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Introduction

What is Stochastic Programming ?

- Mathematics for Decision Making under Uncertainty
- subfield of Mathematical Programming (MSC 90C15)

Stochastic programs are optimization models

- having special properties and structures,
- depending on the underlying probability distribution,
- requiring specific approximation and numerical approaches,
- having close relations to practical applications.

Selected recent monographs:
P. Kall, S.W. Wallace 1994, A. Prekopa 1995, J.R. Birge, F. Louveaux 1997
A. Ruszczynski, A. Shapiro (eds.): Stochastic Programming, Handbook, Elsevier, 2003
S.W. Wallace, W.T. Ziemba (eds.): Applications of Stochastic Programming, MPS-SIAM, 2005,
P. Kall, J. Mayer: Stochastic Linear Programming, Kluwer, 2005,
A. Shapiro, D. Dentcheva, A. Ruszczyński: Lectures on Stochastic Programming,MPS-SIAM, 2009.
G. Infanger (ed.): Stochastic Programming - The State-of-the-Art, Springer, 2010.
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Motivating example: Newsvendor problem

• ξ uncertain daily demand for a (daily) newspaper

• x decision about the quantity of newspapers to be purchased
from a distributor

• c cost to be paid by the newsvendor for one newspaper at the
beginning of the day

• s selling price for one newspaper

• r return price for one unsold newspaper at the end of the day

Revenue function: (Assumption: 0 ≤ r < c < s)

f (x, ξ) =

{
(s− c)x , x ≤ ξ,

sξ + r(x− ξ)− cx , x > ξ

Expected revenue:

E
[
f (x, ξ)

]
=

∫ ∞

0

f (x, ξ)dF (ξ) =

∞∑
k=1

pkf (x, k),
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where F (w) = P(ξ ≤ w) =
∑

k=1,k≤w pk is the piecewise constant
(cumulative) probability distribution function of the demand ξ.

Maximization of the expected revenue:

max
{ ∑

k=1,k≤x

pk[(r − c)x + (s− r)k] +

∞∑
k>x

pk(s− c)x : x ≥ 0
}

or

max
{ ∑

k=1,k≤x

pk

[
(s−c)x+(s−r)(k−x)

]
+

∞∑
k>x

pk(s−c)x : x ≥ 0
}

or
max

{
(s− c)x + (s− r)

∑
k=1,k≤x

pk(k − x) : x ≥ 0
}

or

max
{
(s− c)x− (s− r) E

[
max{0, x− ξ}

]
: x ≥ 0

}
or

max
{
[(s− c)− (s− r)F (x)]x + (s− r)

∑
k=1,k≤x

kpk : x ≥ 0
}
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Hence, x can be maximized as long as [(s− c)− (s− r)F (x)] ≥ 0,
i.e.,

F (x) ≤ s− c

s− r
.

Hence, the optimal decision x∗ is the minimal n ∈ N such that

F (n) =

n∑
k=1

pk ≥
s− c

s− r
.

The latter model will be called two-stage stochastic program with
first-stage decision x and optimal recourse max{0, x− ξ}.

Of course, the newsvendor needs knowledge on the distribution
function F (at least, approximately).

Basic assumption in stochastic programming: The prob-
ability distribution is independent on the decision.



Home Page

Title Page

Contents

JJ II

J I

Page 7 of 69

Go Back

Full Screen

Close

Quit

The problem may occur that the random variable f (x∗, ξ) has a
high variance V[f (x∗, ξ)] = E[f (x∗, ξ)2] − [E[f (x∗, ξ)]]2. Then
the decision x∗ has high risk and one should be interested in a risk
averse decision whose expected revenue is still close to E[f (x∗, ξ)].

An alternative is to consider the risk averse optimization problem

max
{
E[f (x, ξ)]− γV[f (x, ξ)] : x ≥ 0

}
with a risk aversion parameter γ ≥ 0.

In general, one might be interested in a risk averse alternative with
certain risk functional F instead of the variance V in order to main-
tain good properties of the optimization problem.



Home Page

Title Page

Contents

JJ II

J I

Page 8 of 69

Go Back

Full Screen

Close

Quit

The newsvendor may also be interested in making a specific amount
of money b with high probability, but minimal work.

Optimization model with probabilistic constraints:

min
{
x ∈ R : P(f (x, ξ) ≥ b) ≥ p

}
with p ∈ (0, 1) close to 1. The model is equivalent to

min
{

x ∈ R : (s− c)x ≥ b, P
(
ξ ≥ b + (c− r)x

s− r

)
≥ p

}
or

min
{

x ∈ R : (s− c)x ≥ b,
b + (c− r)x

s− r
≤ F−1(1− p)

}
A feasible solution of the optimization model exists if

b ≤ (s− c)F−1(1− p) ,

leading to the optimal solution x̂ = b
s−c.
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Approaches to optimization models under stochastic
uncertainty

Let us consider the optimization model

min{f (x, ξ) : x ∈ X, g(x, ξ) ≤ 0} ,

where ξ : Ω → Ξ is a random vector defined on a probability space
(Ω,F , P), Ξ and X are closed subsets of Rs and Rm, respectively,
f : X × Ξ → R and g : X × Ξ → Rd are lower semicontinuous.

Aim: Finding optimal decisions before knowing the random out-
come of ξ (here-and-now decision).

Main approaches:

• Replace the objective by E[f (x, ξ)] or by F[f (x, ξ)], where E
denotes expectation (w.r.t. P) and F some functional on the
space of real random variables (e.g., playing the role of a risk
functional).
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• (i) Replace the random constraints by the constraint

P({ω ∈ Ω : g(x, ξ(ω)) ≤ 0}) = P(g(x, ξ) ≤ 0) ≥ p

where p ∈ [0, 1] denotes a probability level, or (ii) go back to
the modeling stage and introduce a recourse action to compen-
sate constraint violations and add the optimal recourse cost to
the objective.

The first variant leads to stochastic programs with probabilistic or
chance constraints:

min{E[f (x, ξ)] : x ∈ X, P(g(x, ξ) ≤ 0) ≥ p}

The second variant leads to two-stage stochastic programs with
recourse:

min{E[f (x, ξ)] + E[q(y, ξ)] : x ∈ X, y ∈ Y, g(x, ξ) + h(y, ξ) ≤ 0}.

or E replaced by a risk functional F.
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Properties of expectation functions

We consider analytical properties of functions having the form

E[f (x, ξ)] =

∫
Rs

f (x, ξ)P (dξ), (x ∈ Rm)

where f : Rm ×Rs → R, R = R ∪ {+∞}∪ {−∞} denoting the
extended real numbers, is an integrand such that

f (x, ·) is measurable and E[[f (x, ξ)]±] < +∞

and P is a (Borel) probability measure on Rs.

Aim: Properties of the expectation function

x 7→ E[f (x, ξ)] (on Rs)

under reasonable assumptions on the integrand f .
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Proposition 1: Assume that
(i) f (·, ξ) is lower semicontinuous at x0 ∈ Rm for P -almost all
ξ ∈ Rs,
(ii) there exists a P -integrable function z : Rs → R, such that
f (x, ξ) ≥ z(ξ) for P -almost all ξ ∈ Rs and all x in a neighbor-
hood of x0.
Then the function x 7→ E[f (x, ξ)] is lower semicontinuous at x0.

