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Introduction

What is Stochastic Programming ?

- Mathematics for Decision Making under Uncertainty
- subfield of Mathematical Programming (MSC 90C15)

Stochastic programs are optimization models

- having special properties and structures,
- depending on the underlying probability distribution,
- requiring specific approximation and numerical approaches,
- having close relations to practical applications.

Selected recent monographs:
A. Ruszczynski, A. Shapiro (eds.): Stochastic Programming, Handbook, Elsevier, 2003
S.W. Wallace, W.T. Ziemba (eds.): Applications of Stochastic Programming, MPS-SIAM, 2005,
P. Kall, J. Mayer: Stochastic Linear Programming, Kluwer, 2005,
A. Shapiro, D. Dentcheva, A. Ruszczyński: Lectures on Stochastic Programming,MPS-SIAM, 2009.
G. Infanger (ed.): Stochastic Programming - The State-of-the-Art, Springer, 2010.
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Approaches to optimization models under stochastic
uncertainty

Let us consider the optimization model

min{f (x, ξ) : x ∈ X, g(x, ξ) ≤ 0} ,

where ξ : Ω→ Ξ is a random vector defined on a probability space
(Ω,F ,P), Ξ and X are closed subsets of Rs and Rm, respectively,
f : X × Ξ→ R and g : X × Ξ→ Rd are lower semicontinuous.

Aim: Finding optimal decisions before knowing the random out-
come of ξ (here-and-now decision).

Main approaches:

• Replace the objective by E[f (x, ξ)] or by F[f (x, ξ)], where E
denotes expectation (w.r.t. P) and F some functional on the
space of real random variables (e.g., playing the role of a risk
functional).
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• (i) Replace the random constraints by the constraint

P({ω ∈ Ω : g(x, ξ(ω)) ≤ 0}) = P(g(x, ξ) ≤ 0) ≥ p

where p ∈ [0, 1] denotes a probability level, or (ii) go back to
the modeling stage and introduce a recourse action to compen-
sate constraint violations and add the optimal recourse cost to
the objective.

The first variant leads to stochastic programs with probabilistic or
chance constraints:

min{E[f (x, ξ)] : x ∈ X, P(g(x, ξ) ≤ 0) ≥ p}

The second variant leads to two-stage stochastic programs with
recourse:

min{E[f (x, ξ)] + E[q(y, ξ)] : x ∈ X, y ∈ Y, g(x, ξ) + h(y, ξ) ≤ 0}.

or E replaced by a risk functional F.
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Stability of stochastic programs

Consider the stochastic programming model

min
{∫

Ξ

f0(x, ξ)P (dξ) : x ∈M(P )
}

M(P ) :=
{
x ∈ X :

∫
Ξ

fj(x, ξ)P (dξ) ≤ 0, j = 1, ..., r
}

where fj from Rm × Ξ to the extended reals R are normal inte-
grands, X is a nonempty closed subset of Rm, Ξ is a closed subset
of Rd and P is a Borel probability measure on Ξ.
(f is a normal integrand if it is Borel measurable and f(ξ, .) is lower semicontinuous ∀ξ ∈ Ξ.)

Let P(Ξ) the set of all Borel probability measures on Ξ and by

v(P ) = inf
x∈M(P )

∫
Ξ

f0(x, ξ)P (dξ) (optimal value)

Sε(P ) =
{
x ∈M(P ) :

∫
Ξ

f0(x, ξ)P (dξ) ≤ v(P ) + ε
}

S(P ) = S0(P ) = arg min
x∈M(P )

∫
Ξ

f0(x, ξ)P (dξ) (solution set).
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The underlying probability distribution P is often incompletely known
in applied models and/or has to be approximated (estimated, dis-
cretized).
Hence, the stability behavior of stochastic programs becomes im-
portant when changing (perturbing, estimating, approximating) the
probability distribution P on Ξ.

Stability refers to (quantitative) continuity properties of the opti-
mal value function v(.) and of the set-valued mapping Sε(.) at P ,
where both are regarded as mappings given on certain subset of
P(Ξ) equipped with some probability metric.

