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It is truly a great honor to have been awarded the 2018 Khachiyan prize of the INFORMS Op-
timization Society. I wish to thank the members of the prize committee and my colleagues and
friends for nominating me. I would like to take this opportunity to briefly sketch essential parts
of my interest in the area of stochastic programming. In 1976 I finished my dissertation on the-
ory and approximations of random equations at Humboldt-University Berlin. Shortly after that I
listened there to a lecture by Peter Kall (University of Zürich) on some recent advances in stochas-
tic programming in the late seventies. Having in mind the progress of parametric programming
achieved at that time and later in my department [3], I got interested in connecting both areas.
During the International Conference on Stochastic Programming at Köszeg (Hungary) in 1981 I
obtained further inspiration on approximation concepts in optimization from Roger Wets (UC
Davis) and met my future cooperators Jitka Dupačová (Charles University Prague) and Georg
Pflug (University of Vienna) for the first time. Additional motivation appeared later when prac-
tical electricity optimization models under uncertainty [4, 9, 27] required both the statistical esti-
mation of the underlying probability distribution from available data and their numerical solution
based on scenario approximations. The following is a short version of my presentation in the prize
session.

1 Introduction

A number of stochastic programming models can be cast into the general form

min
{∫

Ξ
f0(x, ξ)P(dξ) : x ∈ X,

∫
Ξ

f1(x, ξ)P(dξ) ≤ 0
}

(1)

where X is a closed subset of Rm, Ξ a closed subset of Rd, P is a Borel probability measure on
Ξ abbreviated by P ∈ P(Ξ). The functions f0 and f1 from Rm × Ξ to the extended reals R =
(−∞, ∞] are normal integrands, where we adopt here and in the following the notation from the
monograph [33].

Many approaches to the computational solution of (1) are based on finding a discrete proba-
bility measure Pn belonging to

Pn(Ξ) :=

{
n

∑
i=1

piδξ i : ξ i ∈ Ξ, pi ≥ 0, i = 1, . . . , n,
n

∑
i=1

pi = 1

}
(2)

for some n ∈ N, which approximates P at least such that the corresponding infima are close. The
Dirac measures δξ i in (2) place unit mass at the atoms ξ i, i = 1, . . . , n, of Pn. The latter are often
called scenarios in this context.

Typical integrands f0 and f1 appear in two-stage stochastic programming and in chance con-
strained models.

Example 1. Linear two-stage stochastic programs:

f0(x, ξ) =

{
g(x) + Φ(q(ξ), h(x, ξ)) , q(ξ) ∈ D

+∞ , else
and f1(x, ξ) ≡ 0,

where X and Ξ are convex polyhedral, g(·) is a linear function, q(·) is affine, h(·, ξ) is affine for
fixed ξ and h(x, ·) is affine for fixed x, and Φ denotes the infimal function of the linear (second-
stage) program

Φ(q, t) := inf{〈q, y〉 : Wy = t, y ≥ 0}
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with W denoting the (s, m̄) recourse matrix W and D = {q ∈ Rm̄ : {z ∈ Rs : W>z ≤ q} 6= ∅}
the convex polyhedral dual feasibility set. We note that already the evaluation of the objective
function of two-stage models is known to be #P-hard in general if P is a continuous multivariate
probability distribution [12].

Example 2. Chance constrained programs:

f1(x, ξ) = p− 1lP(x)(ξ),

where p ∈ (0, 1) is a probability level and 1lP(x) is the characteristic function of the polyhedron
P(x) = {ξ ∈ Ξ : h(x, ξ) ≤ 0} depending on x, where Ξ and h have the same properties as in the
preceding example.

The general model (1) covers a great variety of stochastic optimization problems. In addition
to both examples, (1) contains mixed-integer two-stage stochastic programs [39], optimization
problems with stochastic dominance constraints [5], problems containing risk functionals [29] in
objective and constraints etc. For more information on stochastic programming we refer to the
monographs [19, 40].

