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Introduction

Most approaches for solving stochastic programs of the form

min {/Efo(g;,g)P(dg) T € X}

with a probability measure P on = C R? and a (normal) integrand f, require
numerical integration techniques, i.e., replacing the integral by some quadrature
formula

[ fe.&)P@) = 3 mifu(a. 6,
= i=1
where p; = P({¢;}), Y. pi=1land & €= i=1,...,n.

Since fy is often expensive to compute, the number n should be as small as
possible.



With v(P) and S(P) denoting the optimal value and solution set of the stochastic
program, respectively, the following estimates are known

[v(P) —v(Q)] < sup

045(Q) C S(P)+p (sup

zeX

[ ate.op - Q)
[P - Quag))).

where X is assumed to be compact, () is a probability distribution approximating
P and the function Wp is the inverse of the growth function of the objective near
the solution set, i.e.,

U5t (t) ;= inf {/:fo(x,f)P(df) —v(P):x € X,d(x,S(P)) > t}.

Hence, the distance dr with F := {fo(z,-) : z € X}

dr(P,Q) = sup
feF

/f (P - Q)(dﬁ)‘

becomes important when approximating P.



For given n € N and for the special case p;, = % t=1,...,n, the best possible
choice of elements §; € =, i = 1,...,n (scenarios), is obtained by minimizing

ﬁ fole, )P =Y flw, &),

sup
zeX

—

i.e., by solving the best approximation problem

min dr(P,
QEePn(Z) ]:( Q)

where

P.(Z) :={Q : Q is a uniform probability measure with n scenarios}.

It may be reformulated as a semi-infinite program. and is known as optimal quan-
tization of P with respect to the function class /. Such optimal quantization
problems of probability measures are often extremely difficult to solve.

|dea: Enlarging the class F to the class of all Lipschitz functions with a uniform
constant. But, then

1
min dr(P,Q) = O(n"d).
ol F(P,Q) =0(n"1)



If the functions fy(x,-) belong to mixed Sobolev spaces, then the convergence
rate

in dr(P,Q)=0(n"1) (§€(0,05
S F(P,Q)=0(n""") (6¢€(0,0.5)

can be achieved by certain randomized Quasi-Monte Carlo methods.

The convergence rate can be improved if the functions f € F satisfy a higher
degree of smoothness.

Aim of the talk:

Solving the best approximation problem for discrete probability measures P hav-
ing many scenarios and for function classes F, which are relevant for two-stage
stochastic programs (scenario reduction).

Additional motivation:
Scenario reduction methods may be important for generating scenario trees form
multistage stochastic programs.
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Linear two-stage stochastic programs

win{ () + [ @) 1(6) ~ T Plag) 2 € X |

—

where ¢ € R™, = and X are polyhedral subsets of R? and R™, respectively, P
is a probability measure on = and the s x m-matrix T(-), the vectors ¢(-) € R™
and h(-) € R? are affine functions of .

Furthermore, ® and D denote the infimum function of the linear second-stage
program and its dual feasibility set, i.e.,

O(u,t) = inf{{u,y) Wy =t,y € Y} ((u,t) € R x R
D= {ueR": {zeR*:W'z—uecY*}#£0},

where ¢(&) € R™ are the recourse costs, W is the s X 7 recourse matrix, W '
the transposed of W and Y* the polar cone to the polyhedral cone Y.



Theorem: (Walkup-Wets 69)

The function ®(-, -) is finite and continuous on the polyhedral set D x W (Y').
Furthermore, the function ®(u, -) is piecewise linear convex on the polyhedral set
W(Y) for fixed u € D, and ®(-,t) is piecewise linear concave on D for fixed
te W().

Assumptions:

(A1) relatively complete recourse: for any (£, z) € = x X,
h(§) —T(§)x € W(Y);

(A2) dual feasibility: q(£) € D holds for all £ € =.
(A3) existence of second moments: |- ||{||*P(d§) < +oo.

Note that (A1) is satisfied if W (Y') = R® (complete recourse). In general, (A1)
and (A2) impose a condition on the support of P.

Extensions to certain random recourse models, i.e., to W (§), exist.



Idea: Extend the class F such that it covers all two-stage models.

Fortet-Mourier metrics: (as canonical distances for two-stage models)

G:(P,Q) = sup

[reP-qua): s e 7)),
where > 1 (r € {12} if W(€) = W)
FoB) ={f:E=R: f(6) = f(§) < (&), ¥, € € EY,
e (6,6) = max{1, €L IEI " HIg - €] (6.6 € D).

