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Introduction

Most approaches for solving stochastic programs of the form

min

{∫
Ξ

f0(x, ξ)P (dξ) : x ∈ X
}

with a probability measure P on Ξ ⊂ Rd and a (normal) integrand f0, require

numerical integration techniques, i.e., replacing the integral by some quadrature

formula ∫
Ξ

f0(x, ξ)P (dξ) ≈
n∑
i=1

pif0(x, ξi),

where pi = P ({ξi}),
∑n

i=1 pi = 1 and ξi ∈ Ξ, i = 1, . . . , n.

Since f0 is often expensive to compute, the number n should be as small as

possible.



With v(P ) and S(P ) denoting the optimal value and solution set of the stochastic

program, respectively, the following estimates are known

|v(P )− v(Q)| ≤ sup
x∈X

∣∣∣∣∫
Ξ

f0(x, ξ)(P −Q)(dξ)

∣∣∣∣
∅ 6= S(Q) ⊆ S(P ) + ΨP

(
sup
x∈X

∣∣∣∣∫
Ξ

f0(x, ξ)(P −Q)(dξ)

∣∣∣∣) ,
where X is assumed to be compact, Q is a probability distribution approximating

P and the function ΨP is the inverse of the growth function of the objective near

the solution set, i.e.,

Ψ−1
P (t) := inf

{∫
Ξ

f0(x, ξ)P (dξ)− v(P ) : x ∈ X, d(x, S(P )) ≥ t

}
.

Hence, the distance dF with F := {f0(x, ·) : x ∈ X}

dF(P,Q) := sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ)

∣∣∣∣
becomes important when approximating P .



For given n ∈ N and for the special case pi = 1
n, i = 1, . . . , n, the best possible

choice of elements ξi ∈ Ξ, i = 1, . . . , n (scenarios), is obtained by minimizing

sup
x∈X

∣∣∣∣∣
∫

Ξ

f0(x, ξ)P (dξ)− n−1
n∑
i=1

f0(x, ξi)

∣∣∣∣∣,
i.e., by solving the best approximation problem

min
Q∈Pn(Ξ)

dF(P,Q)

where

Pn(Ξ) := {Q : Q is a uniform probability measure with n scenarios}.

It may be reformulated as a semi-infinite program. and is known as optimal quan-

tization of P with respect to the function class F . Such optimal quantization

problems of probability measures are often extremely difficult to solve.

Idea: Enlarging the class F to the class of all Lipschitz functions with a uniform

constant. But, then

min
Q∈Pn(Ξ)

dF(P,Q) = O(n−
1
d).



If the functions f0(x, ·) belong to mixed Sobolev spaces, then the convergence

rate

min
Q∈Pn(Ξ)

dF(P,Q) = O(n−1+δ) (δ ∈ (0, 0.5])

can be achieved by certain randomized Quasi-Monte Carlo methods.

The convergence rate can be improved if the functions f ∈ F satisfy a higher

degree of smoothness.

Aim of the talk:
Solving the best approximation problem for discrete probability measures P hav-

ing many scenarios and for function classes F , which are relevant for two-stage

stochastic programs (scenario reduction).

Additional motivation:
Scenario reduction methods may be important for generating scenario trees form

multistage stochastic programs.
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Comparison of N = 256 Monte Carlo Mersenne Twister points and randomly binary shifted Sobol’ points in
dimension d = 500, projection (8,9)



Linear two-stage stochastic programs

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X
}
,

where c ∈ Rm, Ξ and X are polyhedral subsets of Rd and Rm, respectively, P

is a probability measure on Ξ and the s×m-matrix T (·), the vectors q(·) ∈ Rm

and h(·) ∈ Rs are affine functions of ξ.

Furthermore, Φ and D denote the infimum function of the linear second-stage

program and its dual feasibility set, i.e.,

Φ(u, t) := inf{〈u, y〉 :Wy = t, y ∈ Y } ((u, t) ∈ Rm × Rs)

D := {u ∈ Rm : {z ∈ Rs : W>z − u ∈ Y ∗} 6= ∅},

where q(ξ) ∈ Rm are the recourse costs, W is the s×m recourse matrix, W>

the transposed of W and Y ∗ the polar cone to the polyhedral cone Y .