2 Stability-based scenario generation

Let v(P) and S(P) denote the infimum and solution set of (1). We are interested in conditions
implying their continuous dependence on the underlying probability distribution P in terms of
an appropriate distance for probability measures. To this end we introduce the following sets of
functions and of probability distributions (both defined on Ξ)

F =
{

f j(x, · ) : j = 0, 1, x ∈ X
}

,

PF =

{
Q ∈ P(Ξ) : sup

x∈X

∫
Ξ
| f j(x, ξ)|Q(dξ) < +∞, j = 0, 1

}
,

and the (semi-) distance on PF defined by

dF (P, Q) = sup
f∈F

∣∣∣∣∫Ξ
f (ξ)P(dξ)−

∫
Ξ

f (ξ)Q(dξ)

∣∣∣∣ (P, Q ∈ PF ). (3)

The mapping dF : PF × PF → R is finite, non-negative, symmetric and satisfies the triangle
inequality, but dF (P, Q) = 0 does not imply P = Q in general unless the class F is rich enough.
For typical applications like for linear two-stage and chance constrained models, the sets PF or
appropriate subsets allow a simpler characterization, for example, as subsets of P(Ξ) satisfying
certain moment conditions. Next we state a result on continuity properties of infima and solutions
sets with respect to the distance dF . It is a simplified version of a general result in [32].

Proposition 1. Consider (1) for P ∈ PF . Assume that X is compact and

(i) the function x →
∫
Ξ

f0(x, ξ)P(dξ) is Lipschitz continuous on X,

(ii) the set-valued mapping y ⇒

{
x ∈ X :

∫
Ξ

f1(x, ξ)P(dξ) ≤ y

}
satisfies the Aubin property at (0, x̄)

for each x̄ ∈ S(P).
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Then there exist constants L > 0 and δ > 0 such that the estimates

|v(P)− v(Q)| ≤ L dF (P, Q) (4)
sup

x∈S(Q)

d(x, S(P)) ≤ ΨP(L dF (P, Q)) (5)

hold whenever Q ∈ PF and dF (P, Q) < δ. Here d(x, S(P)) denotes the distance of x to the solution set
S(P) of (1) and the function ΨP is given by ΨP(t) = t + ψ−1

P (2t) for all t ∈ R+, where ψP is the growth
function

ψP(τ)= inf
x∈X

{∫
Ξ

f0(x, ξ)P(dξ)− v(P) : d(x, S(P)) ≥ τ, x ∈ X,
∫

Ξ
f1(x, ξ)P(dξ) ≤ 0

}
.

In case f1 ≡ 0 only lower semicontinuity is needed in (i) and the estimates (4) and (5) hold with L = 1 and
for any δ > 0. Furthermore, ΨP is lower semicontinuous and increasing on R+ with ΨP(0) = 0.

We note that all assumptions refer to the original probability distribution, where we tried to
avoid restrictive differentiability assumptions on objective and constraint functions. Condition
(ii), for example, represents a constraint qualification for the original problem (1) (see also [33,
Section 9F]).

The stability result suggests to choose discrete approximations from Pn(Ξ) for solving (1) such
that they solve the best approximation problem

min
Pn∈Pn(Ξ)

dF (P, Pn) (6)

at least approximately. Determining the scenarios of some solution to (6) may be called optimal
scenario generation. This optimal choice of discrete approximations is computationally challeng-
ing and hard to compute in general. However, for linear two-stage models we argue later that
problem (6) allows a reformulation as linear semi-infinite program in some cases. Classical dis-
crete approximations in stochastic programming are based on Monte Carlo approximations for
which Pn are random discrete measures. Its convergence properties are well understood due to
the well known properties of empirical processes [34, 40, 41]. More recently, (randomized) Quasi-
Monte Carlo methods [6, 22], optimal quantization techniques [28], sparse grid quadrature rules
[10] and moment-based methods [25] have been studied.

In [32] it is suggested to eventually enlarge the function class F such that dF becomes a metric
distance and has further nice properties. This may lead, however, to coarse upper bounds in (4)
and (5), to challenging minimization problems (6) for determining the optimal scenarios and to
unfavorable convergence rates of (

min
Pn∈Pn(Ξ)

dF (P, Pn)

)
n∈N

. (7)

Typical examples are bounded subsets F of Banach spaces Ck,α(Ξ) of functions which are k-times
differentiable and all kth order derivatives are Hölder continuous with exponent α for k ∈ N0,
α ∈ (0, 1]. For such sets F the convergence rate of (7) is at best O(n−

k+α
d ) where d ∈ N is the

dimension of Ξ [26].
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3 The road of probability metrics

