysis is employed for dimension reduction. Tests
show that indeed the effective superposition dimension does not exceed 2.

2 Modern QMC methods: randomly shifted lattice rules and scrambled
Sobol’ sequences

QMC methods are designed for computing integrals of the form

Id(g) =
∫

[0,1]d
g(t)dt

on the domain [0, 1]d . QMC algorithms are equal-weight quadrature rules of the form

Qn,d(g) = n−1
n∑
j=1

g(t j ) (n ∈ N),

where the points t j ∈ [0, 1]d are chosen to be deterministic. There are two main
groups of QMC methods (see [4,5,27,31]):

– digital nets and sequences,
– lattice rules.

The two methods we are going to describe here are randomized versions of a digital
sequence and of a lattice rule, respectively. A randomized version of a QMC point
set has the properties that (i) each point in the randomized point set has a uniform
distribution over [0, 1)d (uniformity), (ii) the QMC properties are preserved under
the randomization with probability one (equidistribution). Randomization procedures
for digital sequences, in particular, for Sobol’ sequences, were first considered in
[35]. For an overview on randomization techniques we refer to [26, Section 5] and
[5, Chapter 13]. Examples of such techniques are (a) random shifts of lattice rules,
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318 H. Leövey, W. Römisch

(b) scrambling, i.e., random permutations of the integers Zb = {0, 1, . . . , b − 1}
applied to the digits in b-adic representations, and (c) affine matrix scrambling which
generates random digits by random linear transformations of the original digits, where
the elements of all matrices and vectors are chosen randomly, independently and
uniformly over Zb. The two properties (i) and (ii) allow to consider randomized QMC
methods as variance reduction techniques that preserve the unbiasedness of the Monte
Carlo estimator. They allow for error estimates and may lead to improved convergence
properties compared to the original QMC method.

The first method we consider here is a randomly shifted lattice rule (see [21,24,34,
47]) in which the QMC points are

t j =
{

( j − 1) g
n

+ �

}
( j = 1, . . . , n), (3)

where � is a uniformly distributed in [0, 1)d random vector, g ∈ Z
d is the generator

of the lattice which is obtained by a component-by-component construction and the
braces {·} mean taking componentwise the fractional part. While the term ( j−1) g

n
corresponds to a classical rank-1 lattice rule, the randomization occurs by adding a
random shift.

For analyzing the convergence properties of this and many other QMC methods
of both groups important observations are due to [16] and [46], namely, the use of
reproducing kernelHilbert spaces of functions in general and of tensor product Sobolev
spaces endowed with a weighted inner product and norm, respectively, in particular.

Let us consider a reproducing kernel Hilbert spaceGd of functions g : [0, 1]d → R

with a kernel K : [0, 1]d × [0, 1]d → R satisfying K (·, t) ∈ Gd and 〈g, K (·, t)〉 =
g(t) for each t ∈ [0, 1]d and g ∈ Gd . If 〈·, ·〉 and ‖ · ‖ denote the inner product and
norm in Gd , and Id is a continuous functional on Gd , the worst-case quadrature error
en(Gd) allows the representation

en(Gd) = sup
g∈Gd ,‖g‖≤1

∣∣Id(g) − Qn,d(g)
∣∣ = sup

g∈Gd ,‖g‖≤1
|〈g, hn〉| = ‖hn‖ (4)

for some hn ∈ Gd according to Riesz’ representation theorem for linear bounded
functionals on Hilbert spaces. The representer hn of the quadrature error is of the
form

hn(t) =
∫

[0,1]d
K (t, s)ds − n−1

n∑
j=1

K (t, t j ) (∀t ∈ [0, 1]d).

An important example is the weighted tensor product Sobolev space [4]

Gd = W(1,...,1)
2,γ,mix([0, 1]d) =

d⊗
i=1

W 1
2,γi ([0, 1]), (5)
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QMC methods for linear two-stage stochastic programs 319

whereW 1
2,γi

([0, 1]) is the classical Sobolev space of single-variable absolutely contin-
uous functions h on [0, 1]with derivative h′ belonging to L2([0, 1]). Its scalar product
is defined by

〈h, h̃〉γi =
∫ 1

0
h(t)h̃(t)dt + γ −1

i

∫ 1

0
h′(t)h̃′(t)dt .

Then the tensor product
⊗d

i=1 W
1
2,γi

([0, 1]) is the completion of the span of products∏d
i=1 hi (xi )where hi belongs toW

1
2,γi

([0, 1]) and the completion is understood in the

sense of its norm ‖ · ‖γ . The weighted norm ‖g‖γ = √〈g, g〉γ and inner product of
the tensor product space are given by

〈g, g̃〉γ =
∑
u⊆D

γ −1
u

∫
[0,1]|u|

(∫
[0,1]d−|u|

∂ |u|

∂tu
g(t)dt−u

)(∫
[0,1]d−|u|

∂ |u|

∂tu
g̃(t)dt−u

)
dtu,

whereD = {1, . . . , d}, the weights γi are positive and nonincreasing, and γu is given
in product form by

γu =
∏
i∈u

γi

for u ⊆ D, where γ∅ = 1. For u ⊆ D we use the notation |u| for its cardinality,
−u for D \ u and tu for the |u|-dimensional vector with components t j for j ∈ u.

Consequently, the tensor product space W(1,...,1)
2,γ,mix([0, 1]d) contains functions g of d

variables which have square-integrable mixed first partial derivatives ∂ |u|g/∂tu for
each u ∈ D. To indicate that this space is a nonclassical Sobolev space we used the
sign W instead of the classical Sobolev space denoted by W .

Moreover, the space W(1,...,1)
2,γ,mix([0, 1]d) is a reproducing kernel Hilbert space with

the kernel

Kd,γ (t, s) =
d∏

i=1

(1 + γi (0.5B2(|ti − si |) + B1(ti )B1(si ))) (t, s ∈ [0, 1]d),

where B1(t) = t − 1
2 and B2(t) = t2 − t + 1

6 are the Bernoulli polynomials of order
1 and 2, respectively, and each factor is the kernel of the Hilbert space W 1

2,γi
([0, 1]).

If the integrand g belongs to the tensor product Sobolev spaceW(1,...,1)
2,γ,mix([0, 1]d), the

root mean square error of randomly shifted lattice rules can be bounded by [6,21,47]

√
E�

∣∣Id(g) − Qn,d(g)
∣∣2 ≤ C(δ)n−1+δ‖g‖γ , (6)

where n ∈ N is prime, δ ∈ (0, 1
2 ] and the constant C(δ) > 0 does not depend on the

dimension d if the sequence of weights (γ j ) satisfies
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320 H. Leövey, W. Römisch

∞∑
j=1

γ
1

2(1−δ)

j < ∞. (7)

The condition (7) is satisfied, for example, for γ j = j−3, j ∈ N.
The second method is a scrambled Sobol’ sequence. Sobol’ introduced the first

known construction of a digital (t, d)-sequence in base b = 2 ([48], see also [31] and
[5, Chapter 8]). The construction of Sobol’ sequences is described in [5, Section 8.1.3]
or [4, Example 2.18]. The quality of lowdimensional projections of the points in Sobol’
sequences is determined by certain parameters (called direction numbers). In our
tests we used the direction numbers suggested in [19]. For practical implementations
we refer to [1]. Recent developments of Sobol’ sequences and comparison between
available implementations can be found in [51].

As randomization technique we used the affine matrix scrambling proposed in [29]
instead of Owen’s scrambling [35] due to reductions in the implementation cost. To
obtain estimates on the variance of a scrambled QMC estimator Q̂n,d(g) for functions
g : [0, 1]d → R one needs a certain degree of smoothness of g. For example, if g
belongs to the tensor product Sobolev space (5), the QMC estimator Q̂n,d(g) based
on n scrambled points of a (t, d)-sequence satisfies

√
Var(Q̂n,d(g)) ≤ C n− 3

2 (log n)
d−1
2 (8)

for some constant C > 0 depending on g (see [5, Theorem 13.25]). Usually a rate
close to O(n−1) is observable for the QMC estimator unless the sample sizes become
huge, as reported in [36].

