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Stochastic DAEs in Circuit Simulation 

Werner Romisch and Renate Winkler 

Abstract. Stochastic differential-algebraic equations (SDAEs) arise as a math­
ematical model for electrical network equations that are influenced by addi­
tional sources of Gaussian white noise. We sketch the underlying analytical 
theory for the existence and uniqueness of strong solutions, provided that the 
systems have noise-free constraints and are uniformly of DAE-index 1. In the 
main part we analyze discretization methods. Due to the differential-algebraic 
structure, implicit methods will be necessary. We start with a general p-th 
mean stability result for drift-implicit one-step methods applied to stochastic 
differential equations (SDEs). We discuss its application to drift-implicit Eu­
ler, trapezoidal and Milstein schemes and show how drift-implicit schemes for 
SDEs can be adapted to become directly applicable to stochastic DAEs. Test 
results of a drift-implicit Euler scheme with a mean-square step size control 
are presented for an oscillator circuit. 

1. Introduction 

Electrical noise limits the performance of electronic circuits and, hence, requires 
the analysis or simulation of its effects. Due to decreasing signal to noise ratios in 
special applications linear noise analysis around the deterministic solution is no 
longer satisfactory. The noise influences such systems in an essentially nonlinear 
way. We deal with two sources of electrical noise, namely, thermal noise of resistors 
and shot noise of pn-junctions. They are modelled as external Gaussian white noise 
sources in parallel to the original element (see Figures 1 and 2). Nyquist's theorem 
(see, e.g., [2, 4, 22]) states that the current through an arbitrary linear resistor 
having a resistance R, maintained in thermal equilibrium at a temperature T, can 
be described as the sum of the noiseless, deterministic current and a current due 
to a Gaussian white noise process with spectral density 8 th := 2~T, where k is 
Boltzmann's constant. Hence, the additional current is modelled as 

Ith = G"th . ~(t) = J2'f{ . ~(t), 
where ~(t) is a standard Gaussian white noise process. In [21, 22] a thermo­
dynamical foundation to apply this model to mildly nonlinear resistors and re­
ciprocal networks is given. 

This research has been supported by the BMBF-projekt 03-ROM3B3. 
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Shot noise of pn-junctions, caused by the discrete nature of current due to the 
elementary charge, is also modelled by a Gaussian white noise process, where 
the spectral density is proportional to the current I through the pn-junction: 
Sshot := qlII, where q is the elementary charge. If the current through the pn­
junction is described by a characteristic I = g( u), where u is some voltage, the 
additional current is modelled by 

Ishot = O"shot(U)· ~(t) = Jqlg(u)l· ~(t), 

where ~(t) is a standard Gaussian white noise process. For a discussion of the 
model assumptions we refer to [2,4, 21, 22]. 

The charge-oriented Modified Nodal Analysis (MNA) represents a standard 
tool in circuit simulation. The equations are generated automatically by combining 
the network topology, Kirchhoff's Current Law, and the characteristic equations 
describing the physical behaviour of the network elements. This results in large 
systems of DAEs, whose special structure was analyzed in a number of papers, e.g., 
[6, 8, 20]. We represent the topology of a network by means of the incidence ma­
trix (Ac,AR,AL,Av,A],AN)' with indices referring to branches of capacitances, 
resistances, inductances, possibly controlled voltage and current sources, and nN 
additional noise sources, respectively. Then the charge-oriented MN A system has 
the following structure (see [6, 8] for the deterministic case): 

Acq' + h(e,jL,jv, t) + ANdiag (O"(A~e, t))~(t) 0 (1.1) 

A~e - vS(e,jL' t) 

q - qc(A~e, t) 

cjJ - cjJ L (j L , t) 

o 
o 
o 

(1.2) 

(1.3) 

(1.4) 

0, (1.5) 

where h(e,jL,jv, t) := ARg(A~e,t) + AdL + Avjv + A]is(e,jL,jr, t), and qc, g, 
qh, vs , is, 0" are given, noiseless functions. The vector of unknowns describing the 
system behaviour consists of all node potentials e, the branch currents of current­
controlled elements (inductances and voltage sources) j L, jv, and the charges q of 
capacitances, and the fluxes cjJ of inductances. ~ denotes an nN-dimensional vec­
tor of independent standard Gaussian white noise processes. In industry-relevant 
applications one has to deal with a large number of unknowns and noise sources. 
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The first block of equations (1.1) means a stochastic integral equation: 

ACq(s)l t + t JI(x(s), s)ds + t ANdiag (a)(x(s), s)dw(s) = 0, 
~ ho ho 

where the second integral is an Ito integral, and w denotes an nN-dimensional 
Wiener process (or Brownian motion) given on the probability space (n, F, P) 
with a filtration (Ftk~to (see, e.g., [3, 9] for the stochastic background). A solution 
x = x(t,w) is a stochastic process depending on the time t and the chance element 
wEn. The parameter w is omitted in the notations above. The solution x(t) = 
x(t,·) for fixed time t is a vector-valued random variable in LP(n), p ~ 1, a 
realization x(·, w) is called a path. 

