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Stochastic programming and approximation issues

We consider a stochastic program of the form

min

{∫
Ξ

Φ(x, ξ)P (dξ) : x ∈ X
}
,

where X ⊆ Rm is a constraint set, P a probability distribution on

Ξ ⊆ Rd, and f := Φ(x, ·) is a decision-dependent integrand.

Any approach to solving such models computationally requires to

replace the integral by a quadrature rule

Qn,d(f ) =

n∑
i=1

wif (ξi),

with weights wi ∈ R and scenarios ξi ∈ Ξ, i = 1, . . . , n.

If the natural condition wi ≥ 0 and
∑n

i=1wi = 1 is satisfied,

Qn,d(f ) allows the interpretation as integral with respect to the

discrete probability measure Qn having scenarios ξi with probabili-

ties wi, i = 1, . . . , n.
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Example 1: Linear two-stage stochastic programs

We consider two-stage linear stochastic programs:

min

{
〈c, x〉 +

∫
Ξ

ϕ(q(ξ), h(ξ)− Tx)P (dξ) : x ∈ X
}

where c ∈ Rm, X is a convex polyhedral subset of Rm, Ξ a closed

subset of Rd, T a (r,m)-matrix, h(·) and q(·) are affine mappings

on Rd, P a Borel probability measure on Ξ and

ϕ(q, t) = inf{〈q, y〉 : Wy = t, y ≥ 0}
= sup{〈t, z〉 : W>z ≤ q}

where q ∈ Rm̄, W a (r, m̄)-matrix (having rank r) and t varies in

the polyhedral cone W (Rm̄
+). There exist matrices Cj and poly-

hedral cones Kj, j = 1, . . . , `, decomposing domϕ such that

ϕ(q, t) = 〈Cjq, t〉, ∀(q, t) ∈ Kj. Hence, the integrand is

Φ(x, ξ) = 〈c, x〉 + max
j=1,...,`

〈Cjq(ξ), h(ξ)− Tx〉
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Example 2: Linear multi-stage stochastic programs

Let {ξt}Tt=1 be a discrete-time stochastic data process defined on

some probability space (Ω,F ,P) and with ξ1 deterministic. The

stochastic decision xt at period t is assumed to be measurable with

respect to Ft := σ(ξ1, . . . , ξt) (nonanticipativity).

min

E
( T∑

t=1

〈bt(ξt), xt〉
) ∣∣∣∣∣∣
xt ∈ Xt, xt ∈ Lp(Ω,Ft,P; Rmt)∑t−1

τ=0At,τxt−τ = ht(ξt)

(t = 1, ..., T )


where the setsXt are convex polyhedral in Rmt, At,τ , τ = 0, . . . , t−
1, are matrices and the vectors bt(·) and ht(·) depend affine linearly

on ξt, t = 1, . . . , T .

The integrand Φ = Φ1 is given by dynamic programming

Φt−1(xt−1, ξt) = inf
xt∈Xt

{
〈bt(ξt), xt〉 + E(Φt(x

t, ξt+1)|Ft)
∣∣∣∑t−1

τ=0
At,τxt−τ = ht(ξt)

}
,

where t = 2, . . . , T , ΦT ≡ 0, xt = (x1, . . . , xt), ξt = (ξt, . . . , ξT ).
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Assumption: P has a density ρ w.r.t. λd.

Now, we set F = {Φ(·, x)ρ(·) : x ∈ X} and assume that the set

F is a bounded subset of some linear normed space Fd with norm

‖ · ‖d and unit ball Bd = {f ∈ Fd : ‖f‖d ≤ 1}.

The absolute error of the quadrature rule Qn,d is

e(Qn,d) = sup
f∈Bd

∣∣∣ ∫
Ξ

f (ξ)dξ −
n∑
i=1

wif (ξi)
∣∣∣

and the approximation criterion is based on the relative error and

a given tolerance ε > 0, namely, it consists in finding the smallest

number nmin(ε,Qn,d) ∈ N such that

e(Qn,d) ≤ εe(Q0,d),

holds, where Q0,d(f ) = 0 and, hence, e(Q0,d) = ‖Id‖ with

Id(f ) =

∫
Ξ

f (ξ)dξ.
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The behavior of both quantities depends heavily on the normed

space Fd and the set F , respectively.