Theorem: (Walkup-Wets 69)

The function Φ(·, ·) is finite and continuous on the polyhedral set D ×W (Y ).

Furthermore, the function Φ(u, ·) is piecewise linear convex on the polyhedral set

W (Y ) for fixed u ∈ D, and Φ(·, t) is piecewise linear concave on D for fixed

t ∈ W (Y ).

Assumptions:

(A1) relatively complete recourse: for any (ξ, x) ∈ Ξ×X ,

h(ξ)− T (ξ)x ∈ W (Y );

(A2) dual feasibility: q(ξ) ∈ D holds for all ξ ∈ Ξ.

(A3) existence of second moments:
∫

Ξ ‖ξ‖
2P (dξ) < +∞.

Note that (A1) is satisfied if W (Y ) = Rs (complete recourse). In general, (A1)

and (A2) impose a condition on the support of P .

Extensions to certain random recourse models, i.e., to W (ξ), exist.



Idea: Extend the class F such that it covers all two-stage models.

Fortet-Mourier metrics: (as canonical distances for two-stage models)

ζr(P,Q) := sup

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ) : f ∈ Fr(Ξ)

∣∣∣∣,
where r ≥ 1 (r ∈ {1, 2} if W (ξ) ≡ W )

Fr(Ξ) := {f : Ξ 7→ R : f (ξ)− f (ξ̃) ≤ cr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ},

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).

Proposition: (Rachev-Rüschendorf 98)

If Ξ is bounded, ζr may be reformulated as transportation problem

ζr(P,Q) = inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) :π1η=P, π2η =Q

}
,

where ĉr is a metric (reduced cost) with ĉr ≤ cr and given by

ĉr(ξ, ξ̃) := inf

{
n−1∑
i=1

cr(ξli, ξli+1
) : n ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.



Scenario reduction

We consider discrete distributions P with scenarios ξi and probabilities pi, i =

1, . . . , N , and Q being supported by a given subset of scenarios ξj, j 6∈ J ⊂
{1, . . . , N}, of P .

Optimal reduction of a given scenario set J :

The best approximation of P with respect to ζr by such a distribution Q exists

and is denoted by Q∗. It has the distance

DJ := ζr(P,Q
∗) = min

Q
ζr(P,Q) =

∑
i∈J

pi min
j 6∈J

ĉr(ξi, ξj)

and the probabilities q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J, where

Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J

ĉr(ξi, ξj), ∀i ∈ J
(optimal redistribution).



Determining the optimal index set J with prescribed cardinality N−n is, however,

a combinatorial optimization problem: (n-median problem)

min {DJ : J ⊂ {1, ..., N}, |J | = N − n}
Hence, the problem of finding the optimal set J for deleting scenarios is NP-

hard and polynomial time algorithms are not available.

First idea: Reformulation as linear mixed-integer program

min n−1
N∑

i,j=1

pjxij ĉr(ξi, ξj) s.t.

N∑
j=1,j 6=i

xij + yi = 1 (i = 1, . . . , N),
N∑
i=1

yi = n ,

xij ≤ yi 0 ≤ xij ≤ 1 (i, j = 1, . . . , N) ,

yi ∈ {0, 1} (1, . . . , N).

and application of standard software or of specialized algorithms.

Solution: xij =

{
mini∈J ĉr(ξi,ξj)

nĉr(ξi,ξj)
, i 6∈ J, j ∈ J

0 , else.
yi =

{
1 , i 6∈ J
0 , i ∈ J.



Fast reduction heuristics

Second idea: Application of (randomized) greedy heuristics.

Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξl, ξj)

Algorithm 1: (Backward reduction)

Step [0]: J [0] := ∅ .
Step [i]: li ∈ arg min

l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

ĉr(ξk, ξj).

J [i] := J [i−1] ∪ {li} .
Step [N-n+1]: Optimal redistribution.



Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξk, ξu)

Algorithm 2: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξk, ξj),

J [i] := J [i−1] \ {ui} .
Step [n+1]: Optimal redistribution.