Proof: follows by applying Fatou’s Lemma.

Proposition 2: Assume that
(i) f (·, ξ) is continuous at x0 ∈ Rm for P -almost all ξ ∈ Rs,
(ii) there exists a P -integrable function z : Rs → R, such that
|f (x, ξ)| ≤ z(ξ) for P -almost all ξ ∈ Rs and all x in a neighbor-
hood of x0.
Then the function x 7→ E[f (x, ξ)] is finite in a neighborhood of x0

and continuous at x0.

Proof: follows by applying Lebesgue’s dominated convergence theorem.
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Example:
For f (x, ξ) = −1l(−∞,x](ξ), (x, ξ) ∈ R× R, where 1lA denotes the
characteristic function of A ⊂ R, the function x → E[f (x, ξ)]

is lower semicontinuous on R, but continuous at x0 ∈ R only if
P ({x0}) = 0.

Proposition 3: Assume
(i) E[|f (x0, ξ)|] < +∞ for some x0 ∈ Rm,
(ii) there exists a P -integrable function L : Rs → R such that

|f (x, ξ)− f (x̃, ξ)| ≤ L(ξ)‖x− x̃‖

holds for all x and x̃ in a neighborhood U of x0 in Rm and P -
almost all ξ ∈ Rs.
Then the function x 7→ E[f (x, ξ)] is Lipschitz continuous on U .
(iii) Assume, in addition, f (·, ξ) is differentiable at x0 for P -almost
all ξ ∈ Rs.
Then the function F (x) = E[f (x, ξ)] is differentiable at x0 and

∇F (x0) = E[∇xf (x0, ξ)].
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Proposition 4: Assume that
(i) the function x 7→ E[f (x, ξ)] is finite on some neighborhood U

of x0,
(ii) f (·, ξ) : Rm → R ∪ {+∞} is convex for P -almost all ξ ∈ Rs.
Then the function F (x) = E[f (x, ξ)] from Rm to R ∪ {+∞} is
convex and directionally differentiable at x0 with

F ′(x0; h) = E[f ′(x0, ξ; h)] (∀h ∈ Rm).

(iii) Assume, in addition, that f is a normal integrand and dom F

has nonempty interior.
Then F is subdifferentiable at x0 and

∂F (x0) =

∫
Rs

∂f (x0, ξ)P (dξ) + Ndom F (x0).

(Ruszczyński/Shapiro, Handbook, 2003)
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Two-stage stochastic programming models with recourse

Consider a linear program with stochastic parameters of the form

min{〈c, x〉 : x ∈ X, T (ξ)x = h(ξ)},

where ξ : Ω → Ξ is a random vector defined on a probability space
(Ω,F , P), c ∈ Rm, Ξ and X are polyhedral subsets of Rs and Rm,
respectively, and the d ×m-matrix T (·) and vector h(·) ∈ Rd are
affine functions of ξ.

Idea: Introduce a recourse variable y ∈ Rm, recourse costs q(ξ) ∈
Rm, a fixed recourse d×m-matrix W , a polyhedral cone Y ⊆ Rm,
and solve the second-stage or recourse program

min{〈q(ξ), y〉 : y ∈ Y,Wy = h(ξ)− T (ξ)x}.

Add the expected minimal recourse costs E[Φ(x, ξ)] (depending on
the first-stage decision x) to the original objective and consider

min
{
〈c, x〉 + E[Φ(x, ξ)] : x ∈ X

}
,

where Φ(x, ξ) := inf{〈q(ξ), y〉 : y ∈ Y,Wy = h(ξ)− T (ξ)x}.
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Two formulations of two-stage models

Deterministic equivalent of the two-stage model:

min
{
〈c, x〉 +

∫
Ξ

Φ(x, ξ)P (dξ) : x ∈ X
}

,

where P := Pξ−1 ∈ P(Ξ) is the probability distribution of the
random vector ξ and Φ(·, ·) is the infimum function of the second-
stage program.

Infinite-dimensional optimization model:

min
{
〈c, x〉 +

∫
Ξ

〈q(ξ), y(ξ)〉P (dξ) : x ∈ X, y ∈ Lr(Ξ,B(Ξ), P ),

y(ξ) ∈ Y, Wy(ξ) = h(ξ)− T (ξ)x
}

,

where r ∈ [1, +∞] is selected properly.

If the probability distribution P of ξ is assumed to have p-th order moments, i.e.,
∫

Ξ
‖ξ‖pP (dξ) <

∞, with p > 1, r should be chosen such that the constraints of y are consistent with these
moment conditions and E[〈q(ξ), y(ξ)〉] is finite. For example, r = p

p−1
is consistent.
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Structural properties of two-stage models

We consider the infimum function v(·, ·) of the parametrized linear
(second-stage) program, namely,

v(u, t) = inf
{
〈u, y〉 :Wy = t, y ∈ Y

}
((u, t) ∈ Rm × Rd)

= sup
{
〈t, z〉 : W>z − u ∈ Y ∗}

D =
{
u : {z ∈ Rr : W>z − u ∈ Y ∗} 6= ∅}

where W> is the transposed of W and Y ∗ the polar cone of Y .
Hence, we have

Φ(x, ξ) = v(q(ξ), h(ξ)− T (ξ)x).

Theorem: (Walkup/Wets 69)

The function v(·, ·) is finite and continuous on the polyhedral cone
D × W (Y ). Furthermore, the function v(u, ·) is piecewise linear
convex on the polyhedral set W (Y ) for fixed u ∈ D, and v(·, t) is
piecewise linear concave on D for fixed t ∈ W (Y ).
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Assumptions:

(A1) relatively complete recourse: for any (ξ, x) ∈ Ξ×X,
h(ξ)− T (ξ)x ∈ W (Y );

(A2) dual feasibility: q(ξ) ∈ D holds for all ξ ∈ Ξ.

(A3) finite second order moment:
∫

Ξ ‖ξ‖
2P (dξ) < ∞.

Note that (A1) is satisfied if W (Y ) = Rd (complete recourse). In
general, (A1) and (A2) impose a condition on the support of P .

Proposition:
Assume (A1) and (A2). Then the deterministic equivalent of the
two-stage model represents a convex program (with polyhedral con-
straints) if the integrals

∫
Ξ v(q(ξ), h(ξ) − T (ξ)x)P (dξ) are finite

for all x ∈ X. For the latter it suffices to assume (A3).
An element x ∈ X minimizes the convex program if and only if

0 ∈
∫

Ξ

∂Φ(x, ξ)P (dξ) + NX(x) ,

∂Φ(x, ξ) = c− T (ξ)> arg max
z∈D(ξ)

z>(h(ξ)− T (ξ)x).
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Discrete approximations of two-stage stochastic pro-
grams

Replace the (original) probability measure P by measures Pn having
(finite) discrete support {ξ1, . . . , ξn} (n ∈ N), i.e.,

Pn =

n∑
i=1

piδξi,

and insert it into the infinite-dimensional stochastic program:

min{〈c, x〉 +

n∑
i=1

pi〈q(ξi), yi〉 : x ∈ X, yi ∈ Y, i = 1, . . . , n,

Wy1 +T (ξ1)x = h(ξ1)

Wy2 +T (ξ2)x = h(ξ2)
. . . ... = ...