PI’OpOSitiO“: (Rachev-Riischendorf 98)
If = is bounded, (,, may be reformulated as transportation problem

(P =int} [ (e Emide,dd)imn=P.mn =@
where ¢, is a metric (reduced cost) with ¢, < ¢, and given by

n—1

ér(faé) = inf {Z CT<€Zi7€Zi+1) NS Nvgli S Evgh — S?fln — g}

1=1



Scenario reduction

We consider discrete distributions P with scenarios & and probabilities p;, i =
1,..., N, and @) being supported by a given subset of scenarios {;, 7 & J C
{1,..., N}, of P.

Optimal reduction of a given scenario set J:
The best approximation of P with respect to (, by such a distribution () exists
and is denoted by Q*. It has the distance

D= CT’(PaQ ) = mlnCr P Q sz mlncr 5275])
1€J

and the probabilities ¢7 = p; + > pi, Vj & J, where

ZEJ

Jji=16 € J 1 j=jli)} and jii) € argmin (&, &), Vi € J
J
(optimal redistribution).



Determining the optimal index set J with prescribed cardinality N —n is, however,
a combinatorial optimization problem: (n-median problem)

min{D;:J C{l,....,N}|J|=N —n}

Hence, the problem of finding the optimal set J for deleting scenarios is N P-
hard and polynomial time algorithms are not available.

First idea: Reformulation as linear mixed-integer program

N
min =~ n Z DA &) s.t.

1,7=1

N N
Z zi+yi =1 (¢=1,...,N), Zyi:n,
i=1

j=1,j#i
LL"Z'j S Y; ngwgl (’Z,jzl,...,N),

y; € {0,1} (1,...,N).

and application of standard software or of specialized algorithms.

min;e y ér(§;,65) . T i ,

1 C 9 9 E J 1 , J

Solution: z;; = { nCr(éwfj) Z|§Z J Y = { ) i i J
, else. ; :



Fast reduction heuristics

Second idea: Application of (randomized) greedy heuristics.

Starting point (n = N —1): min min ¢, (&, &;
g point JE i an &6 )

Algorithm 1: (Backward reduction)

Step [0]: J":=0.

Step [i]: [; € arg min g pr min (&, &).
1g Jli—1] — jeJi=u{ny
keJli=1u{i}

Ji .= gty {1
Step [N-n+1]: Optimal redistribution.




N
Starting point (n =1):  min > ppc. (&, &)
we{l,...,.N} 1.1

Algorithm 2: (Forward selection)

Step [0]: J" .= {1,...,N}.
Step [i]: w; € arg érﬁin” Z Pr ﬂmﬁl & (&, &5)s
U keﬂi_u\{u} J&J \{u}
Ji = Ji=1 £}

Step [n+1]: Optimal redistribution.




Application:

Optimization of gas transport in a huge transportation network including hun-
dreds of gas delivery nodes. A stationary situation is considered; more than 8 years
of hourly data available at all delivery nodes; multivariate probability distribution
for the gas output in certain temperature classes is estimated; 10° samples based
on randomized Quasi-Monte Carlo methods are generated and later reduced by
scenario reduction to 50 scenarios.
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Mixed-integer two-stage stochastic programs

We consider

win{ (e0) + [ @(a(€).1(6) ~ T(©)n)Plag) 2 € X |

—

where @ is given by

Wiyr + Ways <t }

(U, ) 11 {<U1,y1> + <u27y2> U1 c R+1,y2 c Z+2

for all pairs (u,t) € R™*™2 x R", and ¢ € R™, X is a closed subset of
R™, = a polyhedron in R*, Wy € Q™" Wy € Q™"™2, and T(§) € R™™,
q(&) € R™M*T2 and h(§) € R” are affine functions of &, and P is a probability
measure.

We again assume (Al) for W = (Wy, Ws) (relatively complete recourse), (A2)
(dual feasibility) and (A3).



(Schultz-Stougie-van der Vlerk 98)

Example

Stochastic multi-knapsack problem:

- [_575]2’

X

0, me =4, c = (1.5,4),
q = (16, 19,23,28), Y € {0,1}

my, =

min = max, m = 2

hE) = & al§)

= 1,234, P ~

?