The equations (1.1 )-( 1. 5) form a specially structured Stochastic Differential 
Algebraic Equation (SDAE) of the type 

Ax(s)l t + t f(x(s), s)ds + t G(x(s), s)dw(s) = 0, 
to lto lto 

(1.6) 

where A is a constant singular matrix, t varies over a compact interval :1. The 
short-hand notation 

Ax'(t) + f(x(t), t) + G(x(t), t)~(t) = 0 (1. 7) 

emphasizes the relations of (1.6) to its deterministic counterpart but may be mis­
leading for readers who are less familiar with the stochastic background. Though 
the notation x'(t) is used in (1.7), a typical realization x(·,w) of the solution is 
nowhere differentiable. A process x(·) = (X(t))tE..7 is called a strong solution of 
(1.6) if it is adapted to the filtration (i.e., it does not depend on future informa­
tion), and if, with probability 1, its sample paths are continuous, the integrals in 
(1.6) exist and (1.6) is satisfied. 

In Section 2 we discuss some basics of an existence and uniqueness theory of 
strong solutions for SDAEs where we restrict to DAE-systems that have uniformly 
index 1 and noise-free constraints. In particular, we introduce the notion of an 
inherent regular SDE. The latter motivates to study discretization schemes first 
for SDEs. Hence, we provide in Section 3 a short introduction to p-th mean stability 
and convergence of general drift-implicit schemes. For the convenience of the reader 
the proof of the main stability result is shifted to the Appendix. In Section 4 we 
discuss several variants of drift-implicit schemes for SDAEs, namely, the drift­
implicit Euler, trapezoidal and Milstein schemes. Special attention is paid to their 
convergence properties and to implementation issues. Finally, we report in Section 
5 on numerical experience with the drift-implicit Euler scheme applied to the 
transient noise simulation in a ring-oscillator model. 

2. Index 1 SDAEs 

Due to the singularity of the matrix A the deterministic part of (1.6) 

Ax'(t) + f(x(t), t) = 0, (2.1) 
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where the solution x is now a deterministic function of t, forms a DAE. Solutions 
have to fulfil the constraints of the equation. The solution components belonging 
to ker A (we call them the algebraic components) do not occur under the differ­
ential operator d/ dt, and the inherent dynamics live only in a lower-dimensional 
subspace. The DAE (2.1) is characterized as an index 1 DAE iff the constraints 
are locally solvable for the algebraic components. Solving an index 1 DAE involves 
a coupling of an integration task and a nonlinear equation solving task. If a DAE 
is of higher index, the constraints are not locally solvable for the algebraic compo­
nents, and there exist solution components that are determined only by a hidden 
differentiation step, which may cause serious difficulties in the numerical solution 
of such problems (see, e.g., [1, 11]). 

We assume here that the deterministic part (2.1) is globally an index 1 DAE 
in the sense that the constraints are regularly and globally uniquely solvable for the 
algebraic variables. The globally unique solvability is stronger than the determinis­
tic index 1 condition, which requires only the non-singularity of the corresponding 
Jacobian and guarantees only local solvability of the constraints for the algebraic 
variables. The globally unique solvability holds for the MNA-system (1.1)-(1.5) if 
(see[23]) there are no loops of capacitances and voltage sources and no cut-sets of 
inductances or current sources, if the capacity, conductance, and inductance ma­
trices are symmetric and uniformly positive definite, and if the controlled sources 
satisfy certain conditions described in [6] (see [6, 23]). 

In [17, 18] it is shown that special conditions are needed to ensure solution 
processes that are not directly affected by white noise. Then the SDAEs are called 
SDAEs without direct noise, otherwise with direct noise. To avoid direct noise we 
have to assume that the noise sources do not appear in the constraints. This means 
that 

im G(x, t) ~ im A V(x, t) E IRn x J. 