Wyn +T (ξn)x = h(ξn)}
Hence, we arrive at a (finite-dimensional) large scale block-structured
linear program which allows for specific decomposition methods.
(Ruszczyński/Shapiro, Handbook, 2003)
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Mixed-integer two-stage stochastic programs

Applied optimization models often contain continuous and integer
decisions (e.g. on/off decisions, quantities). If such decisions enter
the second-stage program, its optimal value function is no longer
continuous and/or convex in general.
We consider

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X

}
,

where Φ is given by

Φ(u, t) := inf

{
〈u1, y1〉 + 〈u2, y2〉

∣∣∣∣ W1y1 + W2y2 ≤ t

y1 ∈ Rm1
+ , y2 ∈ Zm2

+

}
for all pairs (u, t) ∈ Rm1+m2 × Rd, and c ∈ Rm, X is a closed
subset of Rm, Ξ a polyhedron in Rs, T ∈ Rd×m, W1 ∈ Rd×m1,
W2 ∈ Rd×m2, and q(ξ) ∈ Rm1+m2 and h(ξ) ∈ Rd are affine
functions of ξ, and P is a Borel probability measure.
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Assumptions:
(C1) The matrices W1 and W2 have rational elements.
(C2) For each pair (x, ξ) ∈ X×Ξ it holds that h(ξ)−T (ξ)x ∈ T
(relatively complete recourse), where

T :=
{
t ∈ Rd|∃y = (y1, y2) ∈ Rm1 × Zm2 with W1y1 + W2y2 ≤ t

}
.

(C3) For each ξ ∈ Ξ the recourse cost q(ξ) belongs to the dual
feasible set (dual feasibility)

U :=
{
u = (u1, u2) ∈ Rm1+m2|∃z ∈ Rd

− with W>
j z = uj, j = 1, 2

}
.

(C4) P ∈ Pr(Ξ), i.e.,
∫

Ξ ‖ξ‖
rP (dξ) < +∞, r ∈ {1, 2}.

Condition (C2) means that a feasible second stage decision always exists. Both (C2) and
(C3) imply Φ(u, t) to be finite for all (u, t) ∈ U × T . Clearly, it holds (0, 0) ∈ U × T and
Φ(0, t) = 0 for every t ∈ T .

r = 1 holds if either q(ξ) is the only quantity depending on ξ or q(ξ) does not depend on ξ.
Otherwise, we set r = 2.
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With the convex polyhedral cone

K :=
{
t ∈ Rd | ∃y1 ∈ Rm1 such that t ≥ W1y1

}
= W1(Rm1) + Rd

+

one obtains the representation

T =
⋃

z∈Zm2

(W2z +K).

The set T is always (path) connected (i.e., there exists a polygon
connecting two arbitrary points of T ) and condition (C1) implies
that T is closed. If, for each t ∈ T , Z(t) denotes the set

Z(t) := {z ∈ Zm2 | ∃y1 ∈ Rm1 such that W1y1 + W2z ≤ t},

the representation of T implies that it is decomposable into subsets
of the form

T (t0) := {t ∈ T |Z(t) = Z(t0)}
=

⋂
z∈Z(t0)

(W2z +K) \
⋃

z∈Zm2\Z(t0)

(W2z +K)

for every t0 ∈ T .
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In general, the set Z(t0) is finite or countable, but condition (C1)
implies that there exist countably many elements ti ∈ T and zij ∈
Zm2 for j belonging to a finite subset Ni of N, i ∈ N, such that

T =
⋃
i∈N

T (ti) with T (ti) = (ti +K) \
⋃
j∈Ni

(W2zij +K).

The sets T (ti), i ∈ N, are nonempty and star-shaped, but noncon-
vex in general.

W2zi,1

W2zi,2

B1 B2 B3 B4

W2zi,3

ti

Illustration of T (ti) for W1 = 0 and d = 2, i.e., K = R2
+, with Ni = {1, 2, 3} and its

decomposition into the sets Bj, j = 1, 2, 3, 4, whose closures are rectangular.
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If for some i ∈ N the set T (ti) is nonconvex, it can be decomposed
into a finite number of subsets.
This leads to a countable number of subsets Bj, j ∈ N, of T whose
closures are convex polyhedra with facets parallel to W1(Rm1) or
to suitable facets of Rr

+ and form a partition of T .

Since the sets Z(t) of feasible integer decisions do not change if t
varies in some Bj, the function (u, t) 7→ Φ(u, t) from U × T to R
has the (local) Lipschitz continuity regions U ×Bj, j ∈ N and the
estimate

|Φ(u, t)− Φ(ũ, t̃)| ≤ L(max{1, ‖t‖, ‖t̃‖}‖u− ũ‖+ max{1, ‖u‖, ‖ũ‖}‖t− t̃‖)

holds for all pairs (u, t), (ũ, t̃) ∈ U ×Bj and some (uniform) con-
stant L > 0.

(Blair-Jeroslow 77, Bank-Guddat-Kummer-Klatte-Tammer 1982)
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For the integrand

f0(x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ)− T (ξ)x) ((x, ξ) ∈ X × Ξ)

it holds

|f0(x, ξ)− f0(x, ξ̃)|≤L̂ max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξx,j)

|f0(x, ξ)|≤ C max{1, ‖x‖}max{1, ‖ξ‖r} (ξ ∈ Ξ)

for all x ∈ X with some constants L̂ and C and

Ξx,j = {ξ ∈ Ξ |h(ξ)− T (ξ)x ∈ Bj} (j ∈ N)

Proposition: (Schultz 93, 95)

Assume (C1)–(C4). Then the objective function

FP (x) = 〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ)

is lower semicontinuous on X and solutions exist if X is compact.
If the probability distribution P has a density, the objective function
is continuous, but nonconvex in general.
If the support of P is finite, the objective function is piecewise con-
tinuous with a finite number of continuity regions, whose closures
are polyhedral.
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Example: (Schultz-Stougie-van der Vlerk 98)

m = d = s = 2, m1 = 0, m2 = 4, c = (0, 0), X = [0, 5]2,
h(ξ) = ξ, q(ξ) ≡ q = (−16,−19,−23,−28), yi ∈ {0, 1}, i =

1, 2, 3, 4, P ∼ U{5, 10, 15}2 (discrete)
Second stage problem: MILP with 36 binary variables and 18 constraints.

T =

(
2
3

1
3

1
3

2
3

)
W =

(
2 3 4 5

6 1 3 2

)

0

2

4

0

2

4

-50

-40

-30

-20

Optimal value function
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Example: (Schultz-Stougie-van der Vlerk 98)

Stochastic multi-knapsack problem:
m = d = s = 2, m1 = 0, m2 = 4, c = (1.5, 4), X = [−5, 5]2,
h(ξ) = ξ, q(ξ) ≡ q = (16, 19, 23, 28), yi ∈ {0, 1}, i = 1, 2, 3, 4,
P ∼ U{5, 5.5, . . . , 14.5, 15}2 (discrete)
Second stage problem: MILP with 1764 Boolean variables and 882 constraints.

T =

(
2
3

1
3

1
3

2
3

)
W =

(
2 3 4 5

6 1 3 2

)
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Stochastic programs with probabilistic constraints

We consider the stochastic program

min
{
f (x) : x ∈ X, P (g(x, ξ) ≤ 0) ≥ p

}
,

where X is a closed subset of Rm, f : Rm → R, g : Rm×Rs → Rr,
ξ a random vector with probability distribution P and p ∈ (0.1).