Application:
Optimization of gas transport in a huge transportation network including hun-

dreds of gas delivery nodes. A stationary situation is considered; more than 8 years

of hourly data available at all delivery nodes; multivariate probability distribution

for the gas output in certain temperature classes is estimated; 103 samples based

on randomized Quasi-Monte Carlo methods are generated and later reduced by

scenario reduction to 50 scenarios.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

-15 -10 -5  0  5  10  15  20  25  30

H
o
u
rl
y
 m

e
a
n
 d

a
ily

 p
o
w

e
r 

in
 k

w
h
/h

Mean daily temperature in °C



Mixed-integer two-stage stochastic programs

We consider

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X
}
,

where Φ is given by

Φ(u, t) := inf

{
〈u1, y1〉 + 〈u2, y2〉

∣∣∣∣ W1y1 + W2y2 ≤ t

y1 ∈ Rm1
+ , y2 ∈ Zm2

+

}
for all pairs (u, t) ∈ Rm1+m2 × Rr, and c ∈ Rm, X is a closed subset of

Rm, Ξ a polyhedron in Rs, W1 ∈ Qr×m1, W2 ∈ Qr×m2, and T (ξ) ∈ Rr×m,

q(ξ) ∈ Rm1+m2 and h(ξ) ∈ Rr are affine functions of ξ, and P is a probability

measure.

We again assume (A1) for W = (W1,W2) (relatively complete recourse), (A2)

(dual feasibility) and (A3).



Example: (Schultz-Stougie-van der Vlerk 98)

Stochastic multi-knapsack problem:

min = max, m = 2, m1 = 0, m2 = 4, c = (1.5, 4), X = [−5, 5]2,

h(ξ) = ξ, q(ξ) ≡ q = (16, 19, 23, 28), yi ∈ {0, 1}, i = 1, 2, 3, 4, P ∼
U(5, 5.5, . . . , 14.5, 15} (discrete)

Second stage problem: MILP with 1764 0-1 variables and 882 constraints.

T =

(
2
3

1
3

1
3

2
3

)
W =

(
2 3 4 5

6 1 3 2

)



The function Φ is well understood and the function class

Fr,B(Ξ) := {f1lB : f ∈ Fr(Ξ), B ∈ B},

is relevant, where r ∈ {1, 2}, B is a class of (convex) polyhedra in Ξ and 1lB
denotes the characteristic function of the set B.

The class B contains all polyhedra of the form

B = {ξ ∈ Ξ : h(ξ)− T (ξ)x ∈ D},

where x ∈ X and D is a polyhedron in Rs each of whose facets, i.e., (s − 1)-

dimensional faces, is parallel to a facet of the cone W1(Rm1
+ ) or of the unit cube

[0, 1]s. Hence, B is very problem-specific.

Therefore, we consider alternatively the class of rectangular sets

Brect = {I1 × I2 × · · · × Id : ∅ 6= Ij is a closed interval in R}

covering the situation of pure integer programs and serving as heuristic for the

general case.



Proposition:
In case F = Fr,Brect(Ξ), the metric dF allows the estimates

dF(P,Q) ≥ max{αBrect(P,Q), ζr(P,Q)}
dF(P,Q) ≤ C

(
ζr(P,Q) + αBrect(P,Q)

1
s+1

)
where C is some constant only depending on Ξ and αBrect is the rectangular

discrepancy given by

αBrect(P,Q) := sup
B∈Brect

|P (B)−Q(B)|

If the set Ξ is bounded, even the estimate holds

αBrect(P,Q) ≤ dF(P,Q) ≤ CαBrect(P,Q)
1

s+1 .

Since αBrect has a stronger influence on dF than ζr, we consider the composite

distance

dλ(P,Q) = λαBrect(P,Q) + (1− λ) ζr(P,Q)

with λ ∈ [0, 1] close to 1.



Scenario reduction

We consider again discrete distributions P with scenarios ξi and probabilities pi,

i = 1, . . . , N , and Q being supported by a subset of scenarios ξj, j 6∈ J ⊂
{1, . . . , N}, of P with weights qj, j 6∈ J , where J has cardinality N − n.

The problem of optimal scenario reduction consists in determining such a proba-

bility measure Q deviating from P as little as possible with respect to dλ. It can

be written as

min

{
dλ

(
P,
∑

j 6∈J
qjδξj

) ∣∣∣∣ J ⊂ {1, . . . , N}, |J | = N − n
qj ≥ 0 j 6∈ J,

∑
j 6∈J qj = 1

}
.

