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Introduction

• Electricity management models often contain uncertain parame-

ters (market prices, electrical load, inflows, wind speed), for which

historical data and/or statistical models are often available.

• Here, we consider models which are relevant for smaller market

participants, since their decisions do not influence market prices.

• During the last 15 years a breakthrough was obtained for the

numerical computation of high-dimensional integrals by means of

new randomized Quasi-Monte Carlo methods for integrands with

mixed first partial derivatives in the sense of Sobolev (Kuo-Sloan 05).

• Stochastic two-stage mixed-integer optimization models lead even

to discontinuous integrands. For integrands of the form g(·)1lB(·)
on [0, 1]d with g smooth and B convex polyhedral, the following

convergence rate for RQMC methods is derived:

O(n−
1
2−

1
4d∗−2+δ) (He-Wang 15),

where d∗ is the number of coordinate axes which are not parallel

to some discontinuity boundary.



Electricity Portfolio Management



The optimization model contains the electrical load ξδ and the elec-

tricity price ξc as stochastic parameters. Both are components of the

random vector

ξ = (ξδ,1, ξc,1, . . . , ξδ,T , ξc,T )>.

At each period t ∈ {1, . . . , T} of the T time intervals the company

has to cover the load. During peak load periods load covering requires

electricity trading based on bilateral contracts with fixed prices and/or

day-ahead trading with stochastic prices. Peak/offpeak load periods

may require to switch on/off cycling units.

A two-stage electricity production and trading model is of the form

min
{ T∑

t=1

〈ct, xt〉 +

∫
RT

Φ(q(ξ), h(ξ)− V x)P (dξ) : x ∈ X
}

Φ(q, h) = inf
{ T∑

t=1

〈qt, yt〉 :Wy + V x ≥ h, y ∈ Y
}
,

where xt denotes the outputs of the base load units and ct their costs at

t. The set X contains capacity limits and eventual ramping constraints

at each t. Φ denotes the second-stage optimal value function.



The vector yt of second-stage decisions contains the 0-1 variables and

outputs of cycling units, and the amounts of trading.

The constraints Wy + V x ≥ h(ξ) describe load covering at any

t and minimum up/down times of the cycling units. The constraint

y ∈ Y describes capacity limits, ramping constraints and integer re-

quirements. P denotes the probability distribution of ξ on R2T .

We assume that the centered stochastic load-price process

{ξ̄t = (ξ̄δ,t, ξ̄c,t)}Tt=1 may be modeled as linear multivariate time series

ARMA(p,q)

ξ̄t +

p∑
i=1

Aiξ̄t−i =

q∑
i=0

Biηt−i , t = 1, . . . , T,

with independent standard normal innovations ηt, t = 1, . . . , T , and

suitable matrices Ai and Bi (Eichhorn-Römisch-Wegner 05).

Let m and Σ denote mean and covariance matrix of ξ, respectively.



Quasi-Monte Carlo methods

We consider the approximate computation of

Id(g) =

∫
[0,1]d

g(x)dx

by a Quasi-Monte Carlo (QMC) method

Qn(g) =
1

n

n∑
j=1

g(xj)

with (deterministic) points xj, j = 1, . . . , n, from [0, 1]d.

There exist two main groups of QMC methods:

(Dick-Pillichshammer 10, Dick-Kuo-Sloan 13, Leobacher-Pillichshammer 14)

(1) Digital nets and sequences,

(2) Lattice rules.



Examples of digital sequences:

Sobol’ sequences (Sobol’ 67);

Faure sequences (Faure 82);

Niederreiter sequences (Niederreiter 87);

generalized Niederreiter sequences (Niederreiter 05)

Rank-1 lattices: {(j − 1)

n
g
}
∈ [0, 1]d, j = 1, . . . , n,

where g ∈ Zd+ is the generator of the lattice, the braces {·} mean

taking componentwise the fractional part.