This is true for (1.7) if and only if there are always capacitances in parallel to a 
noise source. This is quite restrictive in the actual noise modelling (see also the 
example in Section 4). Nevertheless, one can also handle many situations where 
this condition is violated. Often noisy constraints are only needed for the determi­
nation of algebraic solution components that do not interact with the dynamical 
ones. Future work should be directed to a classification of such situations. 
Under these conditions the constraints of the SDAE can be described by the de­
terministic equation 

Rf(x(t), t) = 0, 

where R is a projector along imA, i.e., R2 = R, ker R 
constraints for the algebraic components 

Rf(u+v,t) =0, Av=O~v=v(u,t), 

im A. Solving the 

inserting the result into the differential equations, and scaling the system by a 
pseudo-inverse A- (with AA- = 1- R, A- A a projector along ker A) leads to a 
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so-called inherent regular SDE in the differential components u: 

u' + A- f(u + v(u, t), t) + A-G(u + v(u, t), t)~(t) = O. (2.2) 

It can be shown that (2.2), together with x(t) = u(t) + v(u(t), t), is equivalent 
to (1.6). Based on this, the following theorem on the existence and uniqueness of 
strong solutions of (1.6) is proved in [23]: 

Theorem 2.1. Let the above conditions be satisfied for (1.6), and assume that f 
and G are globally Lipschitz continuous with respect to x, continuous with respect 
to t, and that Axo is Fto-measurable, independent of the Wiener process w, and 
has finite p-th mean for some p 2': 1. 
Then there exists a strong solution x(·) of the initial value problem 

Ax(t) - Axo + t f(x(s), s)ds + t G(x(s), s)dw(s) = 0, (2.3) 
ito ito 

which is pathwise unique. Moreover, the solution x(·) has finite p-th mean. 

Similarly, convergence properties of suitable drift-implicit discretization 
schemes for SDEs carryover to SDAEs. In the next section we therefore give 
some basic results for the discretization of SDEs. 

3. Time discretization of stochastic differential equations 

We consider the initial value problem for the SDE 

x(s)l t + rt f(x(s), s)ds + it G(x(s), s)dw(s) = 0, t E :1, x(to) = Xo, 
to ito to 

(3.1) 

where:1 = [to, T], f : IRn x:1 ---+ IRn, G : IRn x:1 --+ IRnxm , W is an m-dimensional 
Wiener process on a given probability space (!1, F, P) with a filtration (Ft)tE.::T, 
and Xo is a given Fto-measurable initial value, which is independent of the Wiener 
process w. We assume that there exists a pathwise unique strong solution x(·). 
Let us consider a generally drift-implicit discretization scheme of the form 

Xl = X/!-I + CP(X/!-I, Xl; t/!-I, hi) + 'IjJ(X/!-I; t/!-I, h/!, I tt _1,ht), f = 1, ... , N, (3.2) 

on the deterministic grid to < tl < ... < tN = T with stepsizes hf! := tl - tf!-I, 
f = 1, ... , N. Here, cP and 'IjJ are functions defined on IRn x IRn x T and IRn x T X IRM 
with T := {( t, h) : t, t + h E :1, h E IR+}, respectively, and mapping to IRn. By 
It,h we denote a vector of M multiple stochastic integrals having the form 

It+h 181 18k
-

1 

I i1 , ... ,ik;t,h= ... dWi1(SI)dwi2(S2)···dwik(Sk) 
t t t 

where the indices iI, ... , i k are in {O, 1, ... , m}, k is bounded by certain finite order 
kmax and dWo(s) corresponds to ds. 

For example, for the family of drift-implicit Euler schemes 

Xf! :=xf!_I+hf!(af(xf!,tf!)+(1-a)f(xf!-I,te-I))+G(Xf!-I,te-d~wf!' C= 1, ... ,N, 
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where 0: E [0,1], and D.we := (w(te) - w(te-d) = (Ii;te_l,h£)~I' one has krnax = I, 
M=m, and 

ip(z, x; t, h) h(o:f(x, t + h) + (1 - o:)f(z, t)), 
m t+h 

O(z, t)(w(t + h) - w(t)) = ~9i(Z' t) 1 dWi(S), 1jJ(z; t, h, It,h) 

where gi(Z, t), i = 1, ... , m, are the columns of the matrix O(z, t). 
The family of drift-implicit Milstein schemes differs from the Euler schemes by 
an additional correction term for the stochastic part. The Milstein schemes are 
described by the same function ip, and kmax = 2, M = m + m 2 , and 

m 

1jJ(z; t, h, It,h) := O(z, t)D.Wt,h + 2)gjxO)(z, t)I(j);t.h, 
j=1 

where D.Wt,h := w(t + h) - w(t) = (Ii;t,h)~I' and I(j);t,h := (Ij,i;t,h)~I' 
In [23], a result on numerical stability of drift-implicit schemes (3.2) in the 

mean-square sense has been derived which allows to study the behaviour of (3.2) 
under perturbations. Next we present a variant of such a stability result which 
supplements and extends Theorem 5 in [23]. 

