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Introduction

Practical optimization models often contain parameters of stochas-
tic nature (e.g. statistical data available). In many cases it is not
appropriate to replace them by some statistical estimate. Alterna-
tives consist in modeling the random elements by a finite number
of scenarios with given probabilities and incorporating them into
the optimization model. Such stochastic programming models
have the advantages:

e Solutions are robust with respect to changes of the data.
e The risk of decisions can be measured and managed.

e Simulation studies show that solutions of stochastic programs
may be advantageous compared to deterministic ones.
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Modeling

Assumptions: Information on the underlying probability dis-
tribution is available (e.g., statistical data) and the distribution
does not depend on decisions.

Modeling questions: Are recourse actions available if stochas-
ticity influences decisions 7 Is the decision process based on re-
cursive observations 7

e No recourse actions available: Chance constraints.

e Recourse actions available, but no recursive observations:
Two-stage stochastic programs (possibly multi-period).

e Recursive observation and decision process:
Multi-stage stochastic programs.

Integer variables should be incorporated if they are model-important.
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Chance constraints

Let us consider the (linear) chance constrained model
min{(c, )z € X, P{€ € 2: T(§)z > h(§)}) = p},

where ¢ € R™, X and = are polyhedra in R™ and R?®, respectively,
p € (0,1), P is a probability measure on =, i.e., P € P(Z), and
the right-hand side h(¢) € RY and the (d, m)-matrix T'(§) are
affine functions of .

Challenges:
Although the sets H(x) ={{ € =: T(§)x > h(€)} are (convex)

polyhedral subsets of =, the function
z — P(H(z))

is, in general, non-concave and non-differentiable on R™, hence,
the optimization model is nonconvex. Concavity results are avail-
able for probability distributions satisfying certain concavity prop-
erties (e.g., normal diStI’ibutiOIlS) (Prekopa 95, Henrion-Strugarek 08).
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Two-stage stochastic programs

win { (e.2) + | @(€sa(€),6) - T(©2)P(ag) - € X |,

where

B(&; 0, 1) = inf{{u, ) - y € ¥, W(E)y = 1)
P :=P& 1 € Py(E) is the probability distribution of the random
vector £, ¢ € R™, X C R™ is a bounded polyhedron, ¢(¢) € R™,
Y € R™ is a polyhedral cone, W (&) a r x m-matrix, h(§) € R”
and T'(€) a r x m-matrix. We assume that ¢(§), h(€), W () and
T'(&) are affine functions of &.

Theory and Algorithms: The function ® : = x X — R is well
understood for fixed recourse (i.e., W(&) = W) (Walkup-Wets 69).
Convexity, optimality and duality results, decomposition meth-
ods, Monte-Carlo type methods, scenario reduction and stability
analysis are well developed.

References: Ruszezytiski-Shapiro 03, Kall-Mayer 05.
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Mixed-integer two-stage stochastic programs

win { (e2) + [ @(a(©).1(6) ~ T Plag) 2 € X |,

where @ is given by
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O(u,t) = inf{(ul,y> + (ug, y)  Wy+Wy <t yeZmye Rm} “«| »|

for all pairs (u,t) € R™™ x R", and ¢ € R™, X is a closed
subset of R™, = a polyhedron in R*, W and W are (r,7)- and
(r, m)-matrices, respectively, ¢(¢) € R™™ h(£) € R”, and the
(7, m)-matrix T'(§) are affine functions of &, and P € Py(Z).

Theory and Algorithms: The function ® is well understood (Blair-
Jeroslow 77, Bank et al 82), nonconvex optimization models, structural
analysis (Schultz 93), decomposition methods (surveys: Schultz 03, Sen
05), sampling methods, stability analysis, scenario reduction.
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Multistage stochastic programs

Let {&}L, be a discrete-time stochastic data process defined on
some probability space (§2, F,P) and with & deterministic. The
stochastic decision z; at period t is assumed to be measurable with
respect to F(§) .= o(&1, - - -, &) (nonanticipativity).