(The corresponding subset of probability measures is determined by imposing certain moment
conditions that are related to growth properties of the integrands fj with respect to ξ.)

Examples: Two-stage and chance constrained stochastic pro-
grams.

Survey:
W. Römisch: Stability of stochastic programming problems, in: Stochastic Programming (A.
Ruszczynski, A. Shapiro eds.), Handbook, Elsevier, 2003.
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Weak convergence in P(Ξ)

Pn →w P iff
∫

Ξ

f (ξ)Pn(dξ)→
∫

Ξ

f (ξ)P (dξ) (∀f ∈ Cb(Ξ)),

iff Pn({ξ ≤ z})→ P ({ξ ≤ z}) at continuity points z
of P ({ξ ≤ ·}).

Probability metrics on P(Ξ) (Monographs: Rachev 91, Rachev/Rüschendorf 98)
Metrics with ζ-structure:

dF(P,Q) = sup

{∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Q(dξ)

∣∣∣∣ : f ∈ F
}

where F is a suitable set of measurable functions from Ξ to R and
P , Q are probability measures in some set PF on which dF is finite.
If F is a P -uniformity class, Pn →w P implies dF(Pn, P )→ 0.

Examples (of F): Sets of locally Lipschitzian functions on Ξ or
of piecewise (locally) Lipschitzian functions.

There exist canonical sets F and metrics dF for each specific class
of stochastic programs!
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Quantitative stability results

To simplify matters, let X be compact (otherwise, consider localizations).

F := {fj(x, ·) : x ∈ X, j = 0, . . . , r},

PF :=
{
Q ∈ P(Ξ) :

∫
Ξ

inf
x∈X

fj(x, ξ)Q(dξ) > −∞,

sup
x∈X

∫
Ξ

fj(x, ξ)Q(dξ) <∞, j = 0, . . . , r
}
,

and the probability (semi-) metric on PF :

dF(P,Q) = sup
x∈X

max
j=0,...,r

∣∣∣ ∫
Ξ

fj(x, ξ)(P −Q)(dξ)
∣∣∣.

Lemma:
The functions (x,Q) 7→

∫
Ξ

fj(x, ξ)Q(dξ) are lower semicontinuous

on X × PF .
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Theorem: (Rachev-Römisch 02)

If d ≥ 1, let the function x 7→
∫

Ξ f0(x, ξ)P (dξ) be Lipschitz
continuous on X , and, let the function

(x, y) 7→ d
(
x,
{
x̃ ∈ X :

∫
Ξ

fj(x̃, ξ)P (dξ) ≤ yj, j = 1, ..., r
})

be locally Lipschitz continuous around (x̄, 0) for every x̄ ∈ S(P )

(metric regularity condition).
Then there exist constants L, δ > 0 such that

|v(P )− v(Q)| ≤ LdF(P,Q)

S(Q) ⊆ S(P ) + ΨP (LdF(P,Q))B

holds for all Q ∈ PF with dF(P,Q) < δ.

Here, ΨP (η) := η + ψ−1(η) and ψ : R+ → R+ is given by

ψ(τ ) :=min
{∫

Ξ

f0(x, ξ)P (dξ)− v(P ) :d(x, S(P )) ≥ τ, x ∈M(P )
}
.

(Proof by appealing to general perturbation results see Klatte 94 and Rockafellar/Wets 98.)
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Convex case and r := 0:
Assume that f0(·, ξ) is convex on Rm for each ξ ∈ Ξ.

Theorem: (Römisch-Wets 07)

Then there exist constants L, ε̄ > 0 such that

dl∞(Sε(P ), Sε(Q)) ≤ L

ε
dF(P,Q)

for every ε ∈ (0, ε̄) and Q ∈ PF such that dF(P,Q) < ε.

Here, dl∞ is the Pompeiu-Hausdorff distance of nonempty closed
subsets of Rm, i.e.,

dl∞(C,D) = inf{η ≥ 0 : C ⊆ D + ηB, D ⊆ C + ηB}.