Problem: If the original optimization problem is smooth, convex
or even linear, the probabilistic constraint function

G(x) := P (g(x, ξ) ≤ 0)

may be non-differentiable, non-Lipschitzian and non-convex.

Special forms of probabilistic constraints:

• g(x, ξ) := ξ − h(x), where h : Rm → Rs, i.e.,

G(x) = P (ξ ≤ h(x)) = FP (h(x)) ≥ p ,

where FP (y) := P ({ξ ≤ y}) (y ∈ Rs) denotes the (multivari-
ate) probability distribution function of ξ.
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• g(x, ξ) := b(ξ)−A(ξ)x, where the matrix A(·) and the vector
b(·) are affine functions of ξ. Then

G(x) := P ({ξ : A(ξ)x ≥ b(ξ)})

corresponds to the probability of a polyhedron depending on x.

Proposition: (Prekopa)

If H : Rm → Rs is a set-valued mapping with closed graph, the
function G : Rm → R defined by G(x) := P (H(x)) (x ∈ Rm)
is upper semicontinuous for every probability distribution P on Rs.
Hence, the feasible set

Xp(P ) = {x ∈ X : G(x) = P (H(x)) ≥ p}

is closed.
(In particular, H is of the form H(x) = {ξ ∈ Rs : g(x, ξ) ≤ 0},
gph H = {(x, ξ) ∈ Rm × Rs : g(x, ξ) ≤ 0}.)
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Proposition: (Henrion 02)

For any i = 1, . . . , r let gi(·, ξ) be quasiconvex for all ξ ∈ Rs and
min stable w.r.t. X, i.e., for any x, x̃ ∈ X there exists x̄ ∈ X such
that

gi(x̄, ξ) ≤ min{gi(x, ξ), gi(x̃, ξ)} ∀ξ ∈ Rs.

Then the set Xp(P ) = {x ∈ X : P (g(x, ξ) ≤ 0) ≥ p} is (path)
connected for any p ∈ [0, 1] and probability distribution P on Rs.

Corollary:
Let A be a (s, m)-matrix and ξ a s-dimensional random vector with
distribution P . If the rows of A are positively linear independent,
the set Xp(P ) = {x ∈ Rm : P (Ax ≥ ξ) ≥ p} is path connected
for any p ∈ [0, 1] and probability distribution P on Rs.

Problem:
Which conditions imply continuity and differentiability properties of
G(x)=P (H(x)) or convexity ofXp(P ) = {x ∈ X :P (H(x))≥p}?
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Examples:
(i) Let H(x) = x + Rs

− (∀x ∈ Rs) and P have finite support, i.e.,

P =

n∑
i=1

piδξi,

where δξ denotes the Dirac measure placing unit mass at ξ and
pi > 0, i = 1, . . . , n,

∑n
i=1 pi = 1. Then

Xp(P ) = X ∩ (∪i∈I(ξi + Rs
+))

holds for some index set I ⊂ {1, . . . , n} and, hence, is non-convex
in general. Moreover, G = FP is discontinuous with jumps at
bd(ξi + Rs

−).

(ii) Let H(x) = x + Rs
− (∀x ∈ Rs) and P have a density fP with

respect to the Lebesgue measure on Rs, i.e.,

G(x) = FP (x) =

x∫
−∞

fP (y)dy =

x1∫
−∞

· · ·
xs∫

−∞

fP (y1, . . . , ys)dys · · · dy1.

Conjecture: G = FP is Lipschitz continuous if the density fP is
continuous and bounded.
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Answer: The conjecture is true for s = 1, but wrong for s > 1 in
general.

Example: (Wakolbinger)

fP (x1, x2) =


0 x1 < 0

cx
1/4
1 e−x1x

2
2 x1 ∈ [0, 1]

ce−x4
1x

2
2 x1 > 1,

where c is chosen such that
∫∞
−∞

∫∞
−∞ fP (x1, x2)dx1dx2 = 1.

-1

0

1

2

-1

0

1

2

0
0.25
0.5

0.75
1

-1

0

1

2

The density fP is continuous and bounded. However, FP is not
locally Lipschitz continuous (as the marginal density functions are
not bounded).
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Proposition:
A probability distribution function FP with density fP is locally
Lipschitz continuous if its (one-dimensional) marginal density func-
tions f i

P , i = 1, . . . , s, are locally bounded.
FP is (globally) Lipschitz continuous iff its marginal density func-
tions are bounded.

f i
P (xi) :=

∫ +∞

−∞
· · ·

∫ +∞

−∞
fP (x1, . . . , xs)dx1 · · · dxi−1dxi+1 · · · dxs

Question: Is there a reasonable class of probability distributions
to which the proposition applies?
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Definition:
A probability measure P on Rs is called quasi-concave whenever

P (λB + (1− λ)B̃) ≥ min{P (B), P (B̃)}

holds true for all Borel measurable convex subsets B, B̃ ⊆ Rs and
all λ ∈ [0, 1] such that λB + (1− λ)B̃ is Borel measurable.

Proposition: (Prekopa)

Let H : Rm → Rs be a set-valued mapping with closed convex
graph and P be quasi-concave on Rs. Then the function G(x) :=

P (H(x)) (x ∈ Rm) is quasi-concave on Rm. Hence, if X is closed
and convex, the feasible set

Xp(P ) = {x ∈ X : G(x) = P (H(x)) ≥ p}

is closed and convex.

Proof: Let x, x̃ ∈ Rm, λ ∈ [0, 1].

G(λx + (1− λ)x̃) = P (H(λx + (1− λ)x̃)) ≥ P (λH(x) + (1− λ)H(x̃))

≥ min{P (H(x)), P (H(x̃))} = min{G(x), G(x̃)}. �
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Theorem: (Borell 75)

Assume that the probability distribution on Rs has a density fP .
Then P is quasi-concave iff f

−1
s

P : Rs → R is convex.

Examples: (of quasi-concave probability measures)
Multivariate normal distributions N(m, C) (with mean m ∈ Rs

and s × s symmetric, positive semidefinite covariance matrix C;
nondegenerate or singular), uniform distributions on convex com-
pact subsets of Rs, Dirichlet-, Pareto-, Gamma-distributions etc.

Theorem: (Henrion/Römisch 10)

The probability distribution function FP of a quasi-concave prob-
ability measure P on Rs is Lipschitz continuous iff the support
supp P is not contained in a (s− 1)-dimensional hyperplane.
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Question: Are distribution functions of quasi-concave measures
differentiable, too?

Example: (singular normal distributions)
The probability distribution functions FP of 2-dimensional normal
distributions N(0, C) with

C =

(
1 0

0 0

)
,

(
1 1

1 1

)
,

(
1 −1

−1 1

)
are not differentiable on R2.
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Theorem: (Henrion/Römisch 10)

Let ξ be an s-dimensional normal random vector whose covariance
matrix is nonsingular. Let Fη denote the probability distribution
function of the random vector η = Aξ + b where A is an m × s-
matrix and b ∈ Rm.
Then Fη is infinitely many times differentiable at any x̄ ∈ Rm

for which the system (A, x̄ − b) satisfies the Linear Independence
Constraint Qualification (LICQ), i.e., the rows ai, i = 1, . . . ,m, of
A satisfy the condition rank {ai : i ∈ I} = #I for every index set
I ∈ {1, . . . ,m} such that there exists z ∈ Rs with

aT
i z = x̄i − bi (i ∈ I), aT

i z < x̄i − bi (i ∈ {1, . . . ,m} \ I).