3 Two-stage linear stochastic programming problems

We consider the linear two-stage stochastic programming problemwith fixed recourse

min

{
〈c, x〉 +

∫
Rd

〈q(ξ), y(ξ)〉P(dξ) : Wy(ξ)=h(ξ) − T (ξ)x, y(ξ) ≥ 0, x ∈ X

}
,

(9)
where c ∈ R

m , X ⊆ R
m is convex polyhedral, W is an (r,m)-matrix, P is a Borel

probability measure on Ξ , and the vectors q(ξ) ∈ R
m , h(ξ) ∈ R

r and the (r,m)-
matrix T (ξ) are affine functions of ξ . We define the function f : R

m × R
d → R

by

f (x, ξ) =
{ 〈c, x〉 + Φ(q(ξ), h(ξ) − T (ξ)x), h(ξ) − T (ξ)x ∈ posW , q(ξ) ∈ D

+∞, otherwise
(10)

where

posW = W (Rm+) and D = {u ∈ R
m : {z ∈ R

r : W�z ≤ u} �= ∅},

and Φ the optimal value function of the second-stage problem, i.e.,
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QMC methods for linear two-stage stochastic programs 321

Φ(u, t) = inf{〈u, y〉 : Wy = t, y ≥ 0} ((u, t) ∈ R
m × R

r ). (11)

Then problem (9) may be rewritten equivalently in form (1) as a convex minimization
problem with respect to the first stage decision x . Next we recall some well-known
properties of the function Φ, which were derived in [54] (see also [33]).

Lemma 1 The function Φ is finite and continuous on the (m + r)-dimensional poly-
hedral cone D × posW and there exist (r,m)-matrices C j and (m + r)-dimensional
polyhedral cones K j , j = 1, . . . , 
, such that


⋃
j=1

K j = D × posW and intKi ∩ intK j = ∅, i �= j,

Φ(u, t) = max
j=1,...,


〈C ju, t〉 = max{〈z, t〉 : W�z ≤ u} ((u, t) ∈ D × posW ),

Φ(u, t) = 〈C ju, t〉, for each (u, t) ∈ K j , j = 1, . . . , 
.

The function Φ(u, ·) is convex on posW for each u ∈ D, and Φ(·, t) is concave onD
for each t ∈ posW. Furthermore, the intersection Ki ∩ K j , i �= j , is either equal to
{0} or contained in a (m + r − 1)-dimensional subspace of R

m+r if the two cones are
adjacent.

Next we introduce conditions on problem (9) that are needed in the next sections.

(A1) For each (x, ξ) ∈ X × R
d it holds that h(ξ) − T (ξ)x ∈ posW and q(ξ) ∈ D.

(A2) P has finite fourth order absolute moments, i.e.,
∫
Rd ‖ξ‖4P(dξ) < ∞.

(A3) P has a density of the form ρ(ξ) = ∏d
i=1 ρi (ξi ) (ξ ∈ R

d ), where ρi is a
continuous (marginal) density on R, i = 1, . . . , d (independent components).

(A4) All common closed faces of adjacent polyhedral sets

Ξ j (x) = {ξ ∈ R
d : (q(ξ), h(ξ) − T (ξ)x) ∈ K j }, j = 1, . . . , 
, (12)

do not parallel any coordinate axis for every x ∈ X (geometric condition).

(A1) combines the two usual conditions: relatively complete recourse and dual fea-
sibility and implies X × R

d ⊆ dom f . Condition (A2) is stronger than the usually
required condition that P has finite second ordermoments.We note, however, that later
the integrands have to be quadratically integrable with respect to P . Condition (A3)
is needed in the next sections to introduce and analyze the ANOVA decomposition of
two-stage integrands. Since this condition is not satisfied for the underlying probabil-
ity distribution P in general, it means practically that the probability distribution P
has a Lebesgue density and may be transformed such that (A3) is satisfied. Condition
(A4) is (only) needed in the smoothness analysis of the ANOVA terms of the integrand
f in Sect. 5. Determining the polyhedral cones Ξ j (x) and, hence, checking (A4) for
a particular optimization model is too costly in general. (A4) is further discussed in
Sect. 6.
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322 H. Leövey, W. Römisch

Proposition 1 Let (A1) be satisfied and x ∈ X. Then the function f (x, ·) is continuous
and piecewise linear-quadratic, and of the form

f (x, ξ) = 〈(A j − Bj (x))ξ, ξ 〉 + 〈c j − G j (x), ξ 〉 + α j − a�
j x (ξ ∈ Ξ j (x)), (13)

where A j and B j (x) are (d, d)-matrices, G j (x) ∈ R
d , c j ∈ R

d , α j ∈ R, a j ∈ R
m

and Ξ j (x) defined by (12) with B j (·) and G j (·), j = 1, . . . , 
, depending linearly on
x.
It holds intΞ j (x) �= ∅, intΞ j (x) ∩ intΞ j ′(x) = ∅ for j �= j ′ and


⋃
j=1

Ξ j (x) = R
d . (14)

Furthermore, the intersection of two adjacent convex polyhedral setsΞi (x) andΞ j (x)
is contained in a (d − 1)-dimensional affine subspace.

Proof Since q(·), h(·) and T (·) are affine functions of ξ , there exist q0, qi in R
m , h0,

hi in R
r and (r,m)-matrices T0, Ti , i = 1, . . . , d, such that

q(ξ) = q0 +
d∑

i=1

qiξi and h(ξ) − T (ξ)x = h0 − T0x +
d∑

i=1

(hi − Ti x)ξi .

After some calculations one obtains for ξ ∈ Ξ j (x)

f (x, ξ) = 〈C jq(ξ), h(ξ) − T (ξ)x〉

=
d∑

i=1

d∑
k=1

ξiξk〈C jqi , hk − Tkx〉 + 〈C jq0, h0 − T0x〉

+
d∑

i=1

ξi (〈C jqi , h0 − T0x〉 + 〈C jq0, hi − Ti x〉)

= 〈(A j − Bj (x))ξ, ξ 〉 + 〈c j − G j (x), ξ 〉 + α j − a�
j x

with the (d, d)-matrices A j = (〈C jqi , hk〉)i,k=1,...,d , Bj (x) = (〈C jqi , Tkx〉)i,k=1,...,d ,
the d-dimensional vectors c j = (〈C jqi , h0〉+〈C jq0, hi 〉) andG j (x) = (〈C jqi , T0x〉
+ 〈C jq0, Ti x〉) with the components i = 1, . . . , d, the real number α j = 〈C jq0, h0〉,
the m-dimensional vector a j = T�

0 C jq0 and Ξ j (x) as defined by (12). ��

Conditions (A1) and (A2) imply that the two-stage stochastic program (2) is well
defined and represents an optimization problem with finite convex objective and poly-
hedral convex feasible set. If X is compact its optimal value v(P) is finite and its
solution set S(P) is nonempty, closed and convex. The quantitative stability results
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[43, Theorems 5 and 9] for general stochastic programming problems imply the per-
turbation estimate

|v(P) − v(Q)| ≤ sup
x∈X

∣∣∣∣
∫

Rd
f (x, ξ)(P − Q)(dξ)

∣∣∣∣ (15)

sup
x∈S(Q)

d(x, S(P)) ≤ ψ−1
P

(
sup
x∈X

∣∣∣∣
∫

Rd
f (x, ξ)(P − Q)(dξ)

∣∣∣∣
)

, (16)

where ψP is the growth function of the objective

ψP (τ ) = inf

{∫
Rd

f (x, ξ)P(dξ) − v(P) : d(x, S(P)) ≤ τ, x ∈ X

}
(τ ≥ 0),

its inverse is defined by ψ−1
P (t) = sup{τ ∈ R+ : ψP (τ ) ≤ t}, and Q is a probability

measure satisfying (A2), too.
For further information on linear parametric programming and two-stage stochastic

programming we refer to [33,54] and [44,45,58].

4 ANOVA decomposition and effective dimension

The analysis of variance (ANOVA) decomposition of a multivariate function was first
proposed as a tool in statistical analysis (see [17] and the survey [52]). Later it was
often used for the analysis of quadrature methods mainly on [0, 1]d . Here, we will use
it on R

d equipped with a probability measure P satisfying (A3).
As in [14] we consider the weighted Lp space over R

d , i.e., Lp,ρ(Rd), with the
norm

‖ f ‖p,ρ =
{(∫

Rd | f (ξ)|pρ(ξ)dξ
) 1
p if 1 ≤ p < +∞,

ess supξ∈Rd ρ(ξ)| f (ξ)| if p = +∞.