Theorem 3.1. Let p :::: 1 and xo have finite p-th mean. Assume that the scheme 
(3.2) satisfies the following properties: 

• for all z,z,x,x E JRn, (t,h) E T, h::::; hI we have 

(A 1) lip(z,x;t,h) - ip(z,x;t,h)1 ::::; h(Lllz - zl + L21x - xl) 
for some positive constants hI, L 1 , L 2 . 

• for all (t, h) E T, h ::::; hI, and Ft-measurable random vectors y, y we have 

(A 2) 1E( 1jJ(y; t, h, It,h) - 1jJ(y; t, h, It,h) 1Ft) = 0, 

(A 3) 1E(11jJ(y; t, h,It,h) - 1jJ(fj; t, h,It,hWIFt ) ::::; h ¥ L~ly - YiP, 
(A4) 1E11jJ(0; t, h,It,h)iP < 00, 

for some constant L3 > O. 

Then there exists constants a :::: I, hO > 0 and a stability constant S > 0 such 
that the following holds true for each grid {to, tl, ... ,tN} having the property h := 

maXe=l, ... ,N he ::::; h O and h· N ::::; a· (T - to): 
For all Fto -measurable random vectors xo, Xo having finite p-th mean, for all 
I- E {I, ... ,N} and Ftc-measurable perturbations dc, de having finite p-th mean 
the perturbed discrete system 

Xc = Xe-l + ip(Xe-l' XC; te-l, he) + 1jJ(XC-l; tC-l, he ,Ite_l ,he) + dR, (3.3) 

I- = 1, ... , N, has a unique solution {xcH\~=o, and the following estimates are valid 
for any two solutions {XC}~l and {xc}f=o of the perturbed discrete systems with 
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max lElsclP IE max IrclP 
IE max IXe-i;cIP:::;SP(lElx~-i;ulp+e=l, ... 'NE + C=l'"h;N ), (3.4) 

e=l, ... ,N h2 

max lElselP max IEIrcIP 
lEI * - IP < SP (lEI * - IP C=l, ... ,N C=l, ... ,N ) _max xc-xc _ xu-xu + E + P , e-l, ... ,N h2 h 

(3.5) 

where de := de - de is splitted such that de = rt + Se with lE(scIFt€_J = O. 

The proof of Theorem 3.1 is given in the appendix. 
Theorem 3.1 applies immediately to well-known schemes for SDEs. Here, 

we check the assumptions of Theorem 3.1 for the families of drift-implicit Euler 
and Milstein schemes. Condition (AI) follows from the Lipschitz continuity of the 
drift coefficient j, (A2) holds due to the explicit, non-anticipative discretization of 
the diffusion term, and the technical condition (A4) is satisfied since the function 
G(O,') (and the functions gjxG(O, .)) are bounded on the compact interval J. 
Condition (A3) is a consequence of standard properties of moments of stochastic 
integrals and the Lipschitz continuity of the diffusion coefficient G (and in case 
of the Milstein scheme of the functions gjxG). For example, for the drift-implicit 
Euler scheme we obtain for any pair (t, h) E T and any Fe measurable y, f) 

1E(11/J(Y; t, h, It,h) -1/J(f); t, h, It,hWIFt ) IG(y, t) - G(f), tW 1E(I~Wt,hIPIFt) 

< LSly - f)IPCph~ 

where Lc is a Lipschitz constant of G and Cp a universal constant. 
In the special case x; = x( te), the perturbations de form the local discretiza­

tion errors. We split them into 

d; = (de - df) + de, where d; := IE (de IFte _ 1 ), 

and obtain, in comparison with the exact solution of the numerical scheme Xfi, 

II £=rra.~N Ix(te) - xelllLp < SpC=rra.~N Iide - deIILp/h~ + II £=rra.~N Id;IIILp/h), 

f=~a.~N Ilx(te) - xtllLp < Sp(£=~a.~N lid; - d;IILp/h~ + P=rr,a.~N Ild;IIJ~p/h), 
where IlxllLp := (1EIxIP)l/p. If, by consistency arguments, the local error terms on 
the right-hand side are of order O(hi), we have global convergence of order 'Y. 