(discrete)

.,14.5,15)
Second stage problem: MILP with 1764 0-1 variables and 882 constraints.
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The function @ is well understood and the function class
Fr(2)={f1p: f € F.(2),B € B},
is relevant, where r € {1,2}, B is a class of (convex) polyhedra in = and 13

denotes the characteristic function of the set B.

The class B contains all polyhedra of the form
B—{¢€Z:h(§)-T(¢) € D},

where x € X and D is a polyhedron in R® each of whose facets, i.e., (s — 1)-
dimensional faces, is parallel to a facet of the cone Wi (R!'") or of the unit cube
0, 1]°. Hence, B is very problem-specific.

Therefore, we consider alternatively the class of rectangular sets
Brect = {11 x Iy x -+ x I;: 0 # I, is a closed interval in R}

covering the situation of pure integer programs and serving as heuristic for the
general case.



Proposition:
In case F = F, 3...(2), the metric dr allows the estimates

d5(P,Q) = max{az,(P,Q),¢(P,Q)}
A5(P,Q) < C (G(P,Q)+ ap (P, Q)7T)

where C' is some constant only depending on = and agp

rect

is the rectangular
discrepancy given by

B, (P, Q) = sup |P(B)— Q(B)

lge;lgrect

If the set = is bounded, even the estimate holds

0B (P, Q) < d7(P,Q) < Cap,, (P, Q).

‘ -
H

Since agp,., has a stronger influence on dr than (,, we consider the composite
distance

dA(Pv Q) - )\&Brect(P7 Q) + (1 — )‘) C?'(Pa Q)
with A € [0, 1] close to 1.



Scenario reduction

We consider again discrete distributions PP with scenarios & and probabilities p;,
i = 1,...,N, and @) being supported by a subset of scenarios &;, 7 & J C
{1,..., N}, of P with weights ¢;, 7 & J, where J has cardinality N — n.

The problem of optimal scenario reduction consists in determining such a proba-
bility measure () deviating from P as little as possible with respect to d). It can
be written as

. JC{lavN}7’J‘:N_n
mm{dA (P’ ngquJ%) ‘ G =05 &2 5050 =1 |

This optimization problem may be decomposed into an outer problem for deter-
mining the index set J and an inner problem for choosing the probabilities g;,

J&J.



From 10* Monte Carlo samples of a two-dimensional standard normal distribution 20 scenarios are selected
that represent best approximations with respect to the first order Fortet-Mourier metric (left) and the
Kolmogorov distance (right), i.e., the uniform distance of probability distribution functions.



To this end, we denote

d(P,(J,9)) = dy (P qujagj)
Sn = {g€R" 1 q; 20,5 ¢ 1) a;=1}
Then the optimal scenario reduction problem may be rewritten as

min{mind(P, (J,q)) : J C {1,...,N},|J| =N —n}

J q€Sy

with the inner problem (optimal redistribution)
min{d(P, (J,q)) : ¢ € Sy}

for fixed index set J. The outer problem is a N”P hard combinatorial optimiza-
tion problem while the inner problem may be reformulated as a linear program.

Again a reformulation as linear mixed-integer program is possible.

An explicit formula for D; := min,eg, d(P, (J, q)) is no longer available, but the
inner problem may be rewritten.



For B € Bt we define the system of critical index sets I(B) by
Tt ={I(B)={i€{l,...,N}:& € B} : B € Bt}

and write

|P(B) — jg::]% 2{: qj| -

i€l(B jel(B)\J

Then, the rectangular discrepancy between P and () is

5, (P, Q) = max sz - ) gl

JenJ

Using the reduced system of critical index sets
Iject( ) = {I\J WS Irect}a
every [* € L

oI ={l €Lt : I"=1T\J} (I" €L ..(J])).

(J) is associated with a family ©(I*) C Zee:



With the quantities

I* *
rep(r) — piand = Zp Treal )

we obtain D as infimum of the linear program

( tOth > 07 dj > Oa ngj qj = 17 |
Ui 2072:177N7]€J7

tC > Zz 1,..., Nj§ZJ ér(fz’,fj)ﬁz’,j,

min § Aty + (1 — N)t¢ %Jnlj pi,i=1,..., N, \
Zz 1nZ,j — QJ7 j g J7*

o Zje[* 5 < o — fyl , I € I:ect(‘])

\ Zjel* qj S tOé +,71*7 I" e Ir*ect(‘]) y

We have |Z* .(J)| < 2" and, hence, the LP should be solvable at least for
moderate values of n.