(Proof using a perturbation result see Rockafellar/Wets 98)
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The (semi-) distance dF plays the role of a minimal probability met-
ric implying quantitative stability.

Furthermore, the result remains valid when bounding dF from above
by another distance and when reducing the set PF to a subset on
which this distance is defined and finite.

Idea: Enlarge F , but maintain the analytical (e.g., (dis)continuity)
properties of fj(x, ·), j = 0, . . . , r !

This idea may lead to well-known probability metrics, for which a
well developed theory is available !
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Example: (Fortet-Mourier-type metrics)
We consider the following classes of locally Lipschitz continuous
functions (on Ξ)

FH := {f : Ξ→ R : f (ξ)− f (ξ̃) ≤ max{1, H(‖ξ‖), H(‖ξ̃‖)}
·‖ξ − ξ̃‖,∀ξ, ξ̃ ∈ Ξ},

where H : R+ → R+ is nondecreasing, H(0) = 0. The corre-
sponding distances are

dFH(P,Q) = sup
f∈FH

∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Q(dξ)

∣∣∣∣ =: ζH(P,Q)

so-called Fortet-Mourier-type metrics defined on

PH(Ξ) :={Q ∈ P(Ξ) :

∫
Ξ

max{1, H(‖ξ‖)}‖ξ‖Q(dξ) <∞}

Important special case: H(t) := tp−1 for p ≥ 1 leading to the
notation Fp, Pp(Ξ) and ζp, respectively.

(Convergence with respect to ζp means weak convergence of the probability measures and
convergence of the p-th order moments (Rachev 91))
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Two-stage stochastic programming models with recourse

Consider a linear program with stochastic parameters of the form

min{〈c, x〉 : x ∈ X, T (ξ)x = h(ξ)},

where ξ : Ω→ Ξ is a random vector defined on a probability space
(Ω,F ,P), c ∈ Rm, Ξ and X are polyhedral subsets of Rs and Rm,
respectively, and the d ×m-matrix T (·) and vector h(·) ∈ Rd are
affine functions of ξ.

Idea: Introduce a recourse variable y ∈ Rm, recourse costs q(ξ) ∈
Rm, a fixed recourse d×m-matrixW , a polyhedral cone Y ⊆ Rm,
and solve the second-stage or recourse program

min{〈q(ξ), y〉 : y ∈ Y,Wy = h(ξ)− T (ξ)x}.

Add the expected minimal recourse costs E[Φ(x, ξ)] (depending on
the first-stage decision x) to the original objective and consider

min
{
〈c, x〉 + E[Φ(x, ξ)] : x ∈ X

}
,

where Φ(x, ξ) := inf{〈q(ξ), y〉 : y ∈ Y,Wy = h(ξ)− T (ξ)x}.
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Assumptions:

(A1) relatively complete recourse: for any (ξ, x) ∈ Ξ×X ,
h(ξ)− T (ξ)x ∈ W (Y );

(A2) dual feasibility: q(ξ) ∈ D(ξ) = {z : W>z − q(ξ) ∈ Y ∗}
holds for all ξ ∈ Ξ (with Y ∗ denoting the polar cone to Y ).

(A3) finite second order moment:
∫

Ξ ‖ξ‖
2P (dξ) <∞.

Note that (A1) is satisfied if W (Y ) = Rd (complete recourse). In
general, (A1) and (A2) impose a condition on the support of P .

Proposition:
Assume (A1)–(A3). Then the deterministic equivalent of the two-
stage model represents a nondifferentiable convex program (with
polyhedral constraints). An element x ∈ X minimizes the convex
program if and only if

0 ∈
∫

Ξ

∂Φ(x, ξ)P (dξ) + NX(x) ,

where the subdifferential in the integrand is given by

∂Φ(x, ξ) = c− T (ξ)> arg max
z∈D(ξ)

z>(h(ξ)− T (ξ)x).
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Stability of two-stage models

We set
f0(x, ξ) = 〈c, x〉 + Φ(x, ξ)

for all pairs (x, ξ) ∈ X × Ξ such that h(ξ)− T (ξ)x ∈ W (Y ) and
q(ξ) ∈ D and f0(x, ξ) = +∞ otherwise.