Classical convergence rate: |Qn(g)− Id(g)| = O(n−1(log n)d)

if g has bounded variation on [0, 1]d (in the Hardy and Krause sense).

Notice that the sequence (n−1(log n)d) increases until n ≤ exp d and decreases
only for n > exp d.

Quasi-Monte Carlo methods often have good convergence properties

if the integrands have low effective dimension.



Randomized QMC methods

A randomized version of a QMC point set has the properties that
(i) each point in the randomized point set has a uniform distribution
over [0, 1)d (uniformity),
(ii) the QMC properties are preserved under the randomization with
probability one (equidistribution).
Randomization procedures for digital sequences, in particular, for Sobol’ se-
quences, were first considered in (Owen 95). For an overview on randomization
techniques see (L’Ecuyer-Lemieux 02, Dick-Pillichshammer 10).

The properties (i) and (ii) allow for error estimates and may lead to improved
convergence properties compared to the original QMC method.

Examples of such techniques are

(a) random shifts of lattice rules,

(b) scrambling, i.e., random permutations of Zb = {0, 1, . . . , b − 1}
applied to the digits in b-adic representations,

(c) affine matrix scrambling which generates random digits by random

linear transformations of the original digits, where the elements of all

matrices and vectors are chosen randomly, independently and uniformly

over Zb.



Weighted tensor product Sobolev spaces

Gd =W (1,...,1)
2,γ,mix([0, 1]d) =

d⊗
i=1

W 1
2,γi

([0, 1]),

where W 1
2,γi

([0, 1]) is the Sobolev space of absolutely continuous functions h on
[0, 1] with derivative h′ ∈ L2([0, 1]). Its inner product is

〈h, h̃〉 =
(∫ 1

0

h(t)dt
)(∫ 1

0

h̃(t)dt
)

+ γ−1i

∫ 1

0

h′(t)h̃′(t)dt .

The weighted norm ‖g‖γ =
√
〈g, g〉γ and inner product of Gd are given by

〈g, g̃〉γ =
∑
u⊆D

γ−1u

∫
[0,1]|u|

Iug(tu)Iug̃(tu)dtu,

where D = {1, . . . , d}, the weights γi are positive nonincreasing, and

Iug(tu) =

∫
[0,1]d−|u|

∂|u|

∂tu
g(t)dt−u and γu =

∏
i∈u

γi

for u ⊆ D, where γ∅ = 1. For u ⊆ D we use the notation |u| for its cardinality,
−u for D \u and tu for the |u|-dimensional vector with components tj for j ∈ u.
Moreover, Gd is a reproducing kernel Hilbert space with the kernel

Kd,γ(t, s) =
d∏
i=1

(
1 + γi(0.5B2(|ti − si|) +B1(ti)B1(si))

)
(t, s ∈ [0, 1]d),

where B1(t) = t− 1
2 and B2(t) = t2 − t+ 1

6 .
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Comparison of n = 27 MC Mersenne Twister points and randomly binary shifted Sobol’ points
in dimension d = 500, projection onto the 8. and 9. components

Randomly scrambled Sobol’ sequences admits the following con-

vergence rate of the RMSE on W (1,...,1)
2,γ,mix([0, 1]d)

sup
‖g‖γ≤1

√
E|Qn(ω)(g)− Id(g)|2 ≤ Cd n

−3
2(log n)

d−1
2 .

(Dick-Pillichshammer 10, Chapter 13)

Usually a rate close to O(n−1) is observable unless the sample sizes become huge.



Randomly shifted lattice rules

With a random vector 4 which is uniformly distributed on [0, 1]d, we

consider the randomly shifted lattice rule

Qn(ω)(g) =
1

n

n∑
j=1

g
({(j − 1)

n
g +4(ω)

})
.

Theorem: Let n ∈ N be prime and g ∈ W (1,...,1)
2,γ,mix([0, 1]d).