It is desirable that an estimate of the form

nmin(ε,Qn,d) ≤ C dqε−p (’tractability’)

is valid for some constants q ≥ 0, C, p > 0 and for every ε ∈ (0, 1).

Of course, q = 0 is highly desirable for high-dimensional problems.

Proposition: (Stability)

Let the set X be compact. Then there exists L > 0 such that∣∣∣∣∣ inf
x∈X

∫
Ξ

Φ(ξ, x)ρ(ξ)dξ − inf
x∈X

n∑
i=1

wiΦ(ξi, x)ρ(ξi)

∣∣∣∣∣ ≤ Le(Qn,d).

The solution set mapping is outer semicontinuous at P .
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Alternatively, we look for a suitable set F of functions such that

{CΦ(·, x) : x ∈ X} ⊆ F for some constant C > 0 and, hence,

e(Qn,d) ≤
1

C
sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Qn(dξ)

∣∣∣∣ = D(P,Qn),

and that D is a metric distance between probability distributions.

Example: Lp-minimal metric `p (or Wasserstein metric) of order

p ≥ 1

`p(P,Q) :=
(

inf
{∫

Ξ×Ξ

‖ξ − ξ̃‖pη(dξ, dξ̃)
∣∣∣π1η = P, π2η = Q

})1
p

It holds

`p(P,Q) = inf{‖ξ − ξ̃‖p | L(ξ) = P,L(ξ̃) = Q}

`1(P,Q) = sup
{∣∣∣ ∫

Ξ

f (ξ)(P −Q)(dξ)
∣∣∣ : |f (ξ)− f (ξ̃)| ≤ ‖ξ − ξ̃‖

}
by definition and duality, respectively.
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Examples of normed spaces Fd:

(a) The Banach space Fd = Lip(Rd) of Lipschitz continuous func-

tions equipped with the norm

‖f‖d = |f (0)| + sup
ξ 6=ξ̃

|f (ξ)− f (ξ̃)|
‖ξ − ξ̃‖

.

The best possible convergence rate is e(Qn,d) = O(n−
1
d).

It is attained for wi = 1
n and certain ξi, i = 1, . . . , n, if P has

finite moments of order 1 + δ for some δ > 0. (Graf-Luschgy 00)

(b) The tensor product Sobolev space

Fd,γ =W (1,...,1)
2,mix ([0, 1]d) =

d⊗
j=1

W 1
2 ([0, 1])

of real functions on [0, 1]d having first order mixed weak deriva-

tives with the (weighted) norm

‖f‖d,γ =

(∑
u⊂D

γ−1
u

∫
[0,1]|u|

∣∣∣∣∂|u|∂ξu
f (ξu, 1−u)

∣∣∣∣2 dξu
)1

2

,
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where D = {1, . . . , d}, γ1 ≥ γ2 ≥ · · · ≥ γd > 0, γ∅ = 1 and

γu =
∏
j∈u

γj (u ⊆ D).

For n prime, wi = 1
n, and a suitable choice of (γj), points

ξi ∈ [0, 1]d, i = 1, . . . , n, can be constructed such that

e(Qn,d) ≤ C(δ)n−1+δ‖Id‖

for some C(δ) > 0 (not depending on d) and all 0 < δ ≤ 1
2.

(Sloan, Woźniakowski 98, Kuo 03)
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Scenario generation methods

We will discuss the following three scenario generation methods for

stochastic programs without nonanticipativity constraints:

(a) Monte Carlo sampling from the underlying probability distribu-

tion P on Rd
(Shapiro 03).

(b) Optimal quantization of probability distributions (Pflug-Pichler 10).