Proposition:
Assume (A1) and (A2). Then there exist L̂ > 0 such that

|f0(x, ξ)− f0(x, ξ̃)| ≤ L̂max{1, ‖ξ‖, ‖ξ̃‖}‖ξ − ξ̃‖
|f0(x, ξ)− f0(x̃, ξ)| ≤ L̂max{1, ‖ξ‖2}‖x− x̃‖

for all ξ, ξ̃ ∈ Ξ, x, x̃ ∈ X .
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Theorem:
Assume (A1)–(A3) and let X be compact. Then there exist L > 0,
ε̄, δ > 0 such that

|v(P )− v(Q)| ≤ Lζ2(P,Q),

S(Q) ⊆ S(P ) + ΨP (Lζ2(P,Q))B,

dl∞(Sε(P ), Sε(Q)) ≤ L

ε
ζ2(P,Q),

whenever Q satisfies ζ2(P,Q) < δ, ε ∈ (0, ε̄],
ΨP (η) := η + ψ−1(η) and

ψ(τ ) :=min
{∫

Ξ

f0(x, ξ)P (dξ)− v(P ) :d(x, S(P )) ≥ τ, x ∈ X
}
.

Note ψ has quadratic growth (near 0) in a number of cases (Schultz

94) and linear growth if P is discrete.
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Discrete approximations of two-stage stochastic pro-
grams

Replace the (original) probability measure P by measures Pn having
(finite) discrete support {ξ1, . . . , ξn} (n ∈ N), i.e.,

Pn =

n∑
i=1

piδξi,

and insert it into the infinite-dimensional stochastic program:

min{〈c, x〉 +

n∑
i=1

pi〈q(ξi), yi〉 : x ∈ X, yi ∈ Y, i = 1, . . . , n,

Wy1 +T (ξ1)x = h(ξ1)

Wy2 +T (ξ2)x = h(ξ2)
. . . ... = ...

Wyn +T (ξn)x = h(ξn)}
Hence, we arrive at a (finite-dimensional) large scale block-structured
linear program which allows for specific decomposition methods.
(Ruszczyński/Shapiro, Handbook, 2003)
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Empirical or Monte Carlo approximations of stochastic
programs

Given a probability distribution P ∈ P(Ξ), we consider a sequence
ξ1, ξ2, . . . , ξn, . . . of independent, identically distributed Ξ-valued
random variables on some probability space (Ω,F ,P) having the
common distribution P .
We consider the empirical measures

Pn(ω) :=
1

n

n∑
i=1

δξi(ω)

for every n ∈ N.

Empirical or sample average approximation of stochastic programs
(replacing P by Pn(·)):

min
{1

n

n∑
i=1

f0(ξi, x) : x ∈ X, 1

n

n∑
i=1

fj(ξi, x) ≤ 0, j = 1, . . . , r
}
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To study convergence of empirical approximations, one may use the
quantitative stability results by deriving estimates of the (uniform)
distances

dF(P, Pn(·))
Tool: Empirical process theory, in particular, the size of F as
subset of Lp(Ξ, P ) measured by covering numbers, where

F =
{
fj(x, ·) : x ∈ X, j = 0, . . . , r

}
.

Empirical process (indexed by some class of functions):{
n

1
2(Pn(·)− P )f = n−

1
2

n∑
i=1

(
f (ξi(·))−

∫
Ξ

f (ξ)P (dξ)
)}

f∈F

Desirable estimate:

P
({
ω : n

1
2dF(P, Pn(ω)) ≥ ε

})
≤ CF(ε) (∀ε > 0, n ∈ N)

for some tail function CF(·) defined on (0,+∞) and decreasing to
0, in particular, exponential tails CF(ε) = Kεr exp(−2ε2).
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If N(ε, Lp(Q)) denotes the minimal number of open balls {g :

‖g− f‖Q,p < ε} needed to cover F , then an estimate of the form

sup
Q

N(ε, L2(Q)) ≤
(R
ε

)r
for some r, R ≥ 1 and all ε > 0, is needed to obtain exponential
tails.

