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Introduction

Many stochastic programming models are of the general form

sP)  min{ [ i@ &PWE) iz e X, [ Al 6P <0}

where X is a closed subset of R™, = a closed subset of R*, P is a Borel probability
measure on = abbreviated by P € P(Z). The functions f; and f; from R™ x =
to the extended reals R = (—o00, 00| are normal integrands.

For general continuous multivariate probability distributions P the evaluation of
the objective or constraint functions is known to be # P-hard in general.

Many approaches to their computational solution are based on finding a discrete
probability measure P, in

PuE) = { Y piba:€ €5, pi20,i=1,...n, > pi=1}
i=1

i=1
for some n € N, which approximates P at least such that the corresponding

optimal values of (SP) are close. The atoms &, i = 1,...,n, of P, are often
called scenarios in this context.



Typical integrands in linear two-stage stochastic programming models are

g(x) + @(q(&), h(x,€)) ,q(&) € D

-+00 , else

Fola, ) —{ and fi(z,8) =0,

where X and = are convex polyhedral, g(-) is a linear function, ¢(-) is affine,

D={qeR": {zeR :W'z<q} #0} denotes the convex polyhedral dual

feasibility set, h(-, &) is affine for fixed £ and h(z,-) is affine for fixed x, and

denotes the infimal function of the linear (second-stage) optimization problem
®(g,t) = inf{(g,y) : Wy =t,y > 0}

with (r,m) matrix W.

Typical integrands f; appearing in chance constrained programming are

fi(z,§) = p — Ip)(§),

where p € (0,1) is a probability level and 1p(,) is the characteristic function of
the polyhedron P(x) = {£ € = : h(x,£) < 0} depending on x, where = and h
have the same properties as above.



Stability-based scenario generation

Let v(P) and S(P) denote the infimum and solution set of (SP). We are inter-
ested in their dependence on the underlying probability distribution P.

To state a stability result we introduce the following sets of functions and of
probability distributions (both defined on =)

F=Afiz,-):j=0,1, z € X},
Pr= € P(Z): —oo < [ inf fi(x,&)Q(dE), su x,£)Q(dE) < oon
»={Q e P(E): —o0 < [ inf f(@.QdE),sup | £, QAdE) < +o0,Yi]

reX
and the (pseudo-) distance on Px
i-(P.Q)=sw | [ /P - Q)| (P.QePr)
€

For typical applications like for linear two-stage and chance constrained models,
the sets Pr or appropriate subsets allow a simpler characterization, for example,
as subsets of P(Z) satisfying certain moment conditions.



Proposition: We consider (SP) for P € Pz, assume that X is compact and
(i) the function = — [ fo(z,§)P(dE) is Lipschitz continuous on X,

(ii) the set-valued mapping y = {z € X : [_ fi(x,&)P(d§) < y} satisfies the
Aubin property at (0, z) for each z € S(P).

Then there exist constants L. > 0 and d > 0 such that the estimates

[o(P) —v(Q)] < Ldr(P,Q)

<
sup d(z, S(P)) < Vp(Ldr(P,Q))
zeS5(Q)

hold whenever @@ € Pr and dz(P,Q) < 0. The real-valued function Vp is
given by Wp(r) = r + 1, (2r) for all r € R, where tp is the growth function

vp(r) = int { /foxg (de) — v(P) : d(z,S(P)) > 7, 3 € X,

[, 0)Pg) <0},

In case f1 = 0 only lower semicontinuity is needed in (i) and the estimates hold
with L = 1 and for any 0 > 0. Furthermore, ¥p is lower semicontinuous and
increasing on R with Wp(0) = 0. (Rachev-Rémisch 02)



The stability result suggests to choose discrete approximations from P, (=) for
solving (SP) such that they solve the best approximation problem

OSG min dr(P, P,).

(05G) PEP,(E) (P Fa)
at least approximately. Determining the scenarios of some solution to (OSG) may

be called optimal scenario generation. This optimal choice of discrete approxi-
mations is challenging and not possible in general.