For linear two-stage models the function f0(x, ·) is locally Lipschitz continuous in general. Hence,
one might resort to a bounded subset of a space of locally Lipschitz continuous functions as en-
larged class F . This idea leads to the so-called Fortet-Mourier metrics (of order r ≥ 1)

ζr(P, Q) = dFr(Ξ)(P, Q) = sup
f∈Fr(Ξ)

∣∣∣∣∫Ξ
f (ξ)P(dξ)−

∫
Ξ

f (ξ)Q(dξ)

∣∣∣∣ , (8)

where the function class Fr(Ξ) is given by

Fr(Ξ) =
{

f : Ξ 7→ R : f (ξ)− f (ξ̃) ≤ cr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ
}

,

cr(ξ, ξ̃) = max{1, ‖ξ‖, ‖ξ̃‖}r−1‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).

Such Fortet-Mourier metrics admit a dual representation as Kantorovich-Rubinstein functional
(see [31]). If the so-called reduced cost function ĉr is defined by

ĉr(ξ, ξ̃) = inf

{
k−1

∑
i=0

cr(ξ
li , ξ li+1) : k ∈N, ξ li ∈ Ξ, i = 0, . . . , k, ξ l0 = ξ, ξ lk = ξ̃

}
,

all functions f ∈ Fr satisfy f (ξ) − f (ξ̃) ≤ ĉr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ, and ĉr is a metric on Ξ satisfying
ĉr ≤ cr. Hence, the next result is a consequence of [31, Section 6.1].

Proposition 2. The Fortet-Mourier metric (8) admits the dual representation

ζr(P, Q) = inf
{∫

Ξ×Ξ
ĉr(ξ, ξ̃)η(dξ, dξ̃) : η ◦ π−1

1 = P, η ◦ π−1
2 = Q

}
(9)

as Monge-Kantorovich transportation problem based on reduced costs if the metric space (Ξ, ĉr) is separable.
The latter is true for r = 1 and for r > 1 if Ξ is bounded.

Using Fortet-Mourier metrics the problem (6) of optimal scenario generation reads

min
Pn∈Pn(Ξ)

ζr(P, Pn) (10)

or, equivalently,

min
(ξ1,...,ξn)∈Ξn

∫
Ξ

min
j=1,...,n

ĉr(ξ, ξ j)P(dξ).

The function (ξ1, . . . , ξn) 7→
∫

Ξ minj=1,...,n ĉr(ξ, ξ j)P(dξ) is continuous on Ξn and has compact level
sets, but is nonconvex and nondifferentiable in general. Hence, optimal scenarios exist, but their
computation seems to be challenging.

Let P itself be discrete with a large number N � n of scenarios. In case of Ξ = Rd the optimal
scenario generation problems (6) and (10) are called continuous scenario reduction in [38] while
in case Ξ = supp(P) problems (6) and (10) reduce to the classical (discrete) scenario reduction
problem [8].

We consider the latter case and let first P and Q be two general discrete distributions, where ξ i

are the scenarios with probabilities pi, i = 1, . . . , N, of P and ξ̃ j the scenarios and qj, j = 1, . . . , n,
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the probabilities of Q. If Ξ denotes the union of both scenario sets, we have due to Proposition 2

ζr(P, Q) = inf
{ N

∑
i=1

n

∑
j=1

ηij ĉr(ξ
i, ξ̃ j) :

n

∑
j=1

ηij = pi,
N

∑
i=1

ηij = qj, ηij ≥ 0,

i = 1, . . . , N, j = 1, . . . , n
}

= sup
{ N

∑
i=1

piui −
n

∑
j=1

qjvj : ui − vj ≤ ĉr(ξ
i, ξ̃ j), i = 1, . . . , N, j = 1, . . . , n

}
primal and dual representations of ζr(P, Q) as primal and dual forms of the linear tranportation
problem.

If the discrete distribution Q is supported by a subset ξ j, j ∈ J, of the support of P with
probabilities qj, j ∈ J, ∅ 6= J ⊂ {1, . . . , N} and Ξ = supp(P), the best approximation of P with
respect to ζr by such a distribution Q exists. If it is denoted by Q∗ its ζr-distance to P is

DJ := ζr(P, Q∗) = ∑
i 6∈J

pi min
j∈J

ĉr(ξ
i, ξ j) (11)

and its probabilities are q∗j = pj + ∑
i∈Ij

pi, ∀j ∈ J, where Ij := {i 6∈ J : j = j(i)} and j(i) ∈

arg min
j∈J

ĉr(ξ i, ξ j), ∀i 6∈ J (optimal redistribution [8]).