Example:
Our second example of singular normal distributions corresponds to
the probability distribution function Fη of

η =

(
1

1

)
ξ, ξ ∼ N(0, 1).

The result implies the C∞-property of Fη on R2\{(x, x) : x ∈ R}.



Home Page

Title Page

Contents

JJ II

J I

Page 38 of 69

Go Back

Full Screen

Close

Quit

Let us consider the chance constraint set

Xp(P ) = {x ∈ Rm : P (Ξx ≤ a) ≥ p}

where Ξ is a stochastic matrix whose rows ξi have multivariate
normal distributions with mean µi and covariance matrix Σi, i =

1, . . . , r, and P is the distribution of (ξ1, . . . , ξr).
For r = 1 convexity of Xp(P ) for p ∈ [12, 1) is a classical result.
(van de Panne/Popp 63)

Proposition: (Henrion/Strugarek 08)

Assume that the rows ξi of Ξ are pairwise independent.
Then Xp is convex for p > Φ(u∗), where Φ is the one-dimensional
standard normal distribution function and u∗ ≥

√
3 is computable

and depends on the means µi and the eigenvalues of Σi.

Furthermore, the function G(x) = P (Ξx ≤ a) is differentiable and
the gradients of G can be explicitly computed if Ξ is Gaussian.
(van Ackooij/Henrion/Möller/Zorgati 11)
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Example: (Henrion)

Let P be the standard normal (N(0, 1)) distribution with probability
distribution function

F (x) =
1

(2π)
1
2

∫ x

−∞
exp(−ξ2

2
)dξ,

A =

(
1

−1

)
and b(ξ) =

(
ξ

ξ

)
for each ξ ∈ R. Then we have

G(x) = P ({ξ ∈ R : Ax ≥ b(ξ)})
= P ({ξ ∈ R : x ≥ ξ,−x ≥ ξ}) = F (min{−x, x}).

Hence, although F is in C∞(R), G is non-differentiable.

Hence, tools from nonsmooth analysis should be used for studying
the behavior of constraints sets, in general.
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Metric regularity of chance constraints

Let H : Rm → Rs be a set-valued mapping with closed graph,
X ⊆ Rm be closed and P be a probability distribution on Rs. We
consider the set-valued mapping (from R to Rm)

y 7→ Xy(P ) = {x ∈ X : P (H(x)) ≥ y}.

Definition:
The chance constraint function P (H(·)) − p is metrically regular
with respect to X at x̄ ∈ Xp(P ) if there exist positive constants a

and ε such that

d(x,Xy(P )) ≤ a max{0, y − P (H(x))}

holds for all x ∈ X ∩ B(x̄, ε) and |p− y| ≤ ε.

Motivation: Continuity properties of the feasible set Xp(P ) with
respect to perturbations of P measured in terms of a suitable dis-
tance on the space of all probability distributions on Rs.
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The convex case

Proposition: (Römisch/Schultz 91)

Let the set-valued mapping H have closed and convex graph, X be
closed and convex, p ∈ (0, 1) and the probability distribution P on
Rs be r-concave for some r ∈ (−∞, +∞]. Suppose there exists a
Slater point x̄ ∈ X such that P (H(x̄) > p.
Then P (H(·))− p is metrically regular with respect to X at each
x ∈ Xp(P ).

The proof is based on the Robinson-Ursescu theorem applied to the set-valued mapping Γ(x) :=
{v ∈ R : x ∈ X, pr − (P (H(x)))r ≥ v} for some r < 0 (w.l.o.g.).

The proposition applies to H(x) = {ξ ∈ Rs : h(x) ≥ ξ}, i.e.,
P (H(x)) = FP (h(x)), where h has concave components. How-
ever, even for linear h, i.e., h(x) = Ax the matrix A has to be
non-stochastic.
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Definition:
A probability measure P on Rs is called r- concave for some r ∈
[−∞, +∞] if the inequality

P (λB + (1− λ)B̃) ≥ mr(P (B), P (B̃); λ)

holds for all λ ∈ [0, 1] and all convex Borel subsets B, B̃ of Rs

such that λB + (1− λ)B̃ is Borel.

Here, the generalized mean function mr on R+ × R+ × [0, 1] for
r ∈ [−∞,∞] is given by

mr(a, b; λ) :=



(λar + (1− λ)br)1/r , r > 0 or r < 0, ab > 0,

0 , ab = 0, r < 0,

aλb1−λ , r = 0,

max{a, b} , r = ∞,

min{a, b} , r = −∞.

Notice that r = −∞ corresponds to quasi-concavity.
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Optimization problems with stochastic dominance con-
straints

Optimization model with kth order stochastic dominance constraint

min{f (x) : x ∈ D, G(x, ξ) �(k) Y },

where k ∈ N, D is a nonempty convex closed subset of Rm, Ξ a
closed subset of Rs, f : Rm → R is convex, ξ is a random vector
with support Ξ and Y a real random variable on some probability
space both having finite moments of order k − 1, and G : Rm ×
Rs → R is continuous, concave with respect to the first argument
and satisfies the linear growth condition

|G(x, ξ)| ≤ C(B) max{1, ‖ξ‖} (x ∈ B, ξ ∈ Ξ)

for every bounded subset B ⊂ Rm and some constant C(B) (de-
pending on B). The random variable Y plays the role of a bench-
mark outcome.

D. Dentcheva, A. Ruszczyński: Optimization with stochastic dominance constraints, SIAM J. Optim.
14 (2003), 548–566.
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Stochastic dominance relation �(k)

X �(1) Y ⇔ FX(η) ≤ FY (η) (∀η ∈ R)

where X and Y are real random variables on some probability space
(Ω,F , P). PX denotes the probability distribution of X and FX its
distribution function, i.e.,

FX(η) = P({X ≤ η}) =

∫ η

−∞
PX(dξ) (∀η ∈ R)

Equivalent characterization:

X �(1) Y ⇔ E[u(X)] ≥ E[u(Y )]

for each nondecreasing u : R → R such that the expectations are
finite.
Expected utility hypotheses: (von Neumann-Morgenstern)

Outcome X is preferred over outcome Y if and only if

E[u(X)] > E[u(Y )]

for some utility u(·).
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X �(k) Y ⇔ F
(k)
X (η) ≤ F

(k)
Y (η) (∀η ∈ R)

where X and Y are real random variables having moments of order
k − 1 and we define F

(1)
X = FX and recursively

F
(k+1)
X (η) =

∫ η

−∞
F

(k)
X (ξ)d(ξ) =

∫ η

−∞

(η − ξ)k

k!
PX(dξ)

=
1

k!
‖max{0, η −X}‖k

k (∀η ∈ R),

where
‖X‖k =

(
E(|X|k)

)1
k (∀k ≥ 1).

Equivalent characterization of �(2):

X �(2) Y ⇔ E[u(X)] ≥ E[u(Y )]

for each nondecreasing concave u : R → R such that the expecta-
tions are finite.