It was suggested in (Rachev-Romisch 02) to eventually enlarge the function class F
such that dr becomes a metric distance and has further nice properties. This
may lead, however, to nonconvex nondifferentiable minimization problems (OSG)
for determining the optimal scenarios and to unfavorable convergence rates of

< min_ dg(P, Pn)> :
PnePn(S) neN

Typical examples are to choose F as bounded subset of some Banach space
C(Z) with 7 € Ny, a € (0,1], and convergence rate O(n="s")




The road of probability metrics

Motivated by linear two-stage models one may consider
Fortet-Mourier metrics:

G(P.Q) = drg(P.Q) =sw| [ fIENP-Q)d9): f € (3]
where the function class F, for r > 1 is ;iven by
2)={f 2= R:f(&) - [ <l ), VEEEES,
e(6,€) = max{1, |l€]"L, IEI 1 HIE — €l (6,6 €.

Proposition: (Rachev-Riischendorf 98)
If = is bounded, (,, may be reformulated as dual transportation problem

G(P.Q)=inf{ [ _é(€Enlde,dd): mn=Pmn = Q},

where the reduced cost ¢, is a metric with ¢, < ¢, and given by the minimal cost

[I]

flow problem

c = inf {

n—1

M

Cp 5lz’glwl ‘n e N7€li < Evfh — 575171 - g}

n=ll



The problem of optimal scenario generation (OSG) then reads

(P, P,
Png%ﬁ Gr( )

or

min / ‘min (&, &) P(dE).

(fl,...,fn)EEn E]:L/n

The function (&',...,&") — [cmin; 1, ¢(&,&7)P(dE) is continuous on ="
and has compact level sets, but is nonconvex and nondifferentiable in general.
Hence, optimal scenarios exist, but their computation is difficult.

If P itself is discrete with possibly many (say N >> n) scenarios and the minimiza-
tion is restricted to = = supp(P) one arrives at the optimal scenario reduction
problem. This problem can be shown to decompose into finding the optimal sce-
nario set J to remain and into determining the optimal new probabilities given
J. The background is that the Fortet-Mourier metric is defined by an optimal
transportation problem with fixed marginals that it has a special form if both
probability measures are discrete.



Let P and Q be two discrete distributions, where &' are the scenarios with prob-
abilities p;, i = 1,..., N, of P and &’ the scenarios and ¢;, j = 1,..

., n, the
probabilities of (). Let = denote the union of both scenario sets. Then
6(P.Q) = nt{ [ ale.Enlde,d): mn = Pomy = Q)
N =
= inf{Zanj@(fufy an pz,Z% = qj,Ni; = 0,
i=1 j=
i=1,....N, j=1,. }
— Sup { Zplul Z QJUJ pi — (gﬂ gj) ) N7

jzl,...,n}

These two formulas represent primal and dual representations of (,.(P, () and
primal and dual linear programs (tranportation problems).



Now, let P and () be two discrete distributions, where fl are the scenarios with
probabilities p;, t =1,..., N, of P and fj, j € J, the scenarios and ¢;, j € J,
the probabilities of (). Let = denote the support of P.

The best approximation of P with respect to (, by such a distribution () exists
and is denoted by Q*. It has the distance

D;=6(P Q) = min ((PQ)= D> _piminé (¢, ¢)
n( iZzJ

and the probabilities ¢; = p; + > pi, Vj € J, where I; :={i & J : j = j(i)}
iEIj

and j(i) € arg m1§1 ¢ (64,87), Vi & J (optimal redistribution).

(Dupatova—Growe-Kuska—Romisch 03)

Determining the optimal scenario set J with prescribed cardinality n is, however,
a combinatorial optimization problem: (metric n-median problem)

min{Dy;:J C {l,...,N},|J| =n}

The problem of finding the optimal set J of remaining scenarios is known to be
NP-hard (Kariv-Hakimi 79) and polynomial time algorithms are not available.



Reformulation of the (metric) n-median problem as combinatorial program:

N
min Z pixiie (€, €9) subject to
i,j=1

N N
lej = 1 (]:1,,N>, Zylgn,
1=1 1=1

Lij S Yi, xlj6{071} (17]:177]\])7
Yi € {0,1} (izl,...,N>.

The variable y; decides whether scenario &' remains and z;; indicates whether
scenario &/ minimizes the ¢,-distance to &£'.

The combinatorial program can, of course, be solved by standard software. How-
ever, meanwhile there is a well developed theory of polynomial-time approxi-
mation algorithms for solving it.. The current best algorithms are local search
heuristics by (Arya et al. 04) and pseudo-approximation by (Li-Svensson 16). The latter
provides an approximation guarantee of 1 + /3 + ¢.

The simplest algorithms are greedy heuristics, namely, backward (or reverse) and
forward heuristics.