Determining the optimal scenario index set J with prescribed cardinality n is a so-called metric
n-median problem and of the form

min {DJ : J ⊂ {1, ..., N}, |J| = n} . (12)

Metric n-median problems and, hence, the problem of finding the optimal index set J of remaining
scenarios are known to be NP-hard [20] and polynomial time algorithms for solving (12) are not
available.

Problem (12) may be reformulated as combinatorial program

min
N

∑
i,j=1

pixij ĉr(ξ
i, ξ j) subject to

N

∑
i=1

xij = 1 (j = 1, . . . , N),
N

∑
i=1

yi ≤ n ,

xij ≤ yi, yi ∈ {0, 1}, xij ∈ {0, 1} (i, j = 1, . . . , N).

The variable yi decides whether scenario ξ i remains and xij indicates whether scenario ξ j, j 6= i,
minimizes the ĉr-distance to ξ i. The combinatorial program could, of course, be tackled by stan-
dard software, e.g., by LP-based branch and bound. There is also a well developed theory of
polynomial-time approximation algorithms for such programs. The currently available best ap-
proximation algorithms for metric n-median problems are local search heuristics [1] and pseudo-
approximation [23]. The latter provides an approximation ratio of 1 +

√
3 + ε. Approximation

ratio α > 1 means that such an algorithm produces for all instances of the program a solution
whose value is within a factor of α of the infimum.

The simplest algorithms are so-called greedy heuristics, namely, backward (or reverse) and
forward heuristics. In the present context such backward and forward heuristics are described
below (see [13, 14]).
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Backward and foward starting points for n = N − 1 and n = 1, respectively, are

min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξl , ξ j) and min
u∈{1,...,N}

N

∑
k=1

pk ĉr(ξk, ξu).

Backward reduction algorithm:

Step [0]: J[0] := ∅ .
Step [i]: li ∈ arg min

l 6∈J[i−1]
∑

k∈J[i−1]∪{l}
pk min

j 6∈J[i−1]∪{l}
ĉr(ξk, ξ j).

J[i] := J[i−1] ∪ {li} .
Step [N-n+1]: Optimal redistribution.

Forward selection algorithm:

Step [0]: J[0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J[i−1]
∑

k∈J[i−1]\{u}
pk min

j 6∈J[i−1]\{u}
ĉr(ξk, ξ j),

J[i] := J[i−1] \ {ui} .
Step [n+1]: Optimal redistribution.

In case r = 1 and if the support of P is contained in the Euclidean unit ball in Rd it is shown

in [38] that the infimum in (10) is less than or equal to 2
√

N−n
N−1 where the latter bound is sharp

in general. Moreover, it is proved in [38] that the approximation ratio of forward selection for
solving (10) is not bounded for unbounded N. Instead, a (5 + ε)-approximation algorithm based
on [1] is developed and tested there. The authors report that warmstarting the algorithm using
forward selection can significantly reduce its runtime. In addition, forward selection worked well
in test cases [13] and many practical instances reported in the literature (see, for example, [2,
30] and Example 4). Together with its extension to construct scenario trees for solving multi-
stage stochastic programs, forward selection has been implemented in GAMS/Scenred2 by my
colleague Holger Heitsch (WIAS Berlin, formerly Humboldt-University Berlin).

Example 3. Sample reduction for a two-dimensional normal distribution
We consider a two-dimensional normal distribution with correlated components and generate

N = 104 Monte Carlo points with identical probability 1
N using the Mersenne Twister [24]. Then

the optimal scenario reduction problem (10) for r = 1 and n = 20 is solved approximately by the
forward selection heuristic. The result is shown below where the new probabilities after redistri-
bution are proportional to the diameters of the red balls that represent the remaining scenarios.
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Example 4. Generating exit gas flow scenarios
We consider the stationary state of the network of Germany’s largest gas transport company.