Let f ∈ L1,ρ(Rd) and D be as in Sect. 2. The projection Pk , k ∈ D, is defined by

(Pk f )(ξ) :=
∫ ∞

−∞
f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ R

d). (17)

Clearly, the function Pk f is constant with respect to ξk . For u ⊆ D we write

Pu f =
(∏
k∈u

Pk

)
( f ),

where the product sign means composition. Due to Fubini’s theorem the ordering
within the product is not important and Pu f is constant with respect to all ξk , k ∈ u.
The ANOVA decomposition of f ∈ L1,ρ(Rd) is of the form [25,50,55]
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324 H. Leövey, W. Römisch

f =
∑
u⊆D

fu (18)

with fu depending only on ξu , i.e., on the variables ξ j with indices j ∈ u. It satisfies
the property Pj fu = 0 for all j ∈ u and the recurrence relation

f∅ = PD( f ) and fu = P−u( f ) −
∑
v�u

fv (u ⊆ D).

It is known from [25] that the ANOVA terms are given explicitly in terms of the
projections by

fu =
∑
v⊆u

(−1)|u|−|v|P−v f = P−u( f ) +
∑
v�u

(−1)|u|−|v|Pu−v(P−u( f )), (19)

where P−u and Pu−v mean integration with respect to ξ j , j ∈ D \ u and j ∈ u \ v,
respectively. The second representation of fu implies that the smoothness of fu is
determined by P−u( f ) due to the Inheritance Theorem [14, Theorem 2]. The latter
result shows that projections do not reduce the smoothness.

If f belongs to L2,ρ(Rd), the ANOVA functions { fu}u⊆D are orthogonal in the
Hilbert space L2,ρ(Rd) (see e.g. [55]). Let the variances of f and fu be defined by
σ 2( f ) = ‖ f − PD( f )‖22,ρ and σ 2

u ( f ) = ‖ fu‖22,ρ . Then it holds

σ 2( f ) = ‖ f ‖22,ρ − (PD( f ))2 =
∑

∅�=u⊆D

σ 2
u ( f ). (20)

To avoid trivial caseswe assumeσ( f ) > 0 in the following.Due to (20) the normalized

ratios σ 2
u ( f )

σ 2( f )
serve as indicators for the importance of the variable ξu in f . They are

used to define sensitivity indices of a set u ⊆ D for f in [50] and the dimension
distribution of f in [28,37].

For small ε ∈ (0, 1) (ε = 0.01 is suggested in a number of papers), the effective
superposition (truncation) dimension dS(ε) ∈ D (dT (ε) ∈ D) of f is defined by

dS(ε) = min

⎧⎨
⎩s ∈ D :

∑
0<|u|≤s

σ 2
u ( f )

σ 2( f )
≥ 1 − ε

⎫⎬
⎭ (21)

dT (ε) = min

⎧⎨
⎩s ∈ D :

∑
u⊆{1,...,s}

σ 2
u ( f )

σ 2( f )
≥ 1 − ε

⎫⎬
⎭ . (22)

Note that dS(ε) ≤ dT (ε) and it holds (see [12,55])

max

⎧⎨
⎩
∥∥∥∥∥∥ f −

∑
|u|≤dS(ε)

fu

∥∥∥∥∥∥
2,ρ

,

∥∥∥∥∥∥ f −
∑

u⊆{1,...,dT (ε)}
fu

∥∥∥∥∥∥
2,ρ

⎫⎬
⎭ ≤ √

εσ ( f ). (23)
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The effective truncation dimension dT (ε) is much easier to estimate than dS(ε),
namely, by computing the integrals [55]

Du =
∫

Rd

∫
Rd−|u|

f (ξ) f (ξu, ξ̃−u)ρ(ξ)ρ−u(ξ̃
−u)dξd ξ̃−u − P2

D( f ) (24)

for u = {1, . . . , s}, s = 1, 2, . . . , d, numerically with MC or QMC methods until
Du ≥ (1 − ε)σ 2( f ) and by setting dT (ε) = s.

The importance of the ANOVA decomposition in the context of this paper is due
to the fact that the ANOVA terms fu with |u| < d may be smoother than the original
integrand f under certain conditions (see [13,14]).

As in [14]weuse the notation Di f for i ∈ D to denote the classical partial derivative
∂ f
∂xi

. For a multi-index α = (α1, . . . , αd) with αi ∈ N0 we set

Dα f =
(

d∏
i=1

Dαi
i

)
f = ∂ |α| f

∂xα1
1 · · · ∂xαd

d

,

and call Dα f the partial derivative of order |α| = ∑d
i=1 αi . A real-valued function g

on R
d is called weak or Sobolev derivative of f of order |α| if it is measurable and

satisfies
∫

Rd
g(ξ)v(ξ)dξ = (−1)|α|

∫
Rd

f (ξ)(Dαv)(ξ)dξ for all v ∈ C∞
0 (Rd), (25)

where C∞
0 (Rd) denotes the space of infinitely differentiable functions with compact

support in R
d and Dαv is a classical derivative. We will use the same symbol for

the weak derivative as for the classical one, i.e., we set Dα f = g, since classical
derivatives are also weak derivatives. The latter follows because classical derivatives
satisfy (25) which is just the multivariate integration by parts formula in the classical
sense. In accordance with the notation (5) we consider in the next section the mixed
Sobolev space of functions having mixed first order weak derivatives

W(1,...,1)
2,ρ,mix(R

d) =
{
f ∈ L2,ρ(Rd) : Dα f ∈ L2,ρ(Rd) if αi ≤ 1, i ∈ D

}
. (26)

In [53] such spaces are called Sobolev spaces with dominating mixed smoothness.

5 ANOVA decomposition of linear two-stage integrands

We assume(A1)–(A4). According to Proposition 1 linear two-stage integrands may be
written in the form

fx (ξ) := f (x, ξ) = 〈A j (x)ξ, ξ 〉 + 〈B j (x), ξ 〉 + c j (x) (ξ ∈ Ξ j (x), x ∈ X), (27)

where A j (·), B j (·) and c j (·) are affinemappings to the linear space of (d, d)-matrices,
to R

d and to R, respectively, Ξ j (x) is a d-dimensional polyhedral subset (12) of R
d
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for every j = 1, . . . , 
 and x ∈ X . When x ∈ X is given and fixed, we will also write
f instead of fx .
The integrands do not belong to the mixed Sobolev spaces (26) and are not of

bounded variation in the sense of Hardy and Krause on any hyperrectangle (see [38,
Proposition 17]) in general. For example, the function f (ξ1, ξ2) = max{ξ1, ξ2} of two
variables does not have a mixed derivative ∂2 f/∂ξ1∂ξ2 in the Sobolev sense.

We intend to show that all but one ANOVA terms of f are smoother than the
function f itself. Since the function f is piecewise linear-quadratic in the sense of
[42, Section 10.E], it is locally Lipschitz continuous and, hence, differentiable almost
everywhere due to Rademacher’s theorem (see, for example, [9, Section 3.1.2]). Since
theANOVA terms are given in terms of projections (see (19)), we study the smoothness
of first order projections.

Let k ∈ D, fix x ∈ X . For ξ ∈ R
d we set

ξ k = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd)

ξ ks = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) (s ∈ R).

We know that

ξ ks ∈

⋃

j=1

Ξ j (x) (28)

holds for every s ∈ R. By definition the kth projection is of the form

(Pk f )(ξ
k) =

∫ ∞

−∞
f (ξ ks )ρk(s)ds =

∫ ∞

−∞
fx (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds.

Due to (28) the one-dimensional affine subspace {ξ ks : s ∈ R} intersects finitely
many polyhedral sets Ξ j (x). Hence, there exist p = p(k) ∈ N ∪ {0}, si = ski ∈ R,
i = 1, . . . , p, and ji = j ki ∈ {1, . . . , 
}, i = 1, . . . , p + 1, such that si < si+1 and

ξ ks ∈ Ξ j1(x) ∀s ∈ (−∞, s1]
ξ ks ∈ Ξ ji (x) ∀s ∈ [si−1, si ] (i = 2, . . . , p)

ξ ks ∈ Ξ jp+1(x) ∀s ∈ [sp,+∞).

Clearly, the real numbers si depend on k, x and ξ k , but later we write only si or si (ξ k)
to emphasize their dependence on ξ k which is of particular importance here. By setting
s0 := −∞, sp+1 := ∞, we obtain the following representation of Pk f .