Then g ∈ Zd+ can be constructed componentwise such that for each

δ ∈ (0, 1
2] there exists a constant C(δ) > 0 with

sup
‖g‖γ≤1

√
E|Qn(ω)(g)− Id(g)|2 ≤ C(δ)n−1+δ ,

where the constant C(δ) increases if δ decreases, but does not depend

on d if the sequence (γj) satisfies

∞∑
j=1

γ
1

2(1−δ)
j <∞ (e.g. γj = 1

j3
).

(Sloan-Kuo-Joe 02, Kuo 03, Nuyens-Cools 06)



Transformation of integrals for general densities ρ

We mostly consider functions f : Rd → R and computing the integral∫
Rd
f (ξ)ρ(ξ)dξ .

Step 1: Transformation of the multivariate density function ρ on Rd

into a product-density ρ(ξ) =
∏d

k=1 ρk(ξk) with d independent one-

dimensional marginal densities ρk.
Example: If P is normal with mean 0 and nonsingular covariance matrix Σ, then for any matrix
A with Σ = AA> the density of P ◦ A has product form.

Step 2: Let ρk denote the independent marginal densities and φk the

marginal distribution functions of the probability distribution P . With

the transformations xk = φk(ξk), k = 1, . . . , d, one obtains∫
Rd
f (ξ)

d∏
k=1

ρk(ξk)dξ =

∫
[0,1]d

f (φ−1
1 (x1), . . . , φ−1

d (xd))dx1 · · · dxd



ANOVA decomposition and effective dimension

We consider a multivariate function f : Rd → R and intend to com-

pute the mean of f (ξ), i.e.

E[f (ξ)] = Id,ρ(f ) =

∫
Rd
f (ξ1, . . . , ξd)ρ(ξ1, . . . , ξd)dξ1 · · · dξd ,

where ξ is a d-dimensional random vector with density

ρ(ξ) =

d∏
k=1

ρk(ξk) (ξ ∈ Rd).

We are interested in a representation of f consisting of 2d terms

f (ξ) = f0 +

d∑
i=1

fi(ξi) +

d∑
i,j=1
i<j

fij(ξi, ξj) + · · · + f12···d(ξ1, . . . , ξd).

The previous representation can be more compactly written as

(∗) f (ξ) =
∑
u⊆D

fu(ξ
u) ,

where D = {1, . . . , d} and ξu contains only the components ξj with

j ∈ u and belongs to R|u|. Here, |u| denotes the cardinality of u.



Next we make use of the space L2,ρ(Rd) of all square integrable func-

tions with inner product

〈f, f̃〉ρ =

∫
Rd
f (ξ)f̃ (ξ)ρ(ξ)dξ .

A representation of the form (∗) of f ∈ L2,ρ(Rd) is called ANOVA

decomposition of f if∫
R
fu(ξ

u)ρk(ξk)dξk = 0 (for all k ∈ u and u ⊆ D).

The ANOVA terms fu, ∅ 6= u ⊆ D, are orthogonal in L2,ρ(Rd), i.e.

〈fu, fv〉ρ =

∫
Rd
fu(ξ)fv(ξ)ρ(ξ)dξ = 0 if and only if u 6= v,

The ANOVA terms fu allow a representation in terms of (so-called)

(ANOVA) projections, i.e.

(Pkf )(ξ) =

∫ ∞
−∞
f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd; k ∈ D).

and

Puf =
(∏
k∈u

Pk

)
(f ) (u ⊆ D).



Then it holds (Kuo-Sloan-Wasilkowski-Woźniakowski 10):

fu =
(∏
j∈u

(I − Pj)
)
P−u(f ) = P−u(f ) +

∑
v(u

(−1)|u|−|v|P−v(f ) ,

(−u bezeichnet das Komplement von u bzgl. D).