(Literature: Talagrand 94, van der Vaart/Wellner 96, van der Vaart 98)

Typical result for optimal values:

P
(
|v(P )− v(Pn)| ≥ ε n−

1
2
)
≤ CF

(
min{δ, ε L−1}

)
Such results are available for two-stage (mixed-integer) and chance
constrained stochastic programs (Römisch 03).
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Desirable results for optimal values: Limit theorems

n
1
2(v(Pn(·))− v(P )) −→ z,

where z is a real random variable and the convergence is conver-
gence in distribution.

Such results can be derived if F is a Donsker class of functions.
Donsker classes can also be characterized via covering numbers.

Examples for available limit theorems:

• Limit theorem for optimal values of mixed-integer two-stage
stochastic programs (Eichhorn/Römisch 07).

• Limit theorem for optimal values of kth order stochastic dom-
inance constrained stochastic programs for k ≥ 2

(Dentcheva/Römisch 12).
(Chapters by Shapiro and Pflug in the Handbook 2003; recent work of Shapiro, Xu and
coworkers)
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Scenario generation methods

Assume that we have to solve a stochastic program with a class
F = {fj(x, ·) : x ∈ X, j = 1, . . . , r} of functions on Ξ ⊆ Rd and
probability (semi-) metric

dF(P,Q) = sup
f∈F

∣∣∣ ∫
Ξ

f (ξ)(P −Q)(dξ)
∣∣∣.

Optimal scenario generation:
For given n ∈ N and probabilities pi = 1

n, i = 1, . . . , n, the best
possible choice of scenarios ξi ∈ Ξ, i = 1, . . . , n, is obtained by
solving the best approximation problem

min
{
dF
(
P, 1

n

∑n
i=1 δξi

)
; ξi ∈ Ξ, i = 1, . . . , n

}
.

However, this is a large-scale, nonsmooth and nonconvex minimiza-
tion problem (of dimension n · d) and often extremely difficult to
solve. Note that, in addition, function calls for fj(x, ·) are often
expensive and the appropriate choice of n ∈ N is difficult.
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Next we discuss 4 specific scenario generation methods for stochas-
tic programs (without information constraints) based on (high-
dimensional) numerical integration methods:

(a) Monte Carlo sampling from the underlying probability distribu-
tion P on Rd (Shapiro 03).

(b) Optimal quantization of probability distributions (Pflug-Pichler 11).

(c) Quasi-Monte Carlo methods (Koivu-Pennanen 05, Homem-de-Mello 08).

(d) Quadrature rules based on sparse grids (Chen-Mehrotra 08).

Given an integral

Id(f ) =

∫
Rd
f (ξ)ρ(ξ)dξ or Id(f ) =

∫
[0,1]d

f (ξ)dξ

a numerical integration method means

Qn,d(f ) =
1

n

n∑
i=1

f (ξi).
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Monte Carlo sampling

Monte Carlo methods are based on drawing independent identi-
cally distributed (iid) Ξ-valued random samples ξ1(·), . . . , ξn(·), . . .
(defined on some probability space (Ω,A,P)) from an underlying
probability distribution P (on Ξ) such that

Qn,d(ω)(f ) =
1

n

n∑
i=1

f (ξi(ω)),

i.e., Qn,d(·) is a random functional, and it holds

lim
n→∞

Qn,d(ω)(f ) =

∫
Ξ

f (ξ)P (dξ) = E(f ) P-almost surely

for every real continuous and bounded function f on Ξ.
If P has finite moment of order r ≥ 1, the error estimate

E

(∣∣∣∣∣1n
n∑
i=1

f (ξi(ω))− E(f )

∣∣∣∣∣
r)
≤ E ((f − E(f ))r)

nr−1
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is valid. Hence, the mean square convergence rate is

‖Qn,d(ω)(f )− E(f )‖L2 = σ(f )n−
1
2 ,

where σ2(f ) = E
(
(f − E(f ))2

)
.

The latter holds without any assumption on f except σ(f ) <∞.