(Pk f )(ξ
k) =

p+1∑
i=1

∫ si

si−1

(〈A ji (x)ξ ks , ξ ks 〉 + 〈b ji (x), ξ ks 〉 + c ji (x))ρk(s)ds

=
p+1∑
i=1

(
(〈A ji (x)ξ k0 , ξ k0 〉 + 〈b ji (x), ξ k0 〉 + c ji (x))

∫ si

si−1

ρk(s)ds
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+
d∑

l=1
l �=k

(a ji
lk(x)ξl + a ji

kl (x)ξl + b ji
k (x))

∫ si

si−1

sρk(s)ds

+ a ji
kk(x)

∫ si

si−1

s2ρk(s)ds
)

(29)

=
p+1∑
i=1

2∑
j=0

pi j (ξ
k; x)

∫ si

si−1

s jρk(s)ds (30)

=
p+1∑
i=1

2∑
j=0

pi j (ξ
k; x)[ϕk j (si (ξ

k)) − ϕk j (si−1(ξ
k))] (31)

where a j
lk(x) and a

j
kl(x), l = 1, . . . , d, are the elements of the kth column and kth row

of the matrix A j (x), respectively, b j
k (x) the kth component of b j (x) and pi j (·; x) are

(d − 1)-variate polynomials in ξ k of degree 2 − j with coefficients depending on the
first-stage variable x . The function ϕk0 is the kth marginal distribution function and
ϕk j , j = 1, 2, are the corresponding first and second order moment functions, i.e.,

ϕk j (t) =
∫ t

−∞
s jρk(s)ds ( j = 0, 1, 2). (32)

According to Proposition 1 the points ξ ksi , i = 1, . . . , p, belong to the boundary of
Ξ ji (x), thus, to a (d − 1)-dimensional affine subspace Hi of R

d . Hence, there exist
gi ∈ R

d and ai ∈ R such that

〈gi , ξ ksi 〉 =
d∑

l=1
l �=k

gilξl + giksi = ai (i = 1, . . . , p). (33)

Note that gik �= 0, since the condition gik = 0 is equivalent to the orthogonality
of gi to the kth coordinate axis and, thus, to the fact that the affine subspace Hi

is parallel to the kth coordinate axis which is excluded according to (A4). Hence,
si = si (ξ k) is an affine function of ξ k and the projection Pk f represents a sum of
products of functions (depending on ξ k) that are continuously differentiable if the
polyhedra Ξ ji (x), i = 1, . . . , p + 1, do not change in some neighborhood of ξ k .

In order to study the behavior of Pk f also at points ξ k where the polyhedra Ξ ji (x),
i = 1, . . . , p+1, do change in any neighborhood of ξ k , we introduce some additional
notation. Let ξ̄ k ∈ R

d−1, Bε(ξ̄
k) denote the open ball around ξ̄ k with radius ε > 0

and

Pε(ξ̄
k) :=

{
Ξ j (x) : ξ ks ∈ Ξ j (x) for some s ∈ R, ξ k ∈ Bε(ξ̄

k)
}

(34)

P(ξ k) :=
{
Ξ j (x) : ξ ks ∈ Ξ j (x) for some s ∈ R

}
(35)
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denote sets of polyhedra Ξ j (x) that are met by the affine one-dimensional space
{ξ ks : s ∈ R}. Because any affine one-dimensional space {ξ ks : s ∈ R} for some
ξ k ∈ Bε(ξ̄

k) is a parallel translation of {ξ̄ ks : s ∈ R}, ε0 can be chosen even small
enough such that P(ξ k) ⊆ P(ξ̄ k) for every ξ k ∈ Bε0(ξ̄

k). Therefore we have

P(ξ̄ k) = Pε0(ξ̄
k). (36)

Since the polyhedra Ξ j (x) are convex, the sets {ξ ks : ξ ks ∈ Ξ j (x), s ∈ R} are convex,
too, and, hence, represent either an interval or a single point ifΞ j (x) belongs toP(ξ k).
The latter is only possible if the affine one-dimensional space meets a vertex or an
edge (i.e., faces of dimension zero or one) of Ξ j (x). The subset of R

d that contains
all vertices and edges of all such polyhedra Ξ j (x) has Lebesgue measure zero in
R
d . If the set {ξ ks : ξ ks ∈ Ξ j (x), s ∈ R} is an interval denoted by I j (ξ k), the set

{ξ ks : s ∈ I ◦
j (ξ

k)} , where I ◦
j (ξ

k) denotes the interior of I j (ξ k), belongs to the interior

of Ξ j (x). Otherwise, the interval I j (ξ k) belongs to a facet of Ξ j (x) which in turn is
parallel to the canonical basis element ek contradicting (A4).
Now, we are ready to prove our first result on smoothness properties of Pk f .

Theorem 1 Let (A1)–(A4) be satisfied, k ∈ D, x ∈ X and we consider an integrand
f of the form (27). Then the kth projection Pk f is continuously differentiable on R

d .
Pk f is second order continuously partially differentiable almost everywhere on R

d if
ρk is continuously differentiable.

Proof There are two possible cases for any point ξ̄ k ∈ R
d−1:

(i) There exists ε0 > 0 such that P(ξ k) = P(ξ̄ k) for all ξ k ∈ Bε0(ξ̄
k).

(ii) For each ε > 0 there exists ξ k ∈ Bε(ξ̄
k) such that P(ξ k) � P(ξ̄ k).

The case (i) corresponds to the consideration before stating the theorem where we
arrived at (see also (31))

(Pk f )(ξ̄
k) =

p(ξ̄ k )+1∑
i=1

2∑
j=0

Si j (ξ̄
k; x),

where Si j (ξ̄ k; x) := pi j (ξ̄ k; x)[ϕk j (si (ξ̄ k)) − ϕk j (si−1(ξ̄
k))] for j = 0, 1, 2, i =

1, . . . , p + 1, and the functions si , i = 1, . . . , p, and ϕk j , j = 0, 1, 2, are defined by
(32) and (33), respectively. Furthermore, s0 = −∞, sp+1 = +∞ and the functions
pi j (·; x) are (d−1)-variate polynomials of degree 2− j , j = 0, 1, 2, i = 1, . . . , p+1.

Now, let l ∈ D, l �= k. Then all partial derivatives
∂Si j
∂ξl

and, hence, the first partial

derivative of Pk f with respect to ξl exists at ξ̄ k and it holds

∂Pk f

∂ξl
(ξ̄ k) =

p(ξ̄ k )+1∑
i=1

2∑
j=0

∂Si j
∂ξl

(ξ̄ k; x) (37)

∂Si j
∂ξl

(ξ̄ k; x) = ∂pi j
∂ξl

(ξ̄ k; x)
[
ϕk j (si (ξ̄

k)) − ϕk j (si−1(ξ̄
k))

]
(38)
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+ pi j (ξ̄ k; x)
gik

[
s ji (ξ̄ k)ρk(si (ξ̄

k))gil − s ji−1(ξ̄
k)ρk(si−1(ξ̄

k))gi−1,l

]
,

(39)

where the first and second term in (39) disappear for i = p + 1 and i = 1, respec-
tively. We note that the partial derivative

∂pi j
∂ξl

(·; x) is a (d − 1)-variate polynomial of
degree 1 − j for j = 0, 1 and vanishes for j = 2. The term in (39) is equal to the
sum of polynomials of degree 2 multiplied by the density ρk evaluated at si (ξ̄ k) or
si−1(ξ̄

k). Since the kth marginal density ρk is continuous, the partial derivative is also
continuous. The term in (38) is continuously differentiable once again and the term in
(39) is continuously differentiable if ρk is continuously differentiable. Hence, Pk f is
second order partially differentiable at points ξ̄ k which satisfy (i).

In case (ii) we use the identity (36) and consider all polyhedra belonging to P(ξ̄ k).
LetΞ ji (x), i = 1, . . . , p+1, be all such polyhedra. Furthermore, let si , i = 1, . . . , p,
be nondecreasing and defined by

ξ̄ ksi ∈ Ξ ji (x) ∩ Ξ ji+1(x) (i = 1, . . . , p)

and we set s0 = −∞ and sp+1 = +∞. We allow explicitly that si = si+1 holds for
some i ∈ {1, . . . , p − 1}. Then we obtain

Pk f (ξ̄
k) =

p+1∑
i=1

2∑
j=0

pi j (ξ̄
k; x)

∫ si

si−1

s jρkds,

where p = p(ξ̄ k) and si = si (ξ̄ k), i = 1, . . . , p, are given by (33). Now, let ξ k ∈
Bε(ξ̄

k) for some ε > 0. Due to (36) the kth projection may be represented by a
subset of the set P(ξ̄ k). Of course, Ξ j1(x) and Ξ jp+1(x) and all polyhedra Ξ ji (x)
such that si (ξ̄ k) < si+1(ξ̄

k) appear also in the representation of Pk f (ξ k). Those
polyhedraΞ ji (x)with si (ξ̄

k) = si+1(ξ̄
k)may either disappear or appearwith si (ξ k) <

si+1(ξ
k). If they disappear we set si (ξ k) = si+1(ξ

k) and include them formally into
the representation of Pk f (ξ k) which is of the form

Pk f (ξ
k) =

p(ξ̄ k )+1∑
i=1

2∑
j=0

pi j (ξ
k; x)

∫ si (ξ k )

si−1(ξ
k )

s jρkds.