4. Discretization schemes for index 1 SDAEs 

Nowadays, a wide spectrum of discretization schemes for SDEs is available (cf. 
[3,9,12,15]). However, SDAEs require special schemes. First decoupling the SDAE 
numerically and then applying a scheme to the resulting inherent SDE would be 
an inefficient procedure in general. We aim at numerical methods for SDAEs that 
work directly on the given implicit structure, as in the case of deterministic DAEs. 
Only little previous work has been done in this direction. In [17, 18] linear SDAEs 
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are analyzed and the convergence of the drift-implicit Euler scheme is proved. In 
[14] a scheme with strong order 1 is developed for the specially structured SDAEs 
that arise in transient noise simulation for electronic circuits. Later we will point 
out its relation to the drift-implicit Milstein scheme. 

Our approach also applies to nonlinear SDAEs. We present adaptations of 
known schemes for SDEs that are implicit in the deterministic and explicit in the 
stochastic part to the SDAE (1.6). Designing the methods such that the iterates 
Xe have to satisfy the constraints of the SDAE at the current time-point te 

Rf(xe, te) = 0, 

is the key idea to adapt known methods for SDEs to (1.6). 
The noise densities given in Section 1 contain small parameters. To exploit 

this in the analysis of the discretization errors we express the diffusion coefficient 
in the form 

G(X, t) := dj(x, t), f « 1. (4.1) 

4.1. Drift-implicit Euler scheme 

On the deterministic grid ° = to < t1 < ... < tN = T the drift-implicit Euler 
scheme for (1.6) is given by 

Xe - Xe-1 1 
A he + f(xe, te) + G(Xe-1' t.e-1) h.e f).we = 0, (4.2) 

where h.e = t.e-te-1, f).w.e = w(te) - W(t.e-1)' Realizations of f).w.e can be simulated 
as N(O, he I)-distributed random variables. The Jacobian of 4.2 is the same as in 
the deterministic setting. 

The scheme (4.2) for the SDAE (1.6) possesses the same convergence prop­
erties as the drift-implicit Euler scheme for SDEs. In general, its order of strong 
convergence is 1/2, i.e., 

h:= max he, 
e=l, ... ,N 

holds for the p-th mean norm of the global errors for p ~ 1. For additive noise, 
i.e., G(x, t) = G(t), the order of strong convergence is 1. For small noise, i.e., 
G(x, t) = dJ(x, t), the error is bounded by O(h + f 2 h 1/ 2 ) (see [16], or [13] for 
related results). 

The smallness of the noise also allows special estimates of local error terms, 
which can be used to control the stepsize. The local error for the Euler scheme 
applied to SDEs with small noise is analyzed in [16]. As long as stepsizes with 

he ~ f2 

are used, the dominating local error term of (4.2) is 

1 ( 1/2 "2 IIA- f(xe,te)-f(xe-1,te-d)IILp+O(fhe ) 

rye + O(fh}/2), 
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where A-denotes a suitable pseudo-inverse of A. For E ----* ° it approaches the 
known error estimate in the deterministic setting. If an ensemble of solution paths 
is computed simultaneously, the estimate TJ£ can be computed approximately and 
may be used to control the local error corresponding to a given tolerance. This 
results in an adaptive stepsize sequence that is uniform for all solution paths. 

4.2. Drift-implicit Milstein scheme 

We intend to design this method in such a way that it realizes the drift-implicit 
Milstein scheme for the inherent SDE u' + j(u, t) + G(u, t)~(t) = 0, i.e., 

u£ - U£-l A A 1 ~ A A 1 £ 
h + f(u£, tf) + G(Uf-l, tf-l)h~Wf - L..,)gjuG) (Uf-l, t£-d h I j = 0, 

f £ j=l £ 

where 

and 
j(u, t) := A- f(u + v(u, t), t), G(u, t) := A-G(u + v(u, t), t). 

The Milstein scheme is strongly convergent of order I = 1. It differs from the Euler 
scheme by an additional correction term for the stochastic part, which includes 
double stochastic integrals. For additive noise the additional term vanishes and 
both schemes coincide. 