Advantages:
(i) MC sampling works for (almost) all integrands.
(ii) The machinery of probability theory is available.
(iii) The convergence rate does not depend on d.

Deficiencies: (Niederreiter 92)
(i) There exist ’only’ probabilistic error bounds.
(ii) Possible regularity of the integrand does not improve the rate.
(iii) Generating (independent) random samples is difficult.

Practically, iid samples are approximately obtained by pseudo ran-
dom number generators as uniform samples in [0, 1]d and later trans-
formed to more general sets Ξ and distributions P .
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Survey: L’Ecuyer 94.

Classical generators for pseudo random numbers are based on linear
congruential methods. As the parameters of this method, we choose
a large M ∈ N (modulus), a multiplier a ∈ N with 1 ≤ a < M

and gcd(a,M) = 1, and c ∈ ZM = {0, 1, . . . ,M − 1}. Starting
with y0 ∈ ZM a sequence is generated by

yn ≡ ayn−1 + c mod M (n ∈ N)

and the linear congruential pseudo random numbers are

ξn =
yn
M
∈ [0, 1).

Excellent pseudo random number generator: Mersenne Twister
(Matsumoto-Nishimura 98).

Use only pseudo random number generators that passed a series
of statistical tests, e.g., uniformity test, serial correlation test, serial
test, coarse lattice structure test etc.
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Optimal quantization of probability measures

Assume that the underlying stochastic program behaves stable with
respect to a distance d of probability measures on Rd.
Examples:
(a) Fortet-Mourier metric ζr of order r,
(b) Lr-minimal metric `r (or Wasserstein metric), i.e.

`r(P,Q) = inf{(E(‖ξ − η‖r))
1
r : L(ξ) = P, L(η) = Q}

Let P be a given probability distribution on Rd. We are looking for
a discrete probability measure Qn with support

supp(Qn) = {ξ1, . . . , ξn} and Qn({ξi}) =
1

n
, i = 1, . . . , n,

such that it is the best approximation to P with respect to d, i.e.,

d(P,Qn) = min{d(P,Q) : |supp(Q)| = n,Q is uniform}.

Existence of best approximations, called optimal quantizers, and
their convergence rates are well known for `r (Graf-Luschgy 00).
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Note, however, `r(P,Qn) ≥ cn−
1
d for some c > 0 and all n ∈ N.

In general, the function

Ψd(ξ
1, . . . , ξn) := d

(
P,

1

n

n∑
i=1

δξi
)

Ψ`r(ξ
1, . . . , ξn) =

(∫
Rd

min
i=1,...,n

‖ξ − ξi‖rP (dξ)

)1
r

is nonconvex and nondifferentiable on Rdn.
Hence, the global minimization of Ψd is not an easy task.

Algorithmic procedures for minimizing Ψ`r globally may be based on
stochastic gradient algorithms, stochastic approximation methods
and stochastic branch-and-bound techniques (e.g. Pflug 01, Hochreiter-

Pflug 07, Pagés 97, Pagés et al 04).

Asymptotically optimal quantizers can be determined explicitly in a
number of cases (Pflug-Pichler 11).
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Quasi-Monte Carlo methods

The basic idea of Quasi-Monte Carlo (QMC) methods is to replace
random samples in Monte Carlo methods by deterministic points
that are uniformly distributed in [0, 1]d. The latter property may be
defined in terms of the so-called star-discrepancy of ξ1, . . . , ξn

D∗n(ξ1, . . . , ξn) := sup
ξ∈[0,1]d

∣∣∣∣∣λd([0, ξ))− 1

n

n∑
i=1

1l[0,ξ)(ξi)

∣∣∣∣∣,
by calling a sequence (ξi)i∈N uniformly distributed in [0, 1]d

D∗n(ξ1, . . . , ξn)→ 0 for n→∞ .