In a small ball around ξ k this representation doesn’t change. Hence, Pk f is differen-
tiable also in case (ii) and the partial derivative is of the form

∂Pk f

∂ξl
(ξ k) =

p+1∑
i=1

1∑
j=0

∂Si j
∂ξl

(ξ k; x), (40)

where the partial derivative of Si j at ξ k is of the same form as in (38) and (39) and,
thus, as in case (i). This means that the partial derivative of Pk f is also continuous
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at ξ k . The integrals with si−1(ξ
k) = si (ξ k) are again formally included into (40).

The second order partial derivative at ξ k does not exist in general, since left and right
one-sided second order partial derivatives differ in general since different summands
from (37) may appear.

Hence, Pk f is continuously differentiable onR
d , but themixed second order partial

derivatives exist only almost everywhere on R
d , where the relevant set of Lebesgue

measure zero is just contained in the union of all faces of all polyhedra Ξ j (x), j =
1, . . . , 
. ��

The following example shows that the geometric condition (A4) imposed in the
previous result is necessary for Theorem 1 to hold.

Example 1 We assume that the stochasticity only appears at right-hand sides and that
the dual feasible set D is given as the line segment

D = conv{−v, v} = {−λv + (1 − λ)v : λ ∈ [0, 1]} = {(1 − 2λ)v : λ ∈ [0, 1]}

for some v ∈ R
3, v �= 0. With the two vertices v and −v of D the optimal value

function of the second-stage problem is

Φ(t) = max{〈−v, t〉, 〈v, t〉} = |〈v, t〉| (t ∈ R
3).

With the right-hand side h(ξ) = ξ and the choice x = 0 without loss of generality,
we obtain the integrand

f (ξ) = f (0, ξ) = |〈v, ξ 〉| (ξ ∈ R
3).

Let k ∈ {1, 2, 3}. If the kth component of v vanishes, the face of the normal cone toD
at v parallels the kth coordinate axis, i.e., the geometric condition (A4) is not satisfied.
The kth projection Pk f of f is then of the form

Pk f (ξ
k) =

∣∣∣〈vk, ξ k〉∣∣∣ (ξ k ∈ R
2)

and, hence, not differentiable on R
3. For vk > 0 we obtain

Pk f (ξ
k) =

∫ +∞

−∞
∣∣〈vk, ξ k〉 + vks

∣∣ρk(s)ds
= vk

(
ϕk1(+∞) − 2ϕk1(s1(ξ

k))
) + 〈vk, ξ k〉(1 − 2ϕk0(s1(ξ

k))
)

where s1(ξ k) = −v−1
k 〈vk, ξ k〉 and we used the notation (32). Hence, Pk f is twice

continuously differentiable with

∂Pk f (ξ k)

∂ξ j
= v j

(
1 − 2ϕk0(s1(ξ

k))
)

and
∂2Pk f (ξ k)

∂ξ j∂ξl
= 2

v jvl

vk
ρk(s1(ξ

k))

123



QMC methods for linear two-stage stochastic programs 331

for j, l ∈ {1, 2, 3} \ {k} and each ξ k ∈ R
2. This implies that in this particular case all

ANOVA terms fu with |u| ≤ 2 possess even continuous classical mixed derivatives.

Example 4 in [15] shows that Pk f is not second order continuously differentiable
on the entire R

d in general. The geometric condition is further discussed in Sect. 6.
Theorem 1 extends to more general projections Pu .

Corollary 1 Let (A1)–(A4) be satisfied, ∅ �= u ⊆ D, x ∈ X and we consider an
integrand f of the form (27). Then the projection Pu f is continuously differentiable on
R
d . Pu f ismixed secondorder continuously partially differentiable almost everywhere

on R
d if ρk is continuously differentiable for some k ∈ u.

Proof If |u| = 1 the result follows from Theorem 1. For u = {k, r} with k, r ∈ D,
k �= r , and we obtain from the Leibniz theorem [14, Theorem 1] for l �∈ u

Dl Pu f (ξ
u) = ∂

∂ξl
Pu f (ξ

u) = Pr
∂

∂ξl
Pk f (ξ

u)

and from the proof of Theorem 1

Dl Pu f (ξ
u) =

p+1∑
i=1

2∑
j=0

∫
R

∂Si j
∂ξl

(ξ k; x)ρr (ξr )dξr .

A description of the partial derivative of Si j is given by (38) and (39).
If u contains more than two elements, the integral on the right-hand side becomes a

multiple integral. In all cases, however, such an integral is a function of the remaining
variables ξ j , j ∈ D \ u, whose continuity and differentiability properties correspond
at least to those of ϕk j and ρk . This follows using Lebesgue’s dominated convergence
theorem as ϕk j and all densities ρ j , j ∈ u, and their derivatives are bounded on R. ��

The following is the main result of this section.

Theorem 2 Assume (A1)–(A4) and that all marginal densities ρi , i = 1, . . . , d, are
continuously differentiable. Then all ANOVA terms of f except the one of highest order
are first order continuously differentiable on R

d and all mixed second order partial
derivatives exist and are continuous except on a set of Lebesgue measure zero, and
quadratically integrablewith respect to the densityρ. In particular, the first and second
order ANOVA terms of f belong to the tensor product Sobolev space W(1,...,1)

2,mix (Rd).

Proof According to (19) the ANOVA terms of f are defined by

fu = P−u( f ) +
∑
v�u

(−1)|u|−|v|P−v( f )

for all nonempty subsets u of D. Hence, all ANOVA terms of f for u �= D are
continuously differentiable on R

d . Second order partial derivatives of those ANOVA
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terms exist and are continuous almost everywhere inR
d . The non-vanishing first order

partial derivatives of the second order ANOVA terms are of the form

Dl f{l,r}(ξl , ξr ) = Dl PD\{l,r} f (ξl , ξr ) − Dl PD\{l} f (ξl)

=
p+1∑
i=1

1∑
j=0

∫
Rd−2

∂Si j
∂ξl

(ξ k; x)
∏
r∈D
r �=k

ρr (ξr )dξ−{r,l} − Dl PD\{l} f (ξl)

for all l, r ∈ D and some k ∈ D. Due to the structure of the partial derivative
∂Si j
∂ξl

(ξ k; x) (see (38) and (39)) and the local Lipschitz continuity of ϕk j , j = 0, 1, and

of ρk , it is a locally Lipschitz continuous function of ξ k . Hence, the functions Dl f{l,r}
and Dr f{l,r} are locally Lipschitz continuous with respect to each of the two variables
ξl and ξr independently when the other variable is fixed almost everywhere. Hence,
Dl f{l,r} and Dr f{l,r} are partially differentiable with respect to ξr and ξl , respectively,
in the sense of Sobolev (see, for example, [9, Section 4.2.3]). Furthermore, the second
order mixed partial derivatives are quadratically integrable with respect to ρ due to
(A2). ��
Remark 1 The second order ANOVA approximation of f , i.e.,

f (2) :=
∑
|u|≤2
u⊆D

fu (41)

belongs to themixedSobolev spaceW(1,...,1)
2,mix (Rd)due toTheorem2. Since the estimate

(23) implies

‖ f − f (2)‖22,ρ =
d∑

|u|=3
u⊆D

‖ fu‖22,ρ ≤ εσ 2( f )

if the effective superposition dimension of f satisfies dS(ε) ≤ 2, the function f is
representable as sum of an element of themixed Sobolev space and of a functionwhich
is small in L2. Based on this observation we derive in Remark 2 an error estimate for
randomly shifted lattice rules showing that essentially the convergence rate (6) is valid
for optimal values of two-stage stochastic programming problems, too. We note that,
in general, the property dS(ε) ≤ 2 is known as a good sign for the favorable behavior
of QMC methods compared to MC.

Remark 2 We assume that all marginal densities ρk , k = 1, . . . , d, are continuously
differentiable and positive. Then the corresponding marginal distribution functions

ϕk(t) =
∫ t

−∞
ρk(s)ds (t ∈ R, k = 1, . . . , d)

are invertible on (0, 1) and the mapping
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ϕ−1(t) = (ϕ−1
1 (t1), . . . , ϕ

−1
d (td))

� (t ∈ (0, 1)d)

is well defined and twice continuously differentiable. We consider the function g :
[0, 1]d → R defined by the transformation

g(t) = f ◦ ϕ−1(t) for t ∈ (0, 1)d

and g(t) = 0 else. The well known difficulty of this transformation is that g is either
unbounded near the boundary of the cube [0, 1]d or has very large derivatives near
the boundary. In [24] the authors developed a theory that overcomes this difficulty
and derives the same rate of convergence as (6) also for unbounded integrands and a
number of one-dimensional density functions (including the normal density).