(c) Quasi-Monte Carlo methods (Koivu-Pennanen 05, Homem-de-Mello 06).
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Monte Carlo sampling

Monte Carlo methods are based on drawing independent identi-

cally distributed (iid) Ξ-valued random samples ξ1(·), . . . , ξn(·), . . .
(defined on some probability space (Ω,A,P)) from an underlying

probability distribution P (on Ξ) such that

Qn,d(ω)(f ) =
1

n

n∑
i=1

f (ξi(ω)),

i.e., Qn,d(·) is a random functional, and it holds

lim
n→∞

Qn,d(ω)(f ) =

∫
Ξ

f (ξ)P (dξ) = E(f ) P-almost surely

for every real continuous and bounded function f on Ξ.

If P has finite moment of order r ≥ 1, the error estimate

E

(∣∣∣∣∣1n
n∑
i=1

f (ξi(ω))− E(f )

∣∣∣∣∣
r)
≤ E ((f − E(f ))r)

nr−1

is valid.
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Hence, the mean square convergence rate is

‖Qn,d(ω)(f )− E(f )‖L2 = σ(f )n−
1
2 ,

where σ2(f ) = E
(
(f − E(f ))2

)
.

The latter holds without any assumption on f except σ(f ) <∞.

Advantages:

(i) MC sampling works for (almost) all integrands.

(ii) The machinery of probability theory is available.

(iii) The convergence rate does not depend on d.

Deficiencies: (Niederreiter 92)

(i) There exist ’only’ probabilistic error bounds.

(ii) Possible regularity of the integrand does not improve the rate.

(iii) Generating (independent) random samples is difficult.

Practically, iid samples are approximately obtained by pseudo ran-

dom number generators as uniform samples in [0, 1]d and later trans-

formed to more general sets Ξ and distributions P .



Home Page

Title Page

Contents

JJ II

J I

Page 14 of 100

Go Back

Full Screen

Close

Quit

Excellent pseudo random number generator: Mersenne Twister

(Matsumoto-Nishimura 98).

Survey: L’Ecuyer 94.
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Optimal quantization of probability measures

Let D be a distance of probability measures on Rd such that the

underlying stochastic program behaves stable w.r.t. D (Römisch 03).

Example:
Lp-minimal metric `p for p ≥ 1, i.e.

`p(P,Q) = inf{(E(‖ξ − η‖p))
1
p : L(ξ) = P, L(η) = Q}

Let P be a given probability distribution on Rd. We are looking for

a discrete probability measure Qn with support

supp(Qn) = {ξ1, . . . , ξn} and Qn({ξi}) =
1

n
, i = 1, . . . , n,

that is the best approximation to P with respect to D, i.e.,

D(P,Qn) = min{D(P,Q) : |supp(Q)| = n,Q is uniform}.
Existence of best approximations, called optimal quantizers, and

their best possible convergence rate O(n−
1
d) is well known for `p

(Graf-Luschgy 00).
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However, in general, the function

ΨD(ξ1, . . . , ξn) := D
(
P,

1

n

n∑
i=1

δξi
)

and, in particular,

Ψ`p(ξ
1, . . . , ξn) =

(∫
Rd

min
i=1,...,n

‖ξ − ξi‖pP (dξ)

)1
p

is nonconvex and nondifferentiable on Rdn.

Hence, the global minimization of ΨD is not an easy task.

Algorithmic procedures for minimizing Ψ`r globally may be based

on stochastic gradient (type) algorithms, stochastic approximation

methods and stochastic branch-and-bound techniques (e.g. Pflug 01,

Hochreiter-Pflug 07, Pagés 97, Pagés et al 04).

However, asymptotically optimal quantizers can be determined ex-

plicitly in a number of cases (Pflug-Pichler 10).
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Quasi-Monte Carlo methods

The idea of Quasi-Monte Carlo (QMC) methods is to replace ran-

dom samples in Monte Carlo methods by deterministic points ξi,

i ∈ N, that are uniformly distributed in [0, 1]d. QMC is of the form

Qn,d(f ) =
1

n

n∑
i=1

f (ξi)

The uniform distribution property may be defined in terms of the

so-called star-discrepancy of ξ1, . . . , ξn

D∗n(ξ1, . . . , ξn) := sup
ξ∈[0,1]d

∣∣∣∣∣λd([0, ξ))− 1

n

n∑
i=1

1l[0,ξ)(ξ
i)

∣∣∣∣∣,
by calling a sequence (ξi)i∈N uniformly distributed in [0, 1]d if

D∗n(ξ1, . . . , ξn)→ 0 for n→∞ .