A classical result due to Roth 54 states

D∗n(ξ1, . . . , ξn) ≥ Bd
(log n)

d−1
2

n

for some constant Bd and all sequences (ξi) in [0, 1]d.
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Classical convergence results:

Theorem: (Proinov 88)

If the real function f is continuous on [0, 1]d, then there exists
C > 0 such that

|Qn,d(f )− Id(f )| ≤ Cωf
(
D∗n(ξ1, . . . , ξn)

1
d
)
,

where ωf(δ) = sup{|f (ξ)− f (ξ̃)| : ‖ξ− ξ̃)‖ ≤ δ, ξ, ξ̃ ∈ [0, 1]d} is
the modulus of continuity of f .

Theorem: (Koksma-Hlawka 61)

If f is of bounded variation VHK(f ) in the sense of Hardy and
Krause, it holds∣∣Id(f )−Qn,d(f )

∣∣ ≤ VHK(f )D∗n(ξ1, . . . , ξn) .

for any n ∈ N and any ξ1, . . . , ξn ∈ [0, 1]d.
There exist sequences (ξi) in [0, 1]d such that

D∗n(ξ1, . . . , ξn) = O(n−1(log n)d−1),

however, the constant depends on the dimension d.
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First general construction: (Sobol 69, Niederreiter 87)

Elementary subintervals E in base b:

E =

d∏
j=1

[
aj

bdj
,
aj + 1

bdj

)
,

with ai, di ∈ Z+, 0 ≤ ai < di, i = 1, . . . , d.

Let m, t ∈ Z+, m > t.
A set of bm points in [0, 1]d is a (t,m, d)-net in base b if every
elementary subinterval E in base b with λd(E) = bt−m contains bt

points.

A sequence (ξi) in [0, 1]d is a (t, d)-sequence in base b if, for all
integers k ∈ Z+ and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}

is a (t,m, d)-net in base b.
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Specific sequences: Faure, Sobol’, Niederreiter and Niederreiter-
Xing sequences (Lemieux 09, Dick-Pillichshammer 10).

Recent development: Scrambled (t,m, d)-nets, where the dig-
its are randomly permuted (Owen 95).

Second general construction: (Korobov 59, Sloan-Joe 94)

Lattice rules: Let g ∈ Zd and consider the lattice points{
ξi =

{ i
n
g
}

: i = 1, . . . , n
}
,

where {z} is defined componentwise and is the fractional part of
z ∈ R+, i.e., {z} = z − bzc ∈ [0, 1).
The generator g is chosen such that the lattice rule has good con-
vergence properties.

Such lattice rules may achieve better convergence rates O(n−k+δ),
k ∈ N, for smooth integrands.
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Recent development: Randomized lattice rules.

Randomly shifted lattice points:{
ξi =

{ i
n
g +4

}
: i = 1, . . . , n

}
,

where 4 is uniformly distributed in [0, 1]d.
There is a component-by-component construction algorithm for g
such that for some constant C(δ) and all 0 < δ ≤ 1

2 the optimal
convergence rate

e(Qn,d) ≤ C(δ)n−1+δ (n ∈ N)

is achieved if the integrand f belongs to the tensor product Sobolev
space

Fd = W
(1,...,1)
2 ([0, 1]d) =

d⊗
i=1

W 1
2 ([0, 1])

equipped with a weighted norm. Since the space Fd is a kernel
reproducing Hilbert space, a well developed technique for estimating
the quadrature error can be used.
(Hickernell 96, Sloan/Wožniakowski 98, Sloan/Kuo/Joe 02, Kuo 03)
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Is QMC efficient in stochastic programming ?

Problem: Typical integrands in linear stochastic programming
are not of bounded variation in the HK sense and nonsmooth and,
hence, do not belong to the relevant function space Fd in general.

Idea: Study the ANOVA decomposition and efficient dimension of
two-stage integrands.

ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = ID(f ) and recursively

fu = I−u(f ) +
∑
v⊆u

(−1)|u|−|v|Iu−v(I−u(f )) ,

where I−u means integration with respect to ξj in [0, 1], j ∈ D \ u
and D = {1, . . . , d}. Hence, fu is essentially as smooth as I−u(f )

and does not depend on ξ−u.
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We set σ2(f ) = ‖f − Id(f )‖2
L2

and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

‖fu‖2
L2
.