How to determine Z7 . (.J), 77+ and v/ ?

Observation:
T . (J), 71+ and " are determined by those rectangles B € R, each of whose
facets contains an element of {&; : j & J}, such that it can not be enlarged
without changing its interior’s intersection with {&; : 7 & J}. The rectangles in

‘R are called supporting.

L > - — — - - —-
______ I N S |
o o
[ ) [ ] [ ) [ ] $
------ ® ® —m—mme e ® ® ————--

Non supporting rectangle (left) and supporting rectangle (right). The dots represent the remaining scenarios

§,J¢dJ.



Proposition:
It holds that

Lo D)=\ A S {L,..., N\ T:User{&} ={& 4 & J}N int BY

BeER
and, for every I € 7 . (J),

v = max {P(int B) : B € R,Ujer{&;} = {¢& - j & J} Nint B}

s = sza

1€l
where

I={ie{l,...,N} : min§; <&; <max¢;,l=1,...,d}.
jer* jer*

Note that |R| < (”;Q)d !



Numerical results
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Comparison of scenario reduction for a Fortet-Mourier metric and a composite distance including aect.



Optimal redistribution: o, versus ¢,
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25 scenarios chosen by Quasi Monte Carlo out of 1000 samples from the uniform distribution on [0, 1] and

optimal probabilities adjusted w.r.t. Aag,., + (1 — NG
for A =1 (gray balls) and A = 0.9 (black circles)



Optimal redistribution w.r.t. the rectangular discrepancy agp__:

rect "

d | n=5 n=10 n=15 n=20
N=100 3/0.01 0.04 056 6.02
41001 019 1.83 17.22

N=200 3|0.01 0.05 053 4.28
41001 020 256 41.73

Running times [sec] of the optimal redistribution algorithm

The majority of the running time is spent for determining the supporting rectan-
gles, while the time needed to solve the linear program is insignificant.



Optimal scenario reduction

Forward selection:
Step [0]: J" =&
Step [i]: I € argminyg iy qlgg @ (P’ Zy’eﬁi—ﬂu{z} 4% ) 7
Ji = gt=ly {1},
Step [n+1]: Minimize d) (P, ngﬂﬂ] qjégj) st. g €.5,.

N=100 | n=5 n=10 n=15
d=2 (021 207 17.46

d=3 1033 840 230.40
d=4 ]0.61 33.69 1944.94

Growth of running times (in seconds) of forward selection for A = 1

—— Search for more efficient heuristics



Alternative heuristics (for P with independent marginals):

e (next neighbor) Quasi Monte Carlo: The first n numbers of randomized
QMC sequences provide n equally weighted points. The closest scenarios are
determined and the resulting discrepancy to the initial measure is computed
for fixed probability weights.

e (next neighbor) adjusted Quasi Monte Carlo: The probabilities of
the closest scenarios are adjusted by the optimal redistribution algorithm to
obtain a minimal rectangular discrepancy to P.

For general distributions P with densities transformation formulas are needed (e.g.
Hlawka-Miick 71).



Conclusion: (Next neighbor) readjusted QMC decreases significantly the ap-
proximation error. Forward selection provides good results, but is very slow due
to the optimal redistribution in each step.

discrepancy time
1600 06/

1400 04

1200 02

0 0.2 0.4 0.6 0.8 1
Left: The distance dy (A = 1) between P and uniform (next neighbor) QMC points (dashed line) and (next
neighbor) readjusted QMC points (solid line), and running time in seconds of optimal redistribution.

Right: Distances .. (solid) and (, (dashed) of 10 out of 100 scenarios, resulting from forward selection for
several A € [0,1].



Conclusions and outlook

e There exist reasonably fast heuristics for scenario reduction in linear two-
stage stochastic programs,

e |t may be worth to study and compare exact solution methods with heuristics,

e Recursive application of the heuristics apply to generating scenario trees for
multistage stochastic programs,

e For scenario tree reduction the heuristics have to be modified.

e For mixed-integer two-stage stochastic programs heuristics exist, but have
to be based on different arguments. They are more expensive and so far re-
stricted to moderate dimensions. This motivates to study exact approaches.

e There is hope for generating scenario trees for mixed-integer multistage mod-
els, but it is not yet supported by stability results.
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