A classical result due to Roth 54 states

D∗n(ξ1, . . . , ξn) ≥ Bd
(log n)

d−1
2

n

for some constant Bd and all sequences (ξi) in [0, 1]d.
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Classical convergence results:

Theorem: (Proinov 88)

If the real function f is continuous on [0, 1]d, then there exists

C > 0 such that

|Qn,d(f )− Id(f )| ≤ Cωf

(
D∗n(ξ1, . . . , ξn)

1
d

)
,

where ωf(δ) = sup{|f (ξ)− f (ξ̃)| : ‖ξ− ξ̃)‖ ≤ δ, ξ, ξ̃ ∈ [0, 1]d} is

the modulus of continuity of f .

Theorem: (Koksma-Hlawka 61)

If f is of bounded variation in the sense of Hardy and Krause, it

holds

|Id(f )−Qn,d(f )| ≤ VHK(f )D∗n(ξ1, . . . , ξn) .

for any n ∈ N and any ξ1, . . . , ξn ∈ [0, 1]d.

There exist sequences (ξi) in [0, 1]d such that

D∗n(ξ1, . . . , ξn) = O(n−1(log n)d−1).
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First general construction: Nets (Sobol 69, Niederreiter 87)

Elementary subintervals E of [0, 1)d in base b:

E =

d∏
j=1

[ aj
bdj
,
aj + 1

bdj

)
,

with ai, di ∈ Z+, 0 ≤ ai < di, i = 1, . . . , d.

A set of bm points in [0, 1]d is a (t,m, d)-net in base b if every

elementary subinterval E in base b with λd(E) = bt−m contains bt

points (m, t ∈ Z+, m > t).

A sequence (ξi) in [0, 1]d is a (t, d)-sequence in base b if, for all

integers k ∈ Z+ and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}

is a (t,m, d)-net in base b.

Proposition: (0, d)-sequences exist if d ≤ b.
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Theorem: A (0,m, d)-net {ξi} in base b satisfies

D∗n(ξi) ≤ Ad(b)
(log n)d−1

n
+ O

(
(log n)d−2

n

)
.

with reasonably small constants Ad(b).

Special cases: Sobol, Faure and Niederreiter sequences.

Second general construction: Lattices (Korobov 59, Sloan-Joe 94)

Let g ∈ Zd and consider the lattice points{
ξi =

{ i
n
g
}

: i = 1, . . . , n
}
,

where {z} is defined componentwise and for z ∈ R+ it is the

fractional part of z, i.e., {z} = z − bzc ∈ [0, 1).

Randomly shifted lattice points with a uniform random vector 4:{
ξi =

{ i
n
g +4

}
: i = 1, . . . , n

}
,

There is a component-by-component construction algorithm for g

such that for some constant C(δ) and all 0 < δ ≤ 1
2

e(Qn,d) ≤ C(δ)n−1+δ‖Id‖ (Sloan-Kuo 05, Kuo 03).
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Convergence rates for unbounded integrands ?
(Kuo-Sloan-Wasilkowski-Waterhouse 10)

Let us consider

Id,ρ(f ) =

∫
Rd
f (ξ)ρ(ξ)dξ with ρ(ξ) =

d∏
j=1

φ(ξj)

and strictly positive φ (w.l.o.g.).

Transformation:

Id,ρ(f ) = Id(g) =

∫
(0,1)d

g(u)du, where

g(u)=f (Φ−1(u)) :=f (Φ−1(u1), . . . ,Φ−1(ud)) and Φ(ξ)=

∫ ξ

−∞
φ(t)dt

Absolute error:

e(Qn,d) = sup
f∈Bd

∣∣∣ ∫
(0,1)d

f (Φ−1(u))du− 1

n

n∑
i=1

f (Φ−1(ui))
∣∣∣

where ui ∈ (0, 1)d, i = 1, . . . , n.