The Milstein scheme for the inherent SDE is realized by 

m I£ X£-X£-l ~w£ ~ _ j 
A h + f(x£, t£) + G(X£-l, t£-l)h - L)gjxxuA G)(X£-l, t£-l)h = 0, 

£ £ j=l £ 

where G = (gl,'" ,gm), which we call the drift-implicit Milstein scheme for (1.6). 
We point out the explicit use of the inner derivative Xu = I + Vu and the 

scaling A - in the last term. The inner derivative can be expressed as 

Xu = I +vu = I - (A+ >'Rfx)-l >.Rfx = I - I + (A+ >'Rfx)-l A = (A + >'Rfx)-l A 

with a free parameter>' =1= 0. Choosing>. = h, it may be approximated via 

(A + hRfx)-l A = (A + hfx)-l A + O(h) 

(A + hRfx)-l(I -R) = (A + hfx)-l(I -R) + O(h) 

by means of the Jacobian of Newton's method. Hence, the term xuA- can be 
substituted by (A + hRfx)-l(I -R) without changing the order of the scheme. 
Penski's approach [14] results in a similar approximation to the Milstein scheme 
in a more specialized setting. 

The higher order 1 of strong convergence of these schemes has to be paid for 
with the use of a large number of double stochastic integrals and the use of the 
derivatives of the diffusion coefficients. In an application with a large number of 
small noise sources one has to pay much for a mostly theoretical gain in accuracy. 
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4.3. Trapezoidal rule 

The trapezoidal rule is widely used to integrate oscillatory solutions of ODEs. It 
is A-stable and convergent of order 2. It is also applied to index 1 DAEs of the 
form 

Ax' (t) + !(x(t), t) = 0 (4.3) 

via the scheme 

Xi - Xi-I 
Yi := -Yi-I + 2 h ' 

Xi - X.e-I 
A( -Y.e-I + 2 h ) + !(x£, te) = 0 (4.4) 

that implicitly realizes the trapezoidal rule for the inherent regular ODE. This 
becomes clear by the following considerations: On the one hand (4.4) implies 
R!(x.e, t.e) = 0, such that the iterates are forced to satisfy the constraints. On the 
other hand (4.4) implies Ay.e + !(x.e, t.e) = 0, such that A( -Y.e-I) = !(X.e-I, t.e-I)' 
Implementing the scheme (4.4) requires only residuals. 

A stochastic counterpart of the trapezoidal rule for the integration of SDEs 
(3.1) is given by 

X.e-X.e-I 1 1 
h.e = 2{f(x.e, te) + !(X.e-I, te-I)} + G(X.e-I' t.e-I) h.e D..w.e. (4.5) 

It is strongly convergent of order 'Y = 1/2 like the other Euler schemes. For small 
noise the error is bounded by O(h2 + fh + f 2 h 1 / 2 ) (see [16], or [13] for related 
results). 

An adaptation of this scheme to SDAEs, analogously to (4.4) in the deter­
ministic case, would lead to an implicit discretization of the diffusion term. An 
appropriate implicit realization of (4.5) for the inherent SDE requires some more 
available information concerning the structure of the SDAE. Given the projector 
R and a separate evaluation of the drift term, one can use the scheme 

X.e-X.e-I 1 ( ) 1 A h +- !(x.e,t.e)+(1-R)!(X.e-I,t.e-I) +G(x.e-I,t.e-d-h D.w.e=O, (4.6) 
.e 2 e 

which implicitly realizes (4.5) for the inherent SDE (cf. [10] for the deterministic 
case). Since the differential equations and the constraints are now treated differ­
ently, it is possible to use a different scaling for both parts, which leads to a better 
conditioned system: 

h.e 
A(X.e-X.e-I) + 2(1 - R)(J(x.e, t.e) + !(Xe-I, t.e-I)) + G(Xe-I' t.e-dLlw.e 

+ R!(x.e, t.e) = (4~) 

After creating explicit constraints via scaling by a suitable non-singular matrix jj 
with 
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the suggested scheme (4.7) corresponds to 

- he - - -
AIXe - Xe-I + 2{h(xe, te) + h(Xe-I' te- I)} + G I (Xe-I' te-dt::..we 

J2(Xe, te) 

o 
O. 

313 

The iterates satisfy the constraints at the current time-point, and the trapezoidal 
rule for the inherent SDE is realized. The Jacobian with respect to the new iter­
ate is 

( AI + ~/I~(X, t)/2) . 
h x(x, t) 

It is non-singular for sufficiently small stepsizes and its condition number is boun­
ded independently of the stepsizes. 