Here, we assume for simplicity that the ANOVA terms gu , |u| = 1, 2, of the
transformed function g belong to the tensor product Sobolev space (5) if the ANOVA
terms fu , |u| = 1, 2, of the function f belong to the mixed Sobolev space (26). This
is true, for example, if the support of P is compact. Theorem 2 contains conditions
implying that the ANOVA terms fu , |u| = 1, 2, of two-stage integrands f belong to
themixed Sobolev space (26) if (A1)–(A4) are satisfied. Notice the following relations
of gu and fu

fu(ξ
u) = gu ◦ ϕu(ξ

u) for ξu ∈ R
|u|, gu(t

u) = ( fu ◦ ϕ−1
u )(tu) for tu ∈ (0, 1)|u|,

where

ϕu := (ϕ j1 , . . . , ϕ j|u|), ϕ−1
u := (ϕ−1

j1
, . . . , ϕ−1

j|u|),

( jk ∈ u, 1 ≤ k ≤ |u|, jk < jl , k < l).

Then the QMC quadrature error may be estimated as follows:

∣∣∣∣∣∣
∫

Rd
f (ξ)ρ(ξ)dξ − n−1

n∑
j=1

f (ξ j )

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

[0,1]d
g(t)dt − n−1

n∑
j=1

g(t j )

∣∣∣∣∣∣

≤
∑

0<|u|≤d

∣∣∣∣∣∣
∫

[0,1]d
gu(t

u)dtu − n−1
n∑
j=1

gu(t j )

∣∣∣∣∣∣ ,

where t j = (t j1 , . . . , t jd ), t ji = ϕi (ξ
j
i ) ∈ (0, 1), i = 1, . . . , d, j = 1, . . . , n, are the

QMC points. If the t j , j = 1, . . . , n, are randomly shifted lattice points, n is prime
and δ ∈ (0, 1

2 ], we may continue

⎛
⎜⎝E

∣∣∣∣∣∣
∫

[0,1]d
g(t)dt − n−1

n∑
j=1

g(t j )

∣∣∣∣∣∣
2
⎞
⎟⎠

1
2

≤ C(δ)n−1+δ
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+
d∑

|u|=3

⎛
⎝E

∣∣∣
∫

[0,1]d
gu(t)dt − n−1

n∑
j=1

gu(t j )
∣∣∣2
⎞
⎠

1
2

.

The latter sum can be further estimated by

d∑
|u|=3

⎛
⎝‖gu‖22 + n−1

n∑
j=1

E(g2u(t
j ))

⎞
⎠

1
2

=
d∑

|u|=3

⎛
⎝‖ fu‖22,ρ + n−1

n∑
j=1

E( f 2u (ξ j ))

⎞
⎠

1
2

.

(42)
Since (23) implies

∑d
|u|=3 ‖ fu‖2L2

≤ εσ 2( f ) if dS(ε) ≤ 2 and the second term on
the right-hand side of (42) represents a QMC approximation of the first term, we may
conclude that the right-hand side in (42) is of the form O(

√
ε). Hence, we obtain

⎛
⎝E

∣∣∣
∫

Rd
f (ξ)ρ(ξ)dξ − n−1

n∑
j=1

f (ξ j )

∣∣∣2
⎞
⎠

1
2

≤ C(δ)n−1+δ + O(
√

ε) (43)

if the condition dS(ε) ≤ 2 is satisfied. The latter may eventually be achieved by
applying dimension reduction techniques (see Sect. 7).

Finally, we note that the constants involved in the estimate (43) may be chosen to
be uniform with respect to x ∈ X . Hence, using the perturbation estimate (15) for the
optimal values in Sect. 3 we obtain

(E|v(P) − v(Pn)|2) 1
2 ≤ Ĉ(δ)n−1+δ + O(

√
ε), (44)

if dS(ε) ≤ 2. Hence, the estimate (43) carries over to optimal values. A similar result
can also be obtained for solution sets by relying on (16). Here, Pn is the discrete prob-
ability measure representing the randomized QMCmethod, i.e., Pn = n−1∑n

j=1 δξ j ,
where δξ denotes the Dirac measure placing unit mass at ξ .

6 Generic smoothness in the normal case

Let ξ be a d-dimensional normal random vector with mean μ and nonsingular covari-
ance matrix Σ . Then there exists an orthogonal matrix Q such that Q Σ Q� is a
diagonal matrix. Then the d-dimensional random vector η given by the transforma-
tion

ξ = Qη + μ or η = Q�(ξ − μ) (45)

is normal with zero mean and diagonal covariance matrix, i.e., η has independent
components. For fixed x ∈ X , let Ξ j (x), j = 1, . . . , 
, denote the polyhedral decom-
position (12) of R

d . The transformed function f̂ (x, η) = f (x, Qη + μ) is defined
on the polyhedral sets Q�Ξ j (x) − Q�μ, j = 1, . . . , 
, and still linear-quadratic in η

on each such set. The intersections of two adjacent polyhedral sets Ξ j (x) are subsets
of (d − 1)-dimensional affine subspaces Hj (x). The orthogonal matrix Q� causes a
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rotation of Hj (x). However, there are only finitely many of such subspaces Hj (x) and,
thus, only finitely many orthogonal matrices Q causing rotations modulo 2π such that
the subspace Q�Hj (x) is parallel to some coordinate axis. Hence, altogether, the set
of all orthogonal matrices Q such that (A4) for the polyhedral sets Q�Ξ j (x) − Q�μ

is not satisfied, is countable. When equipping the metric space of all orthogonal d×d-
matrices with the standard norm topology, the set of all orthogonal matrices Q that
satisfy (A4), is a residual set, i.e., the countable intersection of open dense subsets. A
property for elements of a topological space is called generic or is said to hold almost
everywhere if it is valid in a residual set. By referring to Theorem 2 this proves

Corollary 2 Let (A1) and (A2) be satisfied, x ∈ X, f = f (x, ·) be given by (27) and ξ

be normally distributed with nonsingular covariance matrix. The transformation (45)
of ξ implies the fact that the second order ANOVA approximation f (2) of f (given by
(41)) belongs toW(1,...,1)

2,ρ,mix(R
d) is a generic property.

7 Dimension reduction

It is known (see [37,55]) that Quasi-Monte Carlo methods for high-dimensional
numerical integration may be more efficient if the integrands f have low effective
superposition dimension. For integrals appearing in two-stage stochastic programming
one needs in addition that the effective superposition dimension satisfies dS(ε) ≤ 2
for some sufficiently small ε > 0 (see Sect. 5). Hence, one is usually interested in
determining and reducing the effective dimension. This topic is discussed in a number
of papers, e.g.,in [7,28,37,50,55,57]. Here, we concentrate on the normal case.

Several dimension reduction techniques exploit the fact that a normal random vec-
tor ξ with mean μ and non-singular covariance matrix Σ can be transformed by
ξ = Bη + μ and any matrix B satisfying Σ = B B� into a standard normal random
vector η with independent components. The choice of B may change the QMC error
and the effective dimension of the integrand fx (cf. [40]). As observed in [40,57],
however, there is no consistent dimension reduction effect for any such matrix B. This
means that a specific choice of thematrix Bmay result in a dimension reduction for one
integrand, but eventually not for another one. For example, the standard (lower trian-
gular) Cholesky matrix LC performing the factorization Σ = LC L�

C seems to assign
the same importance to every variable in option pricing models (cf. [55]) and, hence,
is not suitable for reducing the effective dimension of such models. The same effect is
observed in our numerical experiments for production planning models (see Sect. 8).