We consider the variances of f and fu

σ2(f ) = ‖f − Id,ρ(f )‖2
2,ρ und σ2

u(f ) = ‖fu‖2
2,ρ

and obtain

σ2(f ) = ‖f‖2
L2
− (Id,ρ(f ))2 =

∑
∅6=u⊆D

σ2
u(f ) .

The quotients
σ2
u(f )

σ2(f )
(u ⊆ D)

are called global sensitivity indices for the importance of the group ξj,

j ∈ u, of variables of f . For small ε ∈ (0, 1) (e.g. ε = 0.01)

dS(ε) = min
{
s ∈ D :

∑
|u|≤s

σ2
u(f )

σ2(f )
≥ 1− ε

}
is called effective (superposition) dimension of f .



The following estimate is valid

(+)
∥∥∥f − ∑

|u|≤dS(ε)

fu

∥∥∥
2,ρ
≤
√
εσ(f ) ,

i.e., the function f is approximated by a truncated ANOVA decompo-

sition which contains all ANOVA terms fu such that |u| ≤ dS(ε).

If f is nonsmooth and the ANOVA terms fu, |u| ≤ dS(ε), are smoo-

ther than f , the estimate (+) means an approximate smoothing of f .

Unfortunately, the effective dimension is hardly computable in general,

but an upper bound can be computed by finding the smallest s ∈ D
such that ∑

v⊆{1,...,s}

σ2
v(f ) ≥ (1− ε)σ2(f ) .

This relies on a particular integral representation of the left-hand side,

where the occuring integrals are computed approximately by means of

Monte Carlo or Quasi-Monte Carlo methods based on large samples.



QMC error analysis

Assume f ∈ Fd =
⊗d

i=1W
1
2,γi,ψi

(R), where W 1
2,γi,ψi

(R) is the Sobolev

space of functions h ∈ L2,ρi(R) which is absolutely continuous with

derivative h′ ∈ L2,ψi(R) and norm

‖h‖2
γi,ψi

=
(∫

R
h(ξ)ρi(ξ)dξ

)2

+
1

γi

∫
R

(h′(ξ)ψi(ξ))2dξ .

The functions ψi, i = 1, . . . , d, are selected such that the function

g = f (φ−1
1 (·), . . . , φ−1

d (·)) belongs to Gd and Fd is a complete tensor

product Sobolev space (Kuo-Sloan-Wasilkowski-Waterhouse 10, Nichols-Kuo 14).

The QMC error may be estimated as follows:∣∣∣ ∫
Rd

f(ξ)ρ(ξ)dξ − n−1
n∑
j=1

f(ξj)
∣∣∣ =

∣∣∣ ∫
[0,1]d

g(x)dx− n−1
n∑
j=1

g(xj)
∣∣∣

≤
∑

0<|u|≤d

∣∣∣ ∫
[0,1]|u|

gu(x
u)dxu − n−1

n∑
j=1

gu(x
j)
∣∣∣,

where xj = (xj1, . . . , x
j
d), xji = ϕ−1

i (ξji ) ∈ (0, 1)d, i = 1, . . . , d,

j = 1, . . . , n, are the QMC points.



If the points xj, j = 1, . . . , n, are randomly shifted lattice points, n
is prime and δ ∈ (0, 1

2], we may continue(
E
∣∣∣ ∫

[0,1]d
g(x)dx− n−1

n∑
j=1

g(xj)
∣∣∣2) 1

2 ≤ C(δ)n−1+δ +

∑
|u|>dS(ε)

(
E
∣∣∣ ∫

[0,1]|u|
gu(x

u)dxu − n−1
n∑
j=1

gu(x
j)
∣∣∣2) 1

2

≤ C(δ)n−1+δ +O(
√
ε)

if the ANOVA terms gu, |u| ≤ dS(ε), belong to Gd and the sequence

(γj) is selected properly.

The condition gu ∈ Gd is satisfied if fu ∈ Fd.