5. Numerical results 

The drift-implicit Euler scheme has been used to simulate a ring-oscillator built 
of three coupled inverter steps with simple mosfet-models. Such an oscillator was 
also used for test runs in [14] . Thermal noise in the mosfets and in the resistors are 
modelled by multiplicative and additive white noise sources. The circuit diagram 
is given in Fig. 3. The corresponding noise-free circuit is a free running oscillator. 

Figure 3: Thermal noise sources in a mosfet ring-oscillator model 

The unknowns in the MNA system are the charges for the six capacities, the four 
nodal potentials and the current through the voltage source. The system is of in­
dex 1, but, formally, has direct noise. The three thermal resistance noise sources 
directly affect the current through the voltage source. However, the direct noise 
occurring in this current does not influence other variables. Omitting the corre­
sponding variable together with the nodal equation for node 4 would lead to a 
system without direct noise. The diffusion coefficients have been scaled (by a fac­
tor 103 ) to make the noise effects more visible. 
In Fig. 4 we present numerical results obtained with the drift-implicit Euler 
scheme. A mean-square estimate of the dominating local error term was used 
to control the stepsize according to the relative tolerance 10-4 . Realizations of the 
Wiener increments t::..we were simulated by a normal random number generator of 
the RANLIB library (of Fortran routines for random number generation). Fig. 4 
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shows the nodal potential at node 1: the dark solid lines correspond to two different 
paths of the stochastic potential and the dashed line to the noise-free potential. 
The solid grey lines give the mean function J-L of 100 sample paths and the bound­
aries of the interval [J-L - 30", J-L + 30"], where 0" denotes the standard deviation. The 
paths exhibit a highly visible phase noise and, hence, can hardly be considered 
as small perturbations of the deterministic potential. The mean function appears 
damped and differs considerably from the noise-free potential. 

5 

4 

3 

2 

o 

el-­
el-­

Eel 
+'() 
._--J() 

det el - - - --

o 2e-09 4e-09 6e-09 8e-09 Ie-08 Time(sec) 

Figure 4: 2 sample paths of the voltage in node 1 (e1), the mean over 100 sample 
paths (E e1), the 30" range (±30"), and the noiseless voltage (det e1) 

Appendix 

For the proof of Theorem 3.1 we need a discrete analogue of Gronwall's inequality. 
Lemma: Let ai, £ = 1, ... , N, and Gl , G2 be nonnegative real numbers and assume 
that the inequalities 

1 £-1 

a£ ~ G1 + G2 N L ai, £ = 1, ... , N, 
i=1 

are valid. Then we have max a£ ~ G1 exp(G2 ). 
£=I, ... ,N 

Proof: (of Theorem 3.1) 
Let d£ be Ftt-measurable having a p-th order moment for each £ = 1, ... , N. If the 
function 'P does not depend on the variable x, the discretization scheme is explicit 
and the new iterate Xl is given by 

Xl = Xl-l + 'P(X£-I; t£-I, hi) + 1/J(X£-I; t£-I' hi, I tt _ 1 ,ht) + d£ 

for f = 1, ... , N. Otherwise, the scheme is implicit and the new iterate X£ 1S 

given by the implicit equation (3.3). We assume that hO > a is chosen such that 
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hO L2 < 1. Due to the global Lipschitz condition (AI), the equation 

x = Xe-l + CP(Xe-l' x; te-l, he) + be 

is uniquely solvable by the contraction principle since heL2 :s; hO L2 < 1. Moreover, 
the solution xe depends on XC-l and on be in a Lipschitz continuous way (with a 
constant L4 > 0). Since be := 'l/J(XC-l;tC-l,he,!tp_l,h,) + dc is a Fte-measurable 
random variable, Xc is also Ftc-measurable. Furthermore, Xc has a p-th order mo­
ment. The latter fact is a consequence of the estimates 

(lElx£IP)~ < (lElxe - x~IP)~ + Ix~1 
< L4{(lElxc-1IP)~ + (lElbcIP)~} + Ix~l, 

where x~ is the unique solution of the equation x = cp(O, x; tf-l, he), and 
1 1 - 1 