This optimization problem may be decomposed into an outer problem for deter-

mining the index set J and an inner problem for choosing the probabilities qj,

j 6∈ J .
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From 104 Monte Carlo samples of a two-dimensional standard normal distribution 20 scenarios are selected
that represent best approximations with respect to the first order Fortet-Mourier metric (left) and the

Kolmogorov distance (right), i.e., the uniform distance of probability distribution functions.



To this end, we denote

d(P, (J, q)) := dλ

(
P,
∑

j 6∈J
qjδξj

)
Sn := {q ∈ Rn : qj ≥ 0, j 6∈ J,

∑
j 6∈J

qj = 1}.

Then the optimal scenario reduction problem may be rewritten as

min
J
{min
q∈Sn

d(P, (J, q)) : J ⊂ {1, . . . , N}, |J | = N − n}

with the inner problem (optimal redistribution)

min{d(P, (J, q)) : q ∈ Sn}

for fixed index set J . The outer problem is a NP hard combinatorial optimiza-

tion problem while the inner problem may be reformulated as a linear program.

Again a reformulation as linear mixed-integer program is possible.

An explicit formula for DJ := minq∈Sn d(P, (J, q)) is no longer available, but the

inner problem may be rewritten.



For B ∈ Brect we define the system of critical index sets I(B) by

Irect := {I(B) = {i ∈ {1, . . . , N} : ξi ∈ B} : B ∈ Brect}

and write

|P (B)−Q(B)| =

∣∣∣∣∣∣
∑
i∈I(B)

pi −
∑

j∈I(B)\J

qj

∣∣∣∣∣∣ .
Then, the rectangular discrepancy between P and Q is

αBrect(P,Q) = max
I∈Irect

∣∣∣∣∣∣
∑
i∈I

pi −
∑
j∈I\J

qj

∣∣∣∣∣∣.
Using the reduced system of critical index sets

I∗rect(J) := {I \ J : I ∈ Irect},

every I∗ ∈ I∗rect(J) is associated with a family ϕ(I∗) ⊂ Irect:

ϕ(I∗) := {I ∈ Irect : I∗ = I \ J} (I∗ ∈ I∗rect(J)).



With the quantities

γI
∗

:= max
I∈ϕ(I∗)

∑
i∈I

pi and γI∗ := min
I∈ϕ(I∗)

∑
i∈J

pi (I∗ ∈ I∗rect(J)),

we obtain DJ as infimum of the linear program

min


λtα + (1− λ)tζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tα, tζ ≥ 0, qj ≥ 0,
∑

j 6∈J qj = 1,

ηi,j ≥ 0, i = 1, . . . , N, j 6∈ J,
tζ ≥

∑
i=1,...,N,j 6∈J ĉr(ξi, ξj)ηi,j,∑

j 6∈J ηi,j = pi, i = 1, . . . , N,∑N
i=1 ηi,j = qj, j 6∈ J,

−
∑

j∈I∗ qj ≤ tα − γI
∗
, I∗ ∈ I∗rect(J)∑

j∈I∗ qj ≤ tα + γI∗, I
∗ ∈ I∗rect(J)


We have |I∗rect(J)| ≤ 2n and, hence, the LP should be solvable at least for

moderate values of n.



How to determine I∗rect(J), γI∗ and γI
∗
?

Observation:
I∗rect(J), γI∗ and γI

∗
are determined by those rectangles B ∈ R, each of whose

facets contains an element of {ξj : j 6∈ J}, such that it can not be enlarged

without changing its interior’s intersection with {ξj : j 6∈ J}. The rectangles in

R are called supporting.

Non supporting rectangle (left) and supporting rectangle (right). The dots represent the remaining scenarios
ξj, j 6∈ J .



Proposition:
It holds that

I∗rect(J)=
⋃
B∈R

{I∗ ⊆ {1, . . . , N}\J :∪j∈I∗{ξj}={ξj :j 6∈ J}∩ intB}

and, for every I∗ ∈ I∗rect(J),

γI
∗

= max {P (intB) : B ∈ R,∪j∈I∗{ξj} = {ξj : j 6∈ J} ∩ intB}
γI∗ =

∑
i∈I

pi,

where

I := {i ∈ {1, . . . , N} : min
j∈I∗

ξj,l ≤ ξi,l ≤ max
j∈I∗

ξj,l , l = 1, . . . , d}.