Rates of convergence for unbounded integrands are known for sev-

eral densities φ and close to those for [0, 1]d.
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Is QMC efficient in stochastic programming ?

Problem: Typical integrands in linear stochastic programming are

not smooth and, hence, do not belong to the relevant function

spaces in general.

Idea: Study of the efficient dimension of typical integrands.

ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = ID(f ) and recursively

fu = I−u(f ) +
∑
v⊆u

(−1)|u|−|v|Iu−v(I−u(f )) ,

where I−u means integration with respect to ξj in [0, 1], j ∈ D \ u
and D = {1, . . . , d}. Hence, fu is essentially as smooth as I−u(f )

and does not depend on ξ−u.

Proposition: The functions {fu}u⊆D are orthogonal in L2([0, 1]d).
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We set σ2(f ) = ‖f − Id(f )‖2
L2

and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

‖fu‖2
L2
.

The truncation dimension dt of f is the smallest dt ∈ N such that∑
u⊆{1,...,dt}

‖fu‖2
L2
≥ ασ2(f ) (where α ∈ (0, 1) is close to 1).

Then

‖f −
∑

u⊆{1,...,dt}

fu‖2
L2
≤ (1− α)σ2(f ).

Most of the ANOVA terms fu may be smoother than f under cer-

tain conditions.

(Griebel-Kuo-Sloan 10).
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A note on scenario reduction

Assume that the stochastic program behaves stable with respect to

`p for some p ≥ 1.

Let us consider discrete probability distributions P with scenarios

ξi and probabilities pi, i = 1, . . . , N , and Q being supported by a

given subset of scenarios ξj, j 6∈ J ⊂ {1, . . . , N}, of P .

The best approximation of P with respect to `p given an index set

J exists and is denoted by Q∗. It has the distance

DJ := `p(P,Q
∗) = min

Q
`p(P,Q) =

(∑
i∈J

pi min
j 6∈J
‖ξi − ξj‖p

)1
p

and the probabilities q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J, where

Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J
‖ξi − ξj‖, ∀i ∈ J

(optimal redistribution) (Dupačová-Gröwe-Römisch 03).



Home Page

Title Page

Contents

JJ II

J I

Page 26 of 100

Go Back

Full Screen

Close

Quit

For mixed-integer two-stage stochastic programs the relevant dis-

tance is a polyhedral discrepancy. In that case, the new weights

have to be determined by linear programming (Henrion-Küchler-Römisch

08, 09).

Determining the optimal index set J with prescribed cardinality

N − n is a combinatorial optimization problem:

min {DJ : J ⊂ {1, ..., N}, |J | = N − n}

Hence, the problem of finding the optimal index set J of scenar-

ios to delete is NP-hard and polynomial time algorithms are not

available in general.

=⇒ Heuristics are used to determine J .
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Scenario reduction w.r.t. `1 from N=10 000 MC samples of N(0, I) in R2 to n = 20. The

diameters of the circles are proportional to their probabilities
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Generation of scenario trees

In multistage stochastic programs the decisions x have to satisfy

the additional information constraint that xt is measurable with re-

spect to Ft = σ(ξτ , τ = 1, . . . , t), t = 1, . . . , T . The increase of

the σ-fields Ft w.r.t. t is reflected by approximating the underlying

stochastic process ξ = (ξt)
T
t=1 by scenarios forming a scenario tree.

Some recent approaches:

(1) Bound-based approximation methods: Kuhn 05, Casey-Sen 05.

(2) Monte Carlo-based schemes: Shapiro 03, 06.

(3) Quasi-Monte Carlo methods: Pennanen 06, 09 .

(4) Moment-matching principle: Høyland-Kaut-Wallace 03.

(5) Optimal quantization: Pagés et al. 03.

(6) Stability-based approximations: Hochreiter-Pflug 07, Mirkov-Pflug 07,

Pflug-Pichler 10, Heitsch-Römisch 05, 09.