Multistage stochastic programming model:

min {]E

where Xy, t = 1,...,T, are polyhedral, the vectors b;(-), h:(-) and
A, 1(+) are affine functions of &, where £ varies in a polyhedral set

T

Z<bt(€t)7 xt>

t=1

At,OiCt + At,l(&)xt—l = ht(ft),t = 2, 501 T

—_
[ S—

If the process {&}L , has a finite number of scenarios, they ex-
hibit a scenario tree structure. If the measurability constraint is
missing, the model is two-stage.

x; € Xy, xy is Fi(€)-measurable, t = 1,.., T

}
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Data process approximation by scenario trees

The process {&}L | is approximated by a process forming a sce-
nario tree being based on a finite set N/ C N of nodes.

Scenario tree with 7" =5, N = 22 and 11 leaves

n = 1 root node, n_ unique predecessor of node n, path(n) =
{1,...,n_,n}, t(n) = |path(n)|, Noi(n) set of successors to n,
Np:={n e N : Ny(n) = 0} set of leaves, path(n), n € N, sce-
nario with (given) probability 7", 7" := > .., T probability
of node n, £" realization of &).



Tree representation of the optimization model

mm{ZW (brn)(£"), @ >

neN

" € Xymy,n €N

The node-based optimization model may be solved by
- standard software (e.g., X-PRESS, CPLEX)
- decomposition methods for large scale models (Ruszczyriski 03).

Mean-risk objective vs expectation:

The expectation objective may be replaced by convex (multi-
period) risk functionals. If the risk functional is polyhedral, the
linearity structure is maintained.
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Scenario (tree) reduction and generation

Theoretical basis: Stability estimates

Scenario reduction: Developed for (mixed-integer) two-stage
stochastic programs.

Scenario tree generation:

(i) Development of a stochastic model for the data process &
(parametric [e.g. time series model], nonparametric [e.g. re-
sampling from statistical data]) and generation of simulation
scenarios;

(ii) Construction of a scenario tree out of the simulation scenarios
by recursive scenario reduction and bundling over time such
that the optimal expected revenue stays within a prescribed
tolerance.

Implementation: GAMS-SCENRED
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Example: Airline network revenue management

Airline revenue management deals with strategies for controlling
the booking process within a network of flights. Often statistical
data is available for the (passenger) demand. The objective con-
sists in maximizing the expected revenue. The booking process is
controlled by seat protection levels or by (so-called) bid prices.

Aims:

e Stochastic programming model for airline network revenue
management;

e Approximate representation of the multivariate booking de-
mand processes by scenario trees generated from resampled
historical demand scenarios;

e Lagrangian decomposition of the node-based stochastic inte-
ger program; algorithm design and numerical experience.
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Notation

Input data
7m": probability of node n;

stochastic (as scenario tree):

d"j - Passenger demand;
72. ik cancelation rates;
deterministic:

b : :
Tijhttn): 1210S;

C o .
Cikt(n); refunds;
Cim: capacity;

Variables
: jk bookings;
¢yt cancelations;
B i cumulative bookings;
Cn
7]7

B, .+ protection level;

Pn dn . .
z; ] ko Zigk slack variables;

zi';: auxiliary integer variables;

- cumulative cancelations;

Indices

t=20,...,7T: data collection points;
1 =1,...,1I: origin-destination-itin.;
jg=1,...,J: fare classes;

k=1,..., K: points of sale;
l=1,...,L: legs;
1;: index set of itineraries;
m=1,...,M(l): compartments;
Jm(l): index set of fare classes;
n=20,...,N: nodes;
t(n): time of node n;

_: preceding node of node n;

Time horizon and data collection points (dcp):

Day of Departure

Booking Horizon

‘ Booking Interval

0

N A A A
T

DCPs
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Airline network revenue management model (node
representation)

Objective

N K
max § 31 5 3 50 |12, ks = skt

Constraints
Cumulative bookings
0 ._ Po 0 ._ A0 _ pne
B 1,7,k B 1,7,k Ci,j, C 1,7,k U k- B gk + b 1,7,k
Cumulative cancelations Cancelatlons
n _ n mn_
Ciin = 4Bk +0.5] S =0Un Ui