Note that |R| ≤
(
n+2

2

)d
!



Numerical results
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Comparison of scenario reduction for a Fortet-Mourier metric and a composite distance including αrect.



Optimal redistribution: αBrect versus ζ2
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25 scenarios chosen by Quasi Monte Carlo out of 1000 samples from the uniform distribution on [0, 1]2 and
optimal probabilities adjusted w.r.t. λαBrect + (1− λ)ζ2

for λ = 1 (gray balls) and λ = 0.9 (black circles)



Optimal redistribution w.r.t. the rectangular discrepancy αBrect:

d n=5 n=10 n=15 n=20

N=100 3 0.01 0.04 0.56 6.02

4 0.01 0.19 1.83 17.22

N=200 3 0.01 0.05 0.53 4.28

4 0.01 0.20 2.56 41.73

Running times [sec] of the optimal redistribution algorithm

The majority of the running time is spent for determining the supporting rectan-

gles, while the time needed to solve the linear program is insignificant.



Optimal scenario reduction

Forward selection:

Step [0]: J [0] := ∅ .

Step [i]: li ∈ argminl 6∈J [i−1] inf
q∈Si

dλ

(
P,
∑

j∈J [i−1]∪{l}
qjδξj

)
,

J [i] := J [i−1] ∪ {li}.
Step [n+1]: Minimize dλ

(
P,
∑

j∈J [n]
qjδξj

)
s.t. q ∈ Sn.

N=100 n=5 n=10 n=15

d = 2 0.21 2.07 17.46

d = 3 0.33 8.40 230.40

d = 4 0.61 33.69 1944.94

Growth of running times (in seconds) of forward selection for λ = 1

−→ Search for more efficient heuristics



Alternative heuristics (for P with independent marginals):

• (next neighbor) Quasi Monte Carlo: The first n numbers of randomized

QMC sequences provide n equally weighted points. The closest scenarios are

determined and the resulting discrepancy to the initial measure is computed

for fixed probability weights.

• (next neighbor) adjusted Quasi Monte Carlo: The probabilities of

the closest scenarios are adjusted by the optimal redistribution algorithm to

obtain a minimal rectangular discrepancy to P .

For general distributions P with densities transformation formulas are needed (e.g.

Hlawka-Mück 71).



Conclusion: (Next neighbor) readjusted QMC decreases significantly the ap-

proximation error. Forward selection provides good results, but is very slow due

to the optimal redistribution in each step.
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Left: The distance dλ (λ = 1) between P and uniform (next neighbor) QMC points (dashed line) and (next
neighbor) readjusted QMC points (solid line), and running time in seconds of optimal redistribution.
Right: Distances αrect (solid) and ζ2 (dashed) of 10 out of 100 scenarios, resulting from forward selection for
several λ ∈ [0, 1].



Conclusions and outlook

• There exist reasonably fast heuristics for scenario reduction in linear two-

stage stochastic programs,

• It may be worth to study and compare exact solution methods with heuristics,

• Recursive application of the heuristics apply to generating scenario trees for

multistage stochastic programs,

• For scenario tree reduction the heuristics have to be modified.

• For mixed-integer two-stage stochastic programs heuristics exist, but have

to be based on different arguments. They are more expensive and so far re-

stricted to moderate dimensions. This motivates to study exact approaches.

• There is hope for generating scenario trees for mixed-integer multistage mod-

els, but it is not yet supported by stability results.
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Dupačová, J.; Gröwe-Kuska, N.; Römisch, W.: Scenario reduction in stochastic programming: An approach using
probability metrics, Mathematical Programming 95 (2003), 493–511.

Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming, Computational Optimization and
Applications 24 (2003), 187–206.

Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs, Operations Research Letters
35 (2007), 731–736.

Heitsch, H., Römisch, W.: Scenario tree modeling for multistage stochastic programs, Mathematical Programming 118
(2009), 371–406.

Heitsch, H., Römisch, W.: Scenario tree reduction for multistage stochastic programs, Computational Management
Science 6 (2009), 117–133.
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