A. Müller and D. Stoyan: Comparison Methods for Stochastic Models and Risks, Wiley, Chichester,
2002.
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Relaxation, theory and discretization

We consider the relaxed kth order stochastic dominance (SD) con-
strained optimization model

min
{

f (x) : x ∈ D, F
(k)
G(x,ξ)(η) ≤ F

(k)
Y (η), ∀η ∈ I

}
,

where I ⊂ R is a compact interval.
Split-variable formulation:

min
{

f (x) : x ∈ D, G(x, ξ) ≥ X, F
(k)
X (η) ≤ F

(k)
Y (η), ∀η ∈ I

}
Since the function F

(k)
X : R → R is nondecreasing for k ≥ 1 and

convex for k ≥ 2, the SD constrained optimization model is a con-
vex semi-infinite program.

Constraint qualification:
kth order uniform dominance condition: There exists x̄ ∈ D such
that

min
η∈I

(
F

(k)
Y (η)− F

(k)
G(x̄,ξ)(η)

)
> 0 .
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Optimality conditions and duality results can be derived when im-
posing the kth order uniform dominance condition.

Let Xj and Yj the scenarios of X and Y with probabilities pj,
j = 1, . . . , n. Then the second order dominance constraints can
be expressed as

n∑
j=1

pj[η −Xj]+ ≤
n∑

j=1

pj[η − Yj]+ ∀η ∈ I.

The latter condition can be shown to be equivalent to
n∑

j=1

pj[Yk −Xj)]+ ≤
n∑

j=1

pj[Yk − Yj]+ ∀k = 1, . . . , n.

if Yk ∈ I , k = 1, . . . , n. Here, [ · ]+ = max{0, · }.
Hence, the second order dominance constraints may be reformu-
lated as linear constraints.

D. Dentcheva, A. Ruszczyński: Optimality and duality theory for stochastic optimization problems
with nonlinear dominance constraints, Mathematical Programming 99 (2004), 329-350.
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Stochastic programs with equilibrium constraints

Such optimization models are extensions of two-stage stochastic
programs. We consider the SMPEC

min
{

inf{E[f (x, y, ξ)] : y ∈ S(x, ξ)} : x ∈ X
}
,

where S(x, ξ) is the solution set of the variational inequality

g(x, y, ξ) ∈ NC(x,ξ)(y),

f, g : Rm×Rm̄×Rs → R, C is a set-valued mapping from Rm×Rs

to Rm̄ and NC(y) denotes the normal cone to the set C at y. If
we assume that C(x, ξ) is of the form

C(x, ξ) = {y ∈ Rm̄ : h(x, y, ξ) ∈ V }

with a closed convex cone V in Rr and a mapping h which is
differentiable with respect to y, the variational inequality may be
rewritten as

−g(x, y, ξ) +∇yh(x, y, ξ)>λ = 0, λ ∈ NV (h(x, y, ξ)).
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The condition λ ∈ NV (h(x, y, ξ)) is equivalent to

λ ∈ V ∗, h(x, y, ξ) ∈ V, λ>h(x, y, ξ) = 0.

or equivalently
h(x, y, ξ) ∈ NV ∗(λ)

Hence, the introduction of the new variable λ allows to rewrite the
original variational inequality into (Robinson 80)

H(x, (y, λ), ξ) ∈ NK(λ),

where H maps from Rm×Rm̄+r×Rs to Rm̄+r and a (fixed) closed
convex cone K in Rm̄+r given by

H(x, (y, λ), ξ) =

(
−g(x, y, ξ) +∇yh(x, y, ξ)>λ

h(x, y, ξ)

)
, K = Rm̄ × V ∗.

Let S̄(x, ξ) ⊂ Rm̄+r denote the solution set of the previous varia-
tional inequality. Then S(x, ξ) equals the projection of S̄(x, ξ) to
the first component.
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The original SMPEC is equivalent to

min
{
E[f (x, y, ξ)] : (y, λ) ∈ S̄(x, ξ), x ∈ X

}
Proposition: (Shapiro, JOTA 06)

Let the functions f, g, h,∇yh be continuous and there exist a P -
integrable function w such that

θ(x, ξ) = inf{f (x, y, ξ) : (y, λ) ∈ S̄(x, ξ)} ≥ w(ξ)

holds for all ξ and all x in a neighborhood of some x̄ ∈ X. Assume
that the solution set S̄(x, ξ) is nonempty and uniformly bounded
(in a neighborhood of x̄).
Then the objective x 7→ E[θ(x, ξ)] is (at least) lower semicontinu-
ous at x̄.

Under stronger assumptions (Lipschitz) continuity and directional
differentiability of the objective may be derived, too.
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Multistage stochastic programs

New constraints: Measurability or information constraints
Let {ξt}T

t=1 be a discrete-time stochastic data process defined on
some probability space (Ω,F , P) and with ξ1 deterministic. The
stochastic decision xt at period t is assumed to be measurable with
respect to Ft := σ(ξ1, . . . , ξt) (nonanticipativity).

Multistage stochastic optimization model:

min

E

[
T∑

t=1

〈bt(ξt), xt〉

]∣∣∣∣∣∣
xt ∈ Xt, t = 1, . . . , T, A1,0x1 = h1(ξ1),

xt is Ft-measurable, t = 1, . . . , T,

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, ., T


where the sets Xt, t = 1, . . . , T , are polyhedral cones, the vectors
bt(·), ht(·) and At,1(·) are affine functions of ξt, where ξ varies in
a polyhedral set Ξ.

If the process {ξt}T
t=1 has a finite number of scenarios, they exhibit

a scenario tree structure.
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To have the model well defined, we assume
xt ∈ Lr′(Ω,Ft, P; Rmt) and ξt ∈ Lr(Ω,Ft, P; Rd),
where r ≥ 1 and

r′ :=


r

r−1 , if only costs are random
r , if only right-hand sides are random
∞ , if all technology matrices are random and r = T.

Then nonanticipativity may be expressed as

x ∈ Nna

Nna = {x ∈ ×T
t=1Lr′(Ω,F , P; Rmt) : xt = E[xt|Ft] , ∀t},

i.e., as a subspace constraint, by using the conditional expectation
E[· |Ft] with respect to the σ-algebra Ft.

For T = 2 we have Nna = Rm1 × Lr′(Ω,F , P; Rm2).

→ infinite-dimensional (linear) optimization problem
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Data process approximation by scenario trees

The process {ξt}T
t=1 is approximated by a process forming a scenario

tree based on a finite set of scenarios and nodes N ⊂ N.

s
n = 1

s��
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@
@
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s

n−
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n
sξn

s
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����
XXXX

����
XXXX

HHH
H

����
XXXX
XXXX

sssss N+(n)sss NTsssq
t = 1

q
t = 2

q
t(n)

q
T

Scenario tree with T = 5, N = 22 and 11 leaves

n = 1 root node, n− unique predecessor of node n, path(n) =

{1, . . . , n−, n}, t(n) := |path(n)|, N+(n) set of successors to n,
NT := {n ∈ N : N+(n) = ∅} set of leaves, path(n), n ∈ NT ,
scenario with (given) probability πn, πn :=

∑
ν∈N+(n) π

ν probability
of node n, ξn realization of ξt(n).
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Tree representation of the optimization model

min

{∑
n∈N

πn〈bt(n)(ξ
n), xn〉

∣∣∣∣xn ∈ Xt(n), n ∈ N , A1,0x
1 = h1(ξ

1)

At(n),0x
n + At(n),1x

n−=ht(n)(ξ
n), n ∈ N

}

How to solve the optimization model ?