A universal principle for dimension reduction in the normal case is principal com-
ponent analysis (PCA). It is universal in the sense that it does not depend on the
structure of the underlying integrand f . The basic idea of PCA is to determine the
best mean square approximation of the form

∑d
i=1 vi zi to a d-dimensional normal

random vector ξ , where vi ∈ R
d , i = 1, . . . , d, and (z1, . . . , zd) is normal with zero

mean and theR
d identity matrix as covariance matrix. The solution is vi = √

λi ui and
zi = (

√
λi )

−1u�
i ξ , where λ1 ≥ · · · ≥ λd > 0 are the eigenvalues of Σ in decreasing

order and ui , i = 1, . . . , d, the corresponding orthonormal eigenvectors (see [57]).
Hence, PCA consists in using the factorization
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Σ = UP U�
P or Σ = (u1, . . . , ud)diag(λ1, . . . ,λd)(u1, . . . , ud)

�,

where UP = (
√

λ1u1, . . . ,
√

λdud). Several authors report an enormous reduction
of the effective truncation dimension in financial models if PCA is used (see, for
example, [55,56]). We observed the same effect in our numerical experiments (see
Sect. 8). However, the reduction effect certainly depends on the eigenvalues of Σ .
If the ratio λ1

λd
is close to 1, the performance of PCA gets worse. Nevertheless we

recommend to use first PCA and to resort to other ideas only after its failure.

8 Numerical results

We consider a stochastic production planning problem which consists in minimizing
the expected costs of a company during a certain time horizon. The model contains
stochastic demands ξδ and prices ξc as components of

ξ = (ξδ,1, . . . , ξδ,T , ξc,1, . . . , ξc,T )�.

The company aims to satisfy stochastic demands ξδ,t in a time horizon {1, . . . , T }, but
its production capacity based on their own N units does eventually not suffice to cover
the demand. Hence, it has to buy the necessary extra amounts on m1 markets or from
m2 other providers at prices p1, j1,t (ξc,t ) := c̄1, j1,t + ξc,t and p2, j1,t := c̄2, j2,t , t =
1, . . . , T, 1 ≤ j1 ≤ m1, 1 ≤ j2 ≤ m2, where the vector (ξc,1, . . . , ξc,T ) represents
the stochastic part of the prices p1, j1,t , 1 ≤ t ≤ T, at the markets, and c̄1, j1,t , c̄2, j1,t
represent contractual fixed prices. At the end, the company aims at minimizing the
expected costs. The optimization model is of the form

min
x∈RNT

{
T∑
t=1

N∑
i=1

ci,t xi,t +
∫

R2T
Φ(x, ξ)P(dξ) : x ∈ X

}
,

where the feasible set X is convex polyhedral and given by

X :=
{
x ∈ R

NT

∣∣∣∣∣
ai,t ≤ xi,t ≤ bi,t , i = 1, . . . , N , t = 1, . . . , T

|xi,t − xi,t+1| ≤ δi,t , i = 1, . . . , N , t = 1, . . . , T − 1

}
,

The constraints in X model capacity limits and ramping constraints, i.e., limits on the
rate of capacity changes. The recourse costs Φ are given by

Φ(x, ξ) = min
y∈R

(m1+m2)T

⎧⎨
⎩

T∑
t=1

⎛
⎝ m1∑

j1=1

p1, j1,t (ξc,t ) y j1,t +
m2∑
j2=1

p2, j2,t ym1+ j2,t

⎞
⎠ : y ∈ Y (x, ξ)

⎫⎬
⎭
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with convex polyhedral feasible set

Y (x, ξ) :=⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
y ∈ R

mT

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑N

i=1
xi,t +

∑m1+m2

j=1
y j,t ≥ ξδ,t , t = 1, . . . , T

w1, j1,t ≤ y j1,t ≤ z1, j1,t , j1 = 1, . . . ,m1 , t = 1, . . . , T

w2, j2,t ≤ ym1+ j2,t , j2 = 1, . . . ,m2 , t = 1, . . . , T

|y j1,t − y j1,t+1| ≤ ρ1, j1,t , j1 = 1, . . . ,m1 , t = 1, . . . , T − 1

|ym1+ j2,t − ym1+ j2,t+1| ≤ ρ2, j2,t , j2 = 1, . . . ,m2 , t = 1, . . . , T − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

with fixed ci,t , c̄1, j1,t , c̄2, j2,t and ai,t , bi,t , δi,t ,w1, j1,t ,w2, j2,t , z1, j1,t ,ρ1, j1,t , andρ2, j2,t .
The constraints in Y (x, ξ) describe again capacity limits and ramping constraints. We
assume that the stochastic demands and prices ξδ,t , ξc,t follow the condition

(
ξδ,t

ξc,t

)
=
(

ξ̄δ,t

ξ̄c,t

)
+
(
E1,t
E2,t

)
, for t = 1, . . . , T, and

(
ξ̄δ,1

ξ̄c,1

)
= B1

(
γ1,1
γ2,1

)
,

(
ξ̄δ,t

ξ̄c,t

)
= A1

(
ξ̄δ,t−1

ξ̄c,t−1

)
+ B1

(
γ1,t
γ2,t

)
+ B2

(
γ1,t−1
γ2,t−1

)

for t = 2, . . . , T , where (E1,1, . . . , E1,T ) and (E2,1, . . . , E2,T ) are fixed expectation
vectors for demands and prices simulating the trend or seasonality, A1, B1, B2 ∈
R
2×2, and stochastic i.i.d. Gaussian noise γ1,t , γ2,t ∼ N(0,1). The resulting stochastic

process for demands andprices is therefore amultivariateARMA(1,1) process. Similar
models have been considered for simulating prices and demands in energy industry,
see e.g. [8]. Note that since the model includes unbounded demands ξδ,1, . . . , ξδ,T , no
upper bounds in the variables ym1+ j2,t , j2 = 1, . . . ,m2, t = 1, . . . , T were imposed,
allowing the latter to cover arbitrarily large demand values. We select in addition
the prices values c̄2, j2,t significantly higher than the prices values c̄1, j1,t , such that
the variables ym1+ j2,t , j2 = 1, . . . ,m2 , t = 1, . . . , T , do not represent always the
trivial choice for costsminimization. For our tests, we chose the time horizon T = 100,
therefore the real dimension of the model is d = 2T = 200. Further model constants
were set to

A1 =
(
0.29 0.44
0.44 0.70

)
, B1 =

(
1 0
0 1

)
, B2 =

(
0.75 0.053
0.053 0.43

)
.

For detailed information about modeling with multivariate ARMA processes we refer
to [2].

The resulting joint distribution of the process is Gaussian, with dimension d = 2T
and covariance matrix Σ . The integration problem is transformed by factorizing the
covariance matrixΣ = A A� as usually recommended in Gaussian high-dimensional
integration (see [11, Sect. 2.3.3]). We carry out our tests using the Cholesky factor-
ization A = LC (CH) and the principal component analysis factorization A = UP

(PCA).

123



338 H. Leövey, W. Römisch

A simulated demand-price path (ξδ,1, . . . , ξδ,T , ξc,1, . . . , ξc,T ) can then be obtained
by

ξ = A (φ−1(z1), . . . , φ
−1(z2T ))� + (E1,1, . . . , E1,T , E2,1, . . . , E2,T )�,

where Z = (z1, . . . , z2T ) ∼ U ([0, 1]2T ) (i.e., the probability distribution of Z is
uniform distribution on [0, 1]2T ), and φ−1(.) represents the inverse standard normal
distribution function, which can be efficiently and accurately calculated by Moro’s
algorithm (see [11, Sect. 2.3.2]). The evaluation begins then with MC or randomized
QMC points for the samples Z ∼ U ([0, 1]2T ). For MC points in [0, 1]2T we used
the Mersenne Twister [30] as pseudo random number generator. For QMC, we use
randomly scrambled Sobol’ points with direction numbers given in [19] and randomly
shifted lattice rules [22,47]. The used scrambling technique is affine matrix scram-
bling described in [29] under the name random linear scrambling. For our tests, we
considered cubic decaying weights γ j = 1

j3
for constructing the lattice rules. We

chose the following parameters for the numerical experiments:

– N = 8, m1 = 4, m2 = 2.
– For all i, j1, j2, t, we select randomly ai,t ∈ [0.001, 0.003] , bi,t ∈ [0.3, 0.6],

δi,t ∈ [0.3, 0.35], w1, j1,t , w2, j2,t ∈ [0.000001, 0.00002], z1, j1,t ∈ [5, 7], and
ρ1, j1,t , ρ2, j2,t ∈ [1.0, 1.1].

– For all i, j1, j2, t, we select randomly ci,t ∈ [7, 9], c̄1, j1,t ∈ [8, 10], and
c̄2, j2,t ∈ [12, 14]. We fixed (E1,1, . . . , E1,T ) = (6, 6, . . . , 6), (E2,1, . . . , E2,T ) =
(0, 0, . . . , 0).