Survey: Dupačová-Consigli-Wallace 00
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Theoretical basis of (6):
Quantitative stability results for multi-stage stochastic programs.

(Heitsch-Römisch-Strugarek 06; Mirkov-Pflug 07, Pflug 09)

Scenario tree generation: (Heitsch-Römisch 09)

(i) Generate a number of scenarios by one of the methods dis-

cussed earlier.

(ii) Construction of a scenario tree out of these scenarios by recur-

sive scenario reduction and bundling over time such that the

optimal value stays within a prescribed tolerance.

Implementation: GAMS-SCENRED 2.0 (developed by H. Heitsch)
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Illustration of the forward tree generation for an example including T=5 time periods starting with
a scenario fan containing N=58 scenarios
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Two-yearly demand-inflow scenario tree with weekly branchings for French EDF
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Mean-Risk Electricity Portfolio Management
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We consider the electricity portfolio management of a German mu-

nicipal electric power company. Its portfolio consists of the follow-

ing positions:

• power production (based on company-owned thermal units),

• bilateral contracts,

• (physical) (day-ahead) spot market trading (e.g., European En-

ergy Exchange (EEX)) and

• (financial) trading of futures.

The time horizon is discretized into hourly intervals. The underlying

stochasticity consists in a multivariate stochastic load and price

process that is approximately represented by a finite number of

scenarios. The objective is to maximize the total expected revenue

and to minimize the risk. The portfolio management model is a

large scale (mixed-integer) multi-stage stochastic program.
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Statistical models and scenario trees

For the stochastic input data of the optimization model (here yearly

electricity and heat demand, and electricity spot prices), a statisti-

cal model is employed.

- cluster classification for the intra-day (demand and price) profiles,

- Three-dimensional time series model for the daily average values

(deterministic trend functions, a trivariate ARMA model for the

(stationary) residual time series),

- Generation of scenarios by computing Monte Carlo samples from

the multivariate normal distribution that corresponds to the ARMA

process, and adding on trend functions as well as matched intra-day

profiles from the clusters afterwards,

Intended modification: QMC samples instead of MC.

- generation of scenario trees (Heitsch-Römisch 09).
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Numerical results

Test runs were performed on real-life data of a German munici-

pal power company leading to a linear program containing T =

365 · 24 = 8760 time steps, a scenario tree with 40 demand-price

scenarios (see below) with about 150.000 nodes. The objective

function is of the form

Minimize γρ(z)− (1− γ)E(zT )

with a (multiperiod) risk measures ρ with risk aversion parameter

γ ∈ [0, 1] (γ = 0 corresponds to the risk-neutral case).

Two risk measures:
(1) ρ(z) = AV@R0.05(zT ) (Average or Conditional Value-at-risk)

(2) ρ(z) = ρm(z) = AV@R0.05( min
j=1,...,J

ztj)

(tj, j = 1, . . . , J = 52, are the risk measuring time steps;

they correspond to 11 pm at the last trading day of each week).
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Yearly scenario tree for the trivariate load-price process
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It turns out that the numerical results for the expected maximal

revenue and minimal risk

E(z∗γT ) and ρ(z∗γt1 , . . . , z
∗γ
tJ

)

with the optimal revenue process z∗γ are (almost) identical for

γ ∈ [0.15, 0.95] and the risk measures used in the test runs.

The efficient frontier

γ 7→
(
ρ(z∗γt1 , . . . , z

∗γ
tJ

),E(z∗γT )
)

is concave for γ ∈ [0, 1].

Risk aversion costs less than 1% of the expected overall revenue.
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The LP is solved by CPLEX 9.1 in about 1 h running time on a 2 GHz Linux PC with 1 GB

RAM.
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Conclusions

• A survey of approaches for scenario generation in stochastic

optimization was presented.

• We outlined that a theoretical basis for applying Quasi-Monte

Carlo in stochastic programming is still open.

• Strategies for scenario reduction and scenario tree generation

were briefly discussed.

• Numerical results for a risk-neutral and risk-averse yearly elec-

tricity portfolio management model were presented.
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