Passenger demands and protection levels

n_ n_ - 5 g . .
Pk <Al Wi < B — B+ (disjunctive constraints)

Leg capacity limits

> X Z ik < Cim (n € Np—y)

1€ ]Gjm( ) -
Integrality and nonnegatlwty constraints




Airline network revenue management model (final)

Objective
N I

K
max § 3133 5 |12 ksl = skt

(Phw) | n=0 i=1j=1k=1

Constraints
Cumulative bookings
BO,J, BOJ ko ng, CO,J, ik = B ik T Vi
Cumulative cancelations Cancelatlons
Clix = Il Blx +0.5] ik =Chix — Cign
Passenger demands Protection levels
bijn + Zz J» = ik Bk — Gl + Z id, "= Pznj_k

Number of bookmgs (disjunctive constraints) (k > 0, adequately large)

0<z’]k<(1—2§fj’k) P o<z1f]j‘ <zZk 2, €{0,1}

Leg capacity limits
> 2 Z Pry<Cm  (n€NT)

€1y jETm (1) k=
Integrality and nonnegativity constraints
ik O Fij € L5 b 207 ¢l 20




Comments:
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e large scale structured integer linear program

e solvable by a standard solver (e.g. CPLEX) in reasonable N
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e Dimensions: (S number of scenarios)
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Lagrangian decomposition
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Dual function D:

D(\) = supA(\, P)
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The function D is convex nondifferentiable and decomposable.
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inf D(A) N N

The relative duality gap is small (theory by Bertsekas 82).
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Dual solution algorithm

e Solution of the dual problem by a bundle subgradient method
(e.g. proximal bundle method by Kiwiel or Helmberg)

e Solution of the subproblems by dynamic programming on sce-
nario trees.

e Primal-proximal heuristic to determine a good primal feasible
solution (e.g. by Daniilidis and Lemaréchal).




A realistic mid-size airline network example

ODI-Leg-Matrix

RM problem dimensions

#0DIs 54
#0DI-Fareclass-POS 489
#Legs 27
#Leg-Compartments 54
#DCPs 23

Scenario tree

Tree and Size

#Scenarios 98
#Nodes 1.441
#Variables 3.473.367

#Constraints 2.774.445
#Coupling Constr. 5.238
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Numerical results

Bundle methods

Dual value 179349.78
Dimension 5238
max bundle size 10
#lterations 46
#DP 22494
time 09:05:55.36
time in DP 1:23.39

Booking class 4, POS 1, 125$

80

60

cumulative demand

Cumulative demand and protection level of booking class 3 in the economy
compartment of ODI 9

Lagrange heuristic
Primal value 179134.76
Duality gap 0.001

time

protection level

80

60

40

20

0:33.87

Booking class 4, POS 1
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Booking class 5, POS 1, 103$ Booking class 5, POS 1
100 100

80 80

60

60

40

40

cumulative demand
protection level

20

0 5 10 15 20
dcp
Booking class 6, POS 1, 77$ Booking class 6, POS 1
100 100
80 80
e ~
B (49}
= >
g &
T 60 60
=
g o
A ] -
it e}
© 40 O 4
—~ 19}
5 )
g o
5 &
O 2 20 T S—
/
————
e =
0 - - 0
0 5 10 15 20 0 5 10 15 20
dcp dcp

Cumulative demands and protection levels of booking class 4 and 5 in the economy
compartment of ODI 9



Conclusions and future work

We presented an approach to airline network revenue manage-
ment using a scenario tree-based dynamic stochastic optimization
model. The approach

e starts from a finite number of demand scenarios and their
probabilities,

e requires no assumptions on the demand distributions except
their decision-independence.

Stochastic programming approaches lead to solutions that are
more robust with respect to perturbations of input data. How-
ever, the models have higher complexity.

Future work:

e Implementation refinements of the decomposition scheme

(URL: www.math.hu-berlin.de/ romisch, Email: romisch@math.hu-berlin.de)
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