Starting point (n = N — 1): ' in ¢, (&, &;
g point ( JE a6 )

Algorithm: (Backward reduction)
Step [0]: J":=0.
Step [i]: [; € arg min Z pr min  ¢(&, &)
B iy O
Ji = g=ly {1}
Step [N-n+1]: Optimal redistribution.

N
Starting point (n = 1):  min > pp¢.(&k, &)
ue{l,...,.N} .

Algorithm: (Forward selection)
Step [0]: J" = {1,...,N}.

Step [i]: i € ' ' Cr(Eky &5 ),
plil wearg min Z pi min ¢ (&k: &5)
ke Jli=1\ {u}
Ji = Ji=1 £} .
Step [n+1]: Optimal redistribution.

Although the approximation ratio of forward selection is known to be unbounded (Rujeerapaiboon-
Schindler-Kuhn-Wiesemann 18), it worked well in many practical instances.



Example: (Weekly electrical load scenario tree)

Ternary load scenario tree (N=729 scenarios)
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Reduced load scenario trees obtained by forward selection with respect to the Fortet-Mourier distances (.,
r=1,2,4,7 and n = 20 (starting above left) (Heitsch-Romisch 07)



Optimal scenario generation for linear two-stage models

We consider linear two-stage stochastic programs as introduced earlier and impose
the following conditions:

(A0) X is a bounded polyhedron and = is convex polyhedral.

(A1) h(z, &) € W(RT) and ¢(&) € D are satisfied for every pair (z,£) € X xXZ,

(A2) P has a second order absolute moment.

Then the infima v(P) and v(P,) are attained and the estimate
(P) = o(P)] < sup /fowﬁ @)~ [ fiwr )
~ sup| [ ala(e). iz, )Piae) — [ 2(a(©) 1w )R

holds due to the stability result for every P, € P,(Z).

Hence, the optimal scenario generation problem (OSG) with uniform weights may
be reformulated as: Determine P € P, (=) such that it solves the best uniform
approximation problem

min  sup
(Sl 7777 gn)egn reX




The class of functions {®(q(-), h(z,-)) : x € X} from = to R enjoys specific
properties. All functions are finite, continuous and piecewise linear-quadratic on
=. They are linear-quadratic on each convex polyhedral set

=)(z) = {€ €21 (q(0), h(z, ) €K} (i =1,...,0)

where the convex polyhedral cones IC;, j = 1,...,/, represent a decomposition
of the domain of ®, which is itself a convex polyhedral cone in R™"",

Theorem: (Henrion-Rémisch 18)
Assume (A0)-(A2). Then (OSG) is equivalent to the generalized semi-infinite
program
% Z?:1<h($> 8)7 ZZ> <t+ FP(I)
(6stP) min gl Fe(z) <t+ YL (a(€) v o,
EE B V(z,y,z) € M(&,... &)
where the set M = MY, ..., €") and the function Fp : X — R are given by

M ={(z,y,2) € X x Y" x R™ : Wy; = h(=z, &), W 2 — (&) € Y* i},
ﬂmm:/®memm@wwa

—_
—

The latter is the convex expected recourse function of the two-stage model.



Theorem:
Assume (A0)—(A2). Let the function h be affine and that either & or ¢ be random.
Then (GSIP) can be transformed into a (standard) linear semi-infinite program.

We note that Fp(z) can only be calculated approximately even if the probability
measure P is completely known. For example, this could be done by Monte Carlo
or Quasi-Monte Carlo methods with a large sample size N > n. Let

0) % 30 0a(€), i, €0)

be such an approximate representation of Fp(x) based on a sample éj, ] =

1,...,N. The corresponding generalized semi-infinite program is of the form
( n )

5 (hl,€), 2) <t %Z< a(€). 4;)
min  4¢| L3 (h(x,€),5) <t L S (al€) )

£>0,(¢L,... gn)eEn |
V(z,9,2) € M(E,. fN)
V(z,y,2) € M(E ,...,f”)




Figure 1.4. German H-gas (red) and L-gas (black) network systems. The arrows indicate entry and
exit nodes. Gas stovages are represented by black squares. (Source: OGE,)

Evaluation of gas network capacities



lllustration:

N = 2340 samples based on randomized Sobol’ points are generated for several hundred exits
and later reduced by scenario reduction to n = 50 scenarios. The result is shown below for a
specific exit where the diameters of the red balls are proportional to the new probabilities.
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40000 |
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(Chapters 13 and 14 in Koch-Hiller-Pfetsch-Schewe 2015)
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