Integrands of mixed-integer two-stage stochastic programs

min
{
〈c, x〉+

∫
Rd

Φ(q(ξ), h(ξ)− V (ξ)x)ρ(ξ)dξ : x ∈ X
}
,

Φ(q, h) := inf
{
〈q1, y1〉+ 〈q2, y2〉 : W1y1 +W2y2 ≤ h, y1 ∈ Rm1, y2 ∈ Zm2

}
for all (q, h) ∈ Rm1+m2×Rr, c ∈ Rm, X is a closed subset of Rm, W1 and W2 are
(r,m1) and (r,m2)-matrices, q(ξ) ∈ Rm1+m2, h(ξ) ∈ Rr, and the (r,m)-matrix
V (ξ) are affine functions of ξ ∈ Rd, and ρ is a probability density on Rd.
Assumptions:
(B1) The matrices W1 and W2 have only rational elements.
(B2) For each pair (x, ξ) ∈ X × Rd it holds that h(ξ)− V (ξ)x ∈ T , where

T := {t ∈ Rr : ∃(y1, y2) ∈ Rm1 × Zm2 such that W1y1 +W2y2 ≤ t} .

(B3) For each ξ ∈ Rd the recourse cost q(ξ) belongs to the dual feasible set

U :=
{
u = (u1, u2) ∈ Rm1+m2 : ∃v ∈ Rr

− such that W>
1 v = u1, W

>
2 v = u2

}
.

Proposition:
Assume (B1)–(B3). There exist at most countably many convex polyhedra Bi,
i ∈ N , covering T with facets parallel to suitable facets of K = W1(Rm1) +Rr

+ .
The function Φ is finite and lower semicontinuous on U × T , Φ is bilinear on
each U ×Bi with possible kinks or discontinuities at certain facets of U ×Bi .



Example: (Schultz-Stougie-van der Vlerk 98)

Stochastic multi-knapsack problem:

min→ max, m = 2, m1 = 0, m2 = 4, d = s = 2, X = [−5, 5]2,

c = (1.5, 4), h(ξ) = ξ, q(ξ) ≡ q = (16, 19, 23, 28), yi ∈ {0, 1},
i = 1, 2, 3, 4, P ∼ U({5, 10, 15}2) (discrete)

V (ξ) ≡ V =

(
2
3

1
3

1
3

2
3

)
W =

(
2 3 4 5

6 1 3 2

)

0

2

4

0

2

4

-50

-40

-30

-20

Illustration of the expected recourse function with discrete uniform probability distribution



ANOVA terms of mixed-integer two-stage integrands

Fix x ∈ X and consider f (ξ) = 〈c, x〉+ Φ(q(ξ), h(ξ)− V x) which is

linear-quadratic on Ξi(x) = {ξ ∈ Ξ : h(ξ)− V x ∈ Bi}, i ∈ N .

Assumptions:
(B4) The density ρ has fourth order absolute moments.

(B5) ρ(ξ) =
∏d

k=1 ρk(ξk) with ρk ∈ Cd(R), k = 1, . . . , d.

(B6) Let G be the finite set of vectors g ∈ Rd that generate the

hyperplanes containing adjacent facets of the sets Ξi(x), i ∈ N : For

some n ∈ N and pairwise different gi ∈ G, i = 1, . . . , n, the matrix

(g1 · · · gn) has rank min{n, d} (geometric condition of order n).

Theorem:
Assume (B1)–(B5) and the geometric condition of order 2 .

Then the ANOVA projections Puf of f belong to C |u|−1(Rd−|u|) and

the ANOVA terms fu have all mixed first derivatives in the sense of

Sobolev if 1 ≤ |u| ≤ 2.

Proposition: Let ρ be a multivariate normal density.

For almost every covariance matrix the geometric condition of order 2

is satisfied after principal component analysis factorization.