The superposition dimension ds of f is the smallest ds ∈ N with∑
|u|≤ds

‖fu‖2
L2
≥ (1− ε)σ2(f ) (where ε ∈ (0, 1) is small).

Then
‖f −

∑
|u|≤ds

fu‖2
L2
≤ εσ2(f ).

Result:
All ANOVA terms fu, u ⊂ D, u 6= D, of integrands in two-stage
stochastic programming belong to C∞ if the underlying marginal
densities belong to C∞b (R) and certain geometric condition is sat-
isfied (Heitsch/Leovey/Römisch 12).

Hence, after reducing the efficient superposition dimension of f
such that (at least) ds ≤ d− 1 holds, QMC methods should have
optimal rates.
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Some computational experience

We considered a two-stage production planning problem for max-
imizing the expected revenue while satisfying a fixed demand in a
time horizon with d = T = 100 time periods and stochastic prices
for the second-stage decisions. It is assumed that the probability
distribution of the prices ξ is log-normal. The model is of the form

max
{ T∑
t=1

(
c>t xt+

∫
RT
qt(ξ)>ytP (dξ)

)
:Wy+V x = h, y ≥ 0, x ∈X

}
The use of PCA for decomposing the covariance matrix has led to
efficient truncation dimension dT (0.01) = 2. As QMC methods we
used a randomly scrambled Sobol sequence (SSobol)(Owen, Hickernell)
with n = 27, 29, 211 and a randomly shifted lattice rule (Sloan-Kuo-

Joe) with n = 127, 509, 2039, weights γj = 1
j2

and used for MC the
Mersenne-Twister. 10 runs were performed for the error estimates
and 30 runs for plotting relative errors.

Average rate of convergence for QMC: O(n−0.9) and O(n−0.8).
Instead of n = 27 SSobol samples one would need n = 104 MC samples to achieve a similar
accuracy as SSobol.
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Shown are the Log10 of relative RMSE with PCA factorization of covariance matrix. Results
for Mersenne Twister MC and randomly scrambled Sobol’ QMC 128, 512 and 2048 points
(MC 128,... or SSOB 128,...), and randomly shifted lattice rules QMC 127, 509 and 2039
lattice points (SLA 127,...)
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Quadrature rules with sparse grids

Again we consider the unit cube [0, 1]d in Rd. Let nested sets of
grids in [0, 1] be given, i.e.,

Ξi = {ξi1, . . . , ξimi
} ⊂ Ξi+1 ⊂ [0, 1] (i ∈ N),

for example, the dyadic grid

Ξi =

{
j

2i
: j = 0, 1, . . . , 2i

}
.

Then the point set suggested by Smolyak (Smolyak 63)

H(n, d) :=
⋃

∑d
j=1 ij=n

Ξi1 × · · · × Ξid (n ∈ N)

is called a sparse grid in [0, 1]d. In case of dyadic grids in [0, 1] the
set H(n, d) consists of all d-dimensional dyadic grids with product
of mesh size given by 1

2n .
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The corresponding tensor product quadrature rule for n ≥ d on
[0, 1]d with respect to the Lebesgue measure λd is of the form

Qn,d(f ) =
∑

n−d+1≤|i|≤n

(−1)n−|i|
(
d− 1

n− |i|

)mi1∑
j1=1

· · ·
mid∑
jd=1

f (ξi1j1, . . . , ξ
id
jd

)

d∏
l=1

a
il
jl
,

where |i| =
∑d

j=1 ij and the coefficients aij (j = 1, . . . ,mi, i =

1, . . . , d) are weights of one-dimensional quadrature rules.

Even if the one-dimensional weights are positive, some of the weights
wi may become negative. Hence, an interpretation as discrete prob-
ability measure is no longer possible.

Theorem: (Bungartz-Griebel 04)

If f belongs to Fd = W
(r,...,r)
2 ([0, 1]d), it holds∣∣∣∣∣

∫
[0,1]d

f (ξ)dξ −
n∑
i=1

wif (ξi)

∣∣∣∣∣ ≤ Cr,d‖f‖d
(log n)(d−1)(r+1)

nr
.
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