- Standard software (e.g., CPLEX)

- Decomposition methods for (very) large scale models
(Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003)

Open question:
How to generate (multivariate) scenario trees ?
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Dynamic programming

Theorem: (Evstigneev 76, Rockafellar/Wets 76)

Under weak assumptions the multistage stochastic program is equiv-
alent to the (first-stage) convex minimization problem

min

{∫
Ξ

f (x1, ξ)P (dξ) : x1 ∈ X1(ξ1)

}
,

where f is an integrand on Rm1 × Ξ given by

f (x1, ξ):=〈b1(ξ1), x1〉 + Φ2(x1, ξ
2),

Φt(x1, . . . , xt−1, ξ
t):=inf

{
〈bt(ξt), xt〉+E

[
Φt+1(x1, . . . , xt, ξ

t+1)|Ft

]
:

xt ∈ Xt, At,0xt + At,1(ξt)xt−1 = ht(ξt)
}

for t = 2, . . . , T , where ΦT+1(x1, . . . , xT , ξT+1) := 0, X1(ξ1) :=

{x1 ∈ X1 : A1,0x1 = h1(ξ1)} and P ∈ P(Ξ) is the probability
distribution of ξ.

→The integrand f depends on the probability measure P in a non-
linear way !
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Risk Functionals

A risk functional or risk measure ρ assigns a real number to any
(real) random variable Y (possibly satisfying certain moment condi-
tions). Recently, it was suggested that ρ should satisfy the following
axioms for all random variables Y, Ỹ , r ∈ R, λ ∈ [0, 1]:

(A1) ρ(Y + r) = ρ(Y )− r (translation-invariance),

(A2) ρ(λY + (1− λ)Ỹ ) ≤ λρ(Y ) + (1− λ)ρ(Ỹ ) (convexity),

(A3) Y ≤ Ỹ implies ρ(Y ) ≥ ρ(Ỹ ) (monotonicity).

A risk functional ρ is called coherent if it is, in addition, positively
homogeneous, i.e., ρ(λY ) = λρ(Y ) for all λ ≥ 0 and random vari-
ables Y .
Given a risk functional ρ, the mapping D = E + ρ is also called
deviation risk functional.

References: Artzner-Delbaen-Eber-Heath 99, Föllmer-Schied 02, Fritelli-Rosazza Gianin 02
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Examples:

(a) Conditional Value-at-Risk or Average Value-at-Risk AV@Rα:

AV@Rα(Y ) :=
1

α

∫ α

0

V@Ru(Y )(u)du =
1

α

∫ α

0

G−1(u)du

= inf
{

x +
1

α
E([Y + x]−) : x ∈ R

}
= sup

{
− E(Y Z) : E(Z) = 1, 0 ≤ Z ≤ 1

α

}
where α ∈ (0, 1], V@Rα := inf{y ∈ R : P(Y ≤ y) ≥ α} is

the Value-at-Risk, [a]− := −min{0, a} and G the distribution
function of Y .
Reference: Rockafellar-Uryasev 02

(b) Lower semi standard deviation corrected expectation:

ρ(Y ) := −E(Y ) + (E([Y − E(Y )]−)2)
1
2

Reference: Markowitz 52
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Multiperiod risk measurement

Let F = {Ft : t = 1, . . . , T} be a filtration generated by some
stochastic process on (Ω,F , P) with F1 = {∅, Ω}.
A functional ρF on Z = ×T

t=1 Lp(Ω,F , P) is called a multiperiod
risk measure if the following conditions (i)–(iii) hold:

(i) Monotonicity: if zt ≤ z̃t a.s, t = 1, . . . , T , then
ρF(z1, . . . , zT ) ≥ ρF(z̃1, . . . , z̃T );

(ii) Translation invariance: for each r ∈ R we have
ρF(z1 + r, . . . , zT + r) = ρF(z1, . . . , zT )− r;

(iii) Convexity: for each λ ∈ [0, 1] and z, z̃ ∈ Z we have
ρF(λz + (1− λ)z̃) ≤ λρF(z) + (1− λ)ρF(z̃).

It is called coherent if in addition condition (iv) holds:

(iv) Positive homogeneity: for each λ ≥ 0 we have
ρF(λz1, . . . , λzT ) = λρF(z1, . . . , zT ).

(Artzner-Delbaen-Eber-Heath-Ku 07)
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A multiperiod risk measure ρF is called information monotone if
F ⊆ F′ (i.e. Ft ⊆ F ′

t, t = 1, . . . , T ) implies

ρF′(z) ≤ ρF(z) ∀z ∈ Z.

A multiperiod risk measure ρF is time consistent if it is constructed
by conditional risk mappings ρt(·|F(t)) from ×T

τ=tLp(Ω,Ft, P) to
Lp(Ω,Ft, P) with F(t) = {Ft, . . . ,FT}, t = 1, . . . , T , such that
ρF(z) = ρ1(z|F(1)) and if the conditions

ρt(z
(t)|F(t)) ≥ ρt(z̃

(t)|F(t)) and zt−1 ≤ z̃t−1

imply ρt−1(z
(t−1)|F(t−1)) ≥ ρt−1(z̃

(t−1)|F(t−1)) for all t = 2, . . . , T .

Remark:
There appear different requirements in the literature instead of the
translation invariance (ii).
(e.g. Fritelli-Scandalo 06, Pflug-Römisch 07)
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Theorem: (dual representation)
Let ρF : ×T

t=1 Lp(Ω,F , P) → R̄ be proper (i.e. ρF(z) > −∞ and
dom ρF = {z : ρ(z) < ∞} 6= ∅) and lower semicontinuous. Then
ρF is a multiperiod convex risk measure if and only if it admits the
representation

ρF(z) = sup
{
− E

[ T∑
t=1

λtzt

]
− ρ∗F(λ) : λ ∈ Pρ(F)

}
,

where

Pρ(F) ⊆ DT =
{

λ ∈ ×T
t=1 Lq(Ω,Ft, P) : λt ≥ 0,

T∑
t=1

E[λt] = 1
}

with 1
p + 1

q = 1 is closed and convex, and ρ∗F is the conjugate of ρF.
The functional ρF is a multiperiod coherent risk measure if and only
if the conjugate ρ∗F is the indicator function of Pρ(F).

(Ruszczyński-Shapiro 06)
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Multiperiod extended polyhedral risk measures

A multiperiod risk measure ρF on Z is called extended polyhedral if
there exist matrices At, Bt,τ , vectors at, ct, and functions ht(z) =

(ht,1(z), . . ., ht,nt,2(z))> with ht,i : Z → Z such that

ρF(z) = inf

E
[ T∑

t=1

c>t yt

] ∣∣∣∣∣∣
yt ∈ Lp(Ω,Ft, P; Rkt), Atyt ≤ at∑t−1

τ=0 Bt,τyt−τ = ht(zt)

(t = 1, . . . , T )


(Guigues-Römisch, SIOPT 12)

Motivation: Characterizing the largest class of multiperiod risk
measures that maintains important theoretical and algorithmic prop-
erties when incorporated into (linear) multistage stochastic pro-
grams instead of the expectation functional.
Most important case: ht affine.