Numerical results

To generate RQMC samples for the load-price vector ξ with mean

m = E[ξ] ∈ R2T and covariance matrix Σ = E[(ξ−m)(ξ−m)>] in our

two-stage mixed-integer electricity portfolio optimization model, we

first decompose Σ by a suitable matrix A such that Σ = AA>. In this

way we obtain a standard normal random vector z = (z1, . . . , z2T )T

such that

ξ = Az + m.

If φ denotes the standard normal distribution function, then the vector

η = (η1, . . . , η2T )> with zi = φ−1(ηi), i = 1, . . . , 2T , is uniformly

distributed in [0, 1]2T . We used the triangular Cholesky matrix A =

LCh and the matrix A = UPCA of the principal component analysis

(PCA) factorization

UPCA =
(√

λ1u1 · · ·
√
λdud

)
with the eigenvalues λ1 ≥ · · · ≥ λd > 0 and eigenvectors u1, . . . , ud
of the covariance matrix Σ.

For our tests we used T = 100 and, hence, d = 2T = 200.



By computing the upper bounds of the effective dimension using 215

randomly scrambled Sobol’ points we obtained

dS(0.01) ≤ 2 with PCA and 2 < dS(0.01) ≤ 200 with CH .

Hence, principal component analysis leads to a strong reduction of the

effective dimension.

For the numerical tests n samples ηj ∈ [0, 1]d, j = 1, . . . , n, of

Mersenne Twister MC and of the two RQMC methods were generated

and inserted after the transformations zji = φ−1(ηji ), i = 1, . . . , 2T ,

and ξj = Azj + m, j = 1, . . . , n, into

min
{ T∑

t=1

〈ct, xt〉 +
1

n

n∑
j=1

Φ(q(ξj), h(ξj)− V x) : x ∈ X
}
.

For MC and randomly scrambled Sobol’ points we used n = 128, 256, 512

and for randomly shifted lattice rules n = 127, 257, 509 (since prime

numbers n are favorable for the latter). The Mersenne Twister was

also used for the random scrambling and the random shifts.



Shown are the Log10 of relative RMSE for the optimal values of the two-stage model by using
PCA factorization of the covariance matrix. Results for Mersenne Twister MC and randomly
scrambled Sobol’ QMC with 128, 256 and 512 points and randomly shifted lattice rules QMC

with 127, 257 and 509 lattice points.



Shown are the Log10 of relative RMSE for the optimal values of the two-stage model by using
CH factorization of the covariance matrix. Results for Mersenne Twister MC and randomly

scrambled Sobol’ QMC with 128, 256 and 512 points and randomly shifted lattice rules QMC
with 127, 257 and 509 lattice points.



The relative root mean square error (RSME) of the optimal value of
the mixed-integer linear two-stage model is estimated by realizing 10
runs of every experiment and repeat the process 30 times.
The lower and upper bounds of the boxes correspond to the first and third quartile and the line
in between to the median. Outlier that do not belong to boxes are marked by plus signs.

The average convergence rates of three methods are −0.5 for MC,

about −0.9 for randomly shifted lattice rules und −1.0 for randomly

scrambled Sobol’ points if PCA factorization is used.

An explanation for the much better behavior of both randomized QMC

methods is the smoothing of integrands achieved by the low effective

dimension due to the use of PCA.

All three methods showed only average convergence rate −0, 5 if CH

factorization is used. However, it is also visible that also under CH

both randomized QMC methods lead to smaller errors than MC.



Conclusions

• Randomized Quasi-Monte Carlo methods are advantageous com-

pared to MC methods also for integrands having kinks or even

discontinuities at least in case of normal distributions and if the

effective dimension of the integrand is low.

• Instead of 104 MC samples one only needs about 102 samples for

randomly scrambled Sobol’ point sets and randomly shifted lattice

rules. The advantages consist in the improved accuracy for given

sample size or in smaller running times for identical sample sizes.

• The presented results extend our earlier work, for example, in

(Leövey-Römisch 15).
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