The given parameters were chosen as an attempt to avoid trivial solutions of the linear
programs.
We performed two different kinds of computational tests. First we studied the con-
vergence behavior and the error of the estimated optimal values of the resulting large
linear optimization problem

min
x∈RNT

⎧⎨
⎩

T∑
t=1

N∑
i=1

ci,t xi,t + n−1
n∑
j=1

Φ(x, ξ j )P(dξ) : x ∈ X

⎫⎬
⎭ (46)

by increasing the sample sizes n, under Cholesky and PCA factorizations of the
covariance matrix Σ . The sample sizes for Monte Carlo (MC, Mersenne Twister)
and scrambled Sobol’ sequences (SOB) were n1 = 128, n2 = 256 and n3 = 512.
For randomly shifted lattice rules (LAT) we have taken n1 = 127, n2 = 257 and
n3 = 509. The experiments where repeated 300 times for each sampling method,
each sample size and each matrix factorization technique. Figure 1 illustrates the con-
vergence behavior and Table 1 shows the mean and standard deviation of the optimal
values for each sampling method, each sample size and each matrix factorization
technique over the 300 replications. It is clearly visible that the matrix factorization
does not affect significantly the behavior of the Monte Carlo convergence, while the
QMC convergence is improved under PCA.More precise estimations of the errors and
convergence rates can be found in Figs. 2 and 3.
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Fig. 1 Shown are the optimal values of (46) obtained with PCA factorization (top figure) and Cholesky
factorization (bottom figure) of the covariance matrix for integration of Φ(x, ξ) for parameters as stated
above. The results for Mersenne Twister MC and scrambled Sobol’ QMC (SOB) were obtained with
n1 = 128, n2 = 256 and n3 = 512 points, and for randomly shifted lattice rules QMC (LAT) with
n1 = 127, n2 = 257 and n3 = 509 lattice points

For the second kind of tests we selected fixed feasible points x ∈ X and examined
the integration errors for the expected recourse

∫
R2T

Φ(x, ξ)P(dξ) (47)

by equal weight MC or randomized QMC quadrature rules. For simplicity we chose
fixed feasible points x ∈ X that are also optimal solutions of the tests of the first kind,
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Table 1 Mean and standard
deviation of the optimal values
for different sampling methods,
sample sizes and covariance
matrix factorizations

Mean Standard deviation

n1 n2 n3 n1 n2 n3

Cholesky fact.

MC 3180 3176 3174 151.2 105.2 73.3

LAT 3173 3170 3172 57.4 38.7 26.4

SOB 3176 3173 3173 31.0 19.1 12.9

PCA fact.

MC 3172 3170 3172 147.0 92.6 73.6

LAT 3172 3172 3172 22.2 11.4 6.2

SOB 3173 3173 3173 6.2 2.9 1.3

which were obtained by solving the resulting large linear program for different costs
while keeping the constraint set unchanged.

To determine the errors in the tests of first and second kind we performed 5 runs by
changing the set of randomly selected parameters but the qualitative results remained
very similar, therefore we only display one of these results in the figures in order to
summarize the work done. The results under PCA factorization are summarized in Fig.
2. The sample sizes are chosen as described earlier. The random shifts were generated
using theMersenneTwister.We estimated the relative rootmean square errors (RMSE)
of the estimated integrals (tests of second kind) and of the optimal values (tests of first
kind) by taking 10 runs of every experiment, and repeat the process 30 times for the
box plots in the figures. The box-plots of Figs. 1, 2 and 3 show the first quartile as lower
bound of the box, the third quartile as upper bound and the median as line between
the bounds. Outliers are marked as plus signs and the rest of the results lie between
the brackets.

The average of the estimated rates of convergence for the tests of first kind under
PCA was approximately −0.9 for randomly shifted lattice rules, and −1.0 for the
randomly scrambled Sobol’ points, for different price- and bound-parameters as men-
tioned above. This is clearly superior to theMCconvergence rate of−0.5. The effective
truncation dimension of Φ(x, ξ) was tested at 5 different optimal first-stage solutions
x obtained as mentioned above. We used the algorithm proposed in [55], namely,
computing the integrals (24) with 215 randomly scrambled Sobol’ points ensuring that
all results for the ANOVA total and partial variances were obtained with at least 3
digits accuracy. The effective dimension dT (0.01) remained always equal to 2. Hence,
Theorem 2 and Remark 1 apply if (A4) is satisfied. But, the latter may be assumed
due to Corollary 2. Hence, the theory of Sects. 5 and 6 justifies the application of both
randomized QMC methods.

Moreover, further tests showed that the variance accumulated by the sum of the
ANOVA terms fi , 3 ≤ i ≤ d, did not exceed 0.6% of the total variance σ 2( f ). These
results were obtained by using the special estimator Correlator 2 proposed in [39] for
accurate estimation of relatively small partial variances. We observed also that the first
variable under PCA seems to accumulate always more than 90% of the total variance
σ 2(Φ(x, ξ)). Hence, PCA serves as excellent dimension reduction technique in this
case.
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Fig. 2 Shown are the Log10 of relative RMSE with PCA factorization of covariance matrix for integration
of Φ(x, ξ) (top figure) and for the optimal values of (46) (bottom figure) for parameters as stated above.
The results for Mersenne Twister MC and scrambled Sobol’ QMC (SOB) were obtained with n1 = 128,
n2 = 256 and n3 = 512 points, and for randomly shifted lattice rules QMC (LAT)with n1 = 127, n2 = 257
and n3 = 509 lattice points

Using the Cholesky factorization the numerical results were completely different
than those under PCA, see Fig. 3. The average of the estimated rates of convergence
of both randomized QMC methods were approximately −0.5, which is the same as
the expected MC rate, although the implied error constants seem to be smaller for
randomly shifted lattice rules and scrambled Sobol’ points than for MC. In this case
the theory of Sect. 5 does not apply since the effective truncation dimension ofΦ(x, ξ)

was estimated to be dT = 200 in all tests. Further tests showed that the variance
accumulated by the sum of the first order ANOVA terms fi , 1 ≤ i ≤ d, did not exceed
30% of the total variance σ 2( f ).
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Fig. 3 Shown are the Log10 of relative RMSE with Cholesky factorization of covariance matrix for
integration of Φ(x, ξ) (top figure) and for the optimal values of (46) (bottom figure). The results for
Mersenne Twister MC and scrambled Sobol’ QMC (SOB) were obtained with n1 = 128, n2 = 256 and
n3 = 512 points, and for randomly shifted lattice rules QMC (LAT)with n1 = 127, n2 = 257 and n3 = 509
lattice points

9 Conclusions

Quasi-Monte Carlo methods were developed as alternative to Monte Carlo meth-
ods for numerical integration in higher dimensions. Their original convergence rate

O(n−1(log n)d−1) is clearly superior to the Monte Carlo rate O(n− 1
2 ), but required

integrands that are of bounded variation in the sense of Hardy and Krause. Moreover,
the term n−1 becomes effective only for very large sample sizes at least for higher
dimensions. Meanwhile the enormous progress in Quasi-Monte Carlo theory has led
to improved rates which may be effective already for smaller sample sizes like for ran-

123



QMC methods for linear two-stage stochastic programs 343

domly shifted lattice rules. The additional requirement is that the integrands belong
to a mixed first order Sobolev space.

Our theoretical results in Sect. 5 show that at least the first and second orderANOVA
terms of two-stage integrands satisfy this smoothness property. Hence, randomly
shifted lattice rules and scrambled Sobol’ sequences applied to two-stage stochas-
tic programs may converge with the rates (6) and (8), respectively, if the first and
second order ANOVA terms represent already a good approximation of them. The
latter means that the effective superposition dimension of the integrands is at most 2.
At first moment this appears as a serious restriction, but such low effective dimen-
sions may be achieved by dimension reduction methods as computational results for
option pricing models in the literature indicate. Our computational tests for a produc-
tion planning model under price and demand uncertainty show that in case of normal
distributions for prices and demands principal component analysis may lead to effec-
tive superposition dimension 2. Indeed our computational results proved the superior
convergence behavior of both randomized QMC methods. Both methods lead to a
substantial improvement compared to Monte Carlo schemes. We note that the results
of Sect. 5 also justify the use of sparse grid quadrature rules [10,32] for two-stage
stochastic programs.

A number of questions still remain open, for example, the smoothness of higher
order ANOVA terms and, thus, the possible validity of the theory in Sect. 5 also for
effective superposition dimensions larger than 2 or extensions of the theory regarding
the geometric condition (A4) and of dimension reduction techniques beyond the case
of (log)normal distributions. In addition, extensions to other stochastic optimization
models like multistage ones deserve further efforts.
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45. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming,MPS-SIAMSeries
on Optimization, Philadelphia, 2009 (2014 Second Edition)
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