First version: at = 0, Bt,τ row vectors, ht identity
(Eichhorn-Römisch 05)
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Examples of multiperiod extended polyhedral risk measures
Let increasing risk measuring time steps tj, j = 1, . . . , J , with
tJ = T , and weights γj ≥ 0, j = 1, . . . , J , with

∑J
j=1 γj = 1 be

given.
(a) Weighted sum of Average Value-at-Risk at risk measuring time
steps:

ρs(z) :=

J∑
j=1

γjAV@Rα(z(tj)),

where AV@Rα(z) = infr∈R[r + 1
αE[z + r]−].

(c) Average Value-at-Risk of the weighted average at risk measuring
time steps:

ρa(z) := AV@Rα

( J∑
j=1

γjz(tj)
)

(d) Average Value-at-Risk of the minimum at risk measuring time
steps:

ρm(z) := AV@Rα

(
min

j=1,...,J
z(tj)

)
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Risk-averse multistage stochastic optimization model:

min
x

ρ(z)

∣∣∣∣∣∣∣∣∣
zt =

∑t
τ=1 bτ (ξτ )

>xτ

xt ∈ Xt, xt ∈ Lp(Ω,Ft, P; Rmt)∑t−1
τ=0 At,τ (ξt)xt−τ = gt(ξt)

(t = 1, ..., T )


Multiperiod extended polyhedral risk functional:

ρ(z) = inf

E
[ T∑

t=1

c>t yt

] ∣∣∣∣∣∣∣∣∣
yt ∈ Lp(Ω,Ft, P; Rkt)

Atyt ≤ at∑t−1
τ=0 Bt,τyt−τ = ht(zt)

(t = 1, . . . , T )


Equivalent risk-neutral multistage stochastic optimization model:

min
(y,x)


E

[ T∑
t=1

c>t yt

]
∣∣∣∣∣∣∣∣∣∣∣

yt ∈ Lp(Ω,Ft, P; Rkt), xt ∈ Lp(Ω,Ft, P; Rmt)

Atyt ≤ at, xt ∈ Xt∑t−1
τ=0 Bt,τyt−τ = ht(

∑t
τ=1 bτ (ξτ )

>xτ )∑t−1
τ=0 At,τ (ξt)xt−τ = gt(ξt)

(t = 1, . . . , T )


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Conditional risk mappings

Let (Ω,F , P) be a probability space and let F1 be a σ-field con-
tained in F . Let Y = Lp(Ω,F , P) and Y1 = Lp(Ω,F1, P) for some
p ∈ [1, +∞), hence Y1 ⊆ Y . All (in)equalities between random
variables in Y are intended to hold P-almost surely.

A mapping ρ : Y → Y1 is called conditional risk mapping (with
observable information F1) if the following conditions are satisfied
for all Y , Ỹ ∈ Y , Y (1) ∈ Y1, λ ∈ [0, 1]:

(i) ρ(Y +Y 1) = ρ(Y )−Y (1) (predictable translation-invariance),

(ii) ρ(λY + (1− λ)Ỹ ) ≤ λρ(Y ) + (1− λ)ρ(Ỹ ) (convexity),

(iii) Y ≤ Ỹ implies ρ(Y ) ≥ ρ(Ỹ ) (monotonicity).

The conditional risk mapping ρ is called
positively homogeneous if ρ(λY ) = λρ(Y ), ∀λ > 0.
lower semicontinuous if E(ρ(·)1lB) : Y → R is lower semicontinuous
for every B ∈ F1.
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Examples:

(a) Conditional expectation: The defining equation for the condi-
tional expectation E(· |F1) is

E(E(Y |F1) 1lB) = E(Y 1lB) (∀B ∈ F1).

It is a mapping from Lp(F) onto Lp(F1) for p ∈ [1,∞).

(b) Conditional average value-at-risk: ρ(Y |F1) = AV@Rα(Y |F1)

is defined on L1(F) by the relation

E(ρ(Y |F1)1lB)=sup{−E(Y Z) : 0 ≤ Z ≤ 1

α
1lB, E(Z|F1) = 1lB}

for every B ∈ F1. The mapping Y 7→ AV@Rα(Y |F1) is
positively homogeneous, continuous and satisfies (i)–(iii).
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Composition of conditional risk mappings

Let a probability space (Ω,F , P) and a filtration F = (F0, . . . ,FT )

of σ-fields Ft, t = 0, ..., T , with FT = F be given. We consider
the Banach spaces Yt := Lp(Ft) of Ft-measurable (real) random
variables for t = 1, . . . , T and some p ∈ [1, +∞).

Let conditional risk mappings ρt−1 := ρ(· |Ft−1) from YT to Yt−1

be given for each t = 1, . . . , T .
We introduce a multi-period risk functional ρ on Y := ×T

t=1Yt

by nested compositions and a family (ρ(t))Tt=1 of single-period risk
functionals ρ(t) by compositions of the conditional risk mappings
ρt−1, t = 1, . . . , T , namely,

ρ(Y ; F) := ρ0[Y1 + · · · + ρT−2[YT−1 + ρT−1(YT )] · · · ]
ρ(t)(YT ) := ρ0 ◦ ρ1 ◦ · · · ◦ ρt−1(YT )

for every Y ∈ Y and YT ∈ YT .

(Ruszczyński-Shapiro, Math. OR 06)
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Proposition: (Ruszczyński-Shapiro)

Then ρ(·; F) : Y → R is a multi-period risk functional and every
ρ(t) : YT → R is a (single-period) risk functional. Moreover, it
holds

ρ(Y ; F) = ρ(T )(Y1 + · · · + YT ).

The functionals ρ and ρ(t), t = 1, . . . , T , are positively homoge-
neous if all ρt are positively homogeneous.

Example:
We consider the conditional average value-at-risk (of level α ∈
(0, 1]) as conditional risk mapping

ρt−1(Yt) := AV@Rα(· |Ft−1)

for every t = 1, . . . , T . Then

nAV@Rα(Y ; F)=AV@Rα(· |F0) ◦ · · · ◦ AV@Rα(· |FT−1)
(∑T

t=1
Yt

)
is a multi-period risk functional and is called nested average value-
at-risk.
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Proposition: (Pflug-Römisch 07)

The nested nAV@R has the following dual representation:

nAV@Rα(Y ; F) = sup{−E[(Y1 + · · · + YT )ZT ] : 0 ≤ Zt ≤
1

α
Zt−1,

E(Zt|Ft−1) = Zt−1, Z0 = 1, t = 1, . . . , T}.

The (dual) process (Zt) is a martingale and nAV@R is not polyhe-
dral and not information monotone, but given by a linear stochastic
program (with functional constraints).

Risk-averse multistage stochastic programs:
Replace the conditional expectation in the dynamic programming
representation by conditional risk mappings ρ(· |Ft)

Φt(x1, . . . , xt−1, ξ
t):=inf

{
〈bt(ξt), xt〉+ρ

(
Φt+1(x1, . . . , xt, ξ

t+1)|Ft

)
:

xt ∈ Xt, At,0xt + At,1(ξt)xt−1 = ht(ξt)
}

for t = 2, . . . , T , where ΦT+1(x1, . . . , xT , ξT+1) := 0.
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