(lElbeIP)v < (lEl'l/J(Xf-l; te-I, he,!tt_l,ht)IP)v + (lEldcIP)P 
1 1 1 - 1 

< h 2 L 3 {(lElx£_1IP)v + (lEl'l/J(O;te-l,he,!tP_l,h,)IP)v} + (lEldeIP)v 

and of condition (A4). 
Next we derive the stability estimate (3.4). The estimate (3.5) was shown in [23] 
for p = 2, but its proof carries over to the more general situation p ::::: 1. 
Let de and de for £. = 1, ... , N be perturbations of the discrete system and let 
Xc and Xc, £. = 1, ... , N, be their unique solutions. We introduce the following 
notations for i = 1, ... , N 

ei .- x; - Xi, 6CPi:= CP(X;_l' x;; ti-l, hi) - CP(Xi-l, Xi; ti-I, hi), 

di .- dT - di , 6'l/Ji:= 'l/J(XT_l;ti-l,hi,h_l,hJ - 'l/J(Xi-l;ti-l,hi,h_l,h,), 

and obtain from (3.3) and Holder's inequality that 

k=l k=1 k=1 

lE(i~~~)eiIP) :s; 4P- 1 {lE(leoIP) + lEC~~~) t 6CPkIP) 
k=1 

i i 

+lE( i~~~'£ I L 6'l/JkI P) + lE( i~~~,£ I L dkl P) } 
k=1 k=1 

holds for each i, £. = 1, ... , N. For the second summand in the right-hand side of 
the latter estimate we continue by using (AI) and ih :s; a(T - to) 

iii A 1 i 

IL L'::.cpkl P :s; iP-1L 16CPkiP :s; (2i)P- IhP L {Lflek-IIP+L~lekIP} :s; L2 N L leklP. 
k=l k=l k=l k=O 

where £2 := 2P(a(T - to»P max{Lf, Ln. Hence, we obtain the estimate 

i 1 C 1 e-l 
lEC~~~,£ I L 6CPkIP) :s; L N lE ( L leklP) :s; £2 N (L ak + ac). 

k=l k=O k=O 
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For estimating the third summand we observe that the discrete parameter process 
i 

{Mi := L 6'1j;k, F ti _1 }~1 is a martingale due to (A2) and has finite p-th order 
k=l 

moments. Then Burkholder's and Davis's inequalities [19, Chapter VII.3] yield the 
estimate 

i £ p 

lEC~~~)L6'1j;kIP):S; B plE(LI6'1j;kI 2r 
k=l k=1 

for each £ = 1, ... ,N with some universal constant Bp > O. For instance, Bp := 
5 

18p:2 3 is such a constant if p > 1. Hence, we obtain 
(p-l)2 

i £ £-1 

lE( i~~~,c I L 6'1j;kI P) < Bp£~-1 L lEl6'1j;kl P :s; Bp£~-1 L hff L~lEleklP 
k=1 

< 

< 

k=1 
e 

BpL~£~-lh~ L lElekl P 

k=1 

k=O 

for £ = 1, ... , N by using Holder's inequality and condition (A3). Setting £3 .­
BpL~(a(T - to)) ~ we arrive, altogether, at the estimate 

for £ = 1, ... , N. If necessary, we choose h ° smaller such that 4P- 1 £2 k :s; ~ holds 
if h < hO. We conclude that 

£-1 i 

ae:S; 4P{ lE(leoIP) + (£2 + £3) ~ Lak + lEC~~) LdkIP)} 
k=O k=1 

holds for £ = 1, ... , N. By applying the lemma this leads to the semifinal estimate 

i 

e=rr,~~N ae = lE(i=rr,~~N leilP) :s; 4Pexp(4P(£2+£3)){ lEleoIP+lEi=rr,~N I L dkIP}. 
k=1 

It remains to decompose the perturbation difference dk into dk = rk + Sk with 
i 

lE(skIFtk_l) = 0 for k = 1, ... ,N. Then {L sk,Fti_l}~1 is a martingale having 
k=1 
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finite p-th order moments. Appealing again to Burkholder's and Davis's inequali­
ties provides 

N p 

< BpIE(L: ISkI 2 ) '> :S BpNli k=rr,~NIElskIP 
k=l 

< Bp(a(T _ to))li maxk=l, ... : IElsklP. 
h2 

Summarizing we obtain the final estimate 

< 

i i 

SP{ IEleolP + IE i=rr,~N I L: skiP + IE i=rr,~N 12: rklP} 
k=l k=l 

A { p maxk-l N IEISk IP 
SP IEleolP + Bp(a(T - to))'> - 'J;; 

+(a(T _ to))pIEmaxk=l, ... ,N IrklP } 
hp 

where SP := 4p 2p - 1 exp(4P(£2 + £3))' This completes the proof. 
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