It contains a large number of exit and a low number of entry nodes. In its isothermal case gas
pressure and flow satisfy a large system of nonlinear equations and inequalities. A huge number
of hourly gas flow data is available at all exit nodes. Temperature classes are introduced and a
corresponding filtering of the daily mean gas flows at all exit points is performed according to
a daily reference temperature. Based on this a multivariate probability distribution for the gas
flow at all exits is estimated. Then N = 2340 temperature depending gas flow samples with
identical probability 1

N are generated as randomized Sobol’ points for several hundred exits and
later reduced by forward selection for r = 1 to n = 50 scenarios. The result is shown below for
a typical exit where the new probabilities after redistribution are proportional to the diameters of
the red balls representing the remaining scenarios. For details we refer the reader to [21, Chapters
13, 14].
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While Fortet-Mourier metrics serve as upper bounds for the distance dF in case of two-stage
models, this is not the case for mixed-integer two-stage and chance constrained models. As shown
in [17, 35, 36] discrepancy distances of the form

αB(P, Q) = sup
B∈B
|P(B)−Q(B)| (P, Q ∈ P(Ξ)), (13)

with appropriate classes B of Borel sets are relevant for both types of models. To study scenario
reduction in case of such distances let P be again a discrete distribution with scenarios ξ i and

7



probabilities pi, i = 1, . . . , N, and Q be supported by a subset ξ j of scenarios with probabilities
qj, j ∈ J, where J ⊂ {1, . . . , N} is an index set with cardinality |J| = n. Then (13) admits the
representation

αB(P, Q) = min

t

∣∣∣∣∣∣∣
− ∑

j∈I∩J
qj ≤ t− ∑

i∈I
pi, I ∈ IB

∑
j∈I∩J

qj ≤ t + ∑
i∈I

pi, I ∈ IB

 (14)

as linear program, where the set IB contains all index sets IB of scenarios which belong to B for
each B ∈ B, i.e., IB = {IB = {i ∈ {1, . . . , N} : ξ i ∈ B} : B ∈ B}. The set IB may have up to 2N

elements and is, hence, too large in general for solving the linear program (14) and for determining
(t, q) if the set J of remaining scenarios is known. Instead the system I?B(J) = {I ∩ J : I ∈ IB} of
reduced index sets with at most 2n elements and the quantities

γ(I?) = max
I∈IB

{
∑
i∈I

pi : I ∩ J = I?
}

, γ(I?) = min
I∈IB

{
∑
i∈I

pi : I ∩ J = I?
}

.

are introduced for all I? ∈ I?B(J). Then αB(P, Q) may be represented as

αB(P, Q) = min

t

∣∣∣∣∣∣∣
− ∑

j∈I?
qj ≤ t− γ(I?), I? ∈ I?B(J)

∑
j∈I?

qj ≤ t + γ(I?), I? ∈ I?B(J)

 . (15)

For classes B of closed cells (i.e., of all sets ξ + Rd
−), of rectangular (i.e., of all axis-parallel boxes)

and of polyhedral subsets (having at most k vertices) of Rd the concept of supporting sets is de-
veloped and its intimate relationship to determining I?B(J) and γ(I?) and γ(I?), respectively, is
unveiled in [15, 16]. Numerical experience for scenario reduction with respect to discrepancy dis-
tances is available in [15, 16] only for low dimensions d. It is known that even the computation
of the cell discrepancy is NP-hard [7, Section 10.3.3]. We refer to [7, Section 10.3.4] for promising
alternative approaches to calculate the cell discrepancy.

4 Problem-based scenario generation for linear two-stage models

Next we show that for linear two-stage stochastic programs the use of enlarged function classes F
for scenario generation and reduction can be avoided. Instead the minimal information distance
(3) can be utilized to develop a problem-based approach. To this end, we consider two-stage
models with the notation introduced in Example 1 and impose the following conditions:
(A0) X is a bounded polyhedron.
(A1) h(x, ξ) ∈W(Rm̄

+) and q(ξ) ∈ D are satisfied for every pair (x, ξ) ∈ X× Ξ.
(A2) P has a second order absolute moment.
Then the infima v(P) and v(Pn) are attained and the estimate

|v(P)− v(Pn)| ≤ sup
x∈X

∣∣∣∣∫Ξ
f0(x, ξ)P(dξ)−

∫
Ξ

f0(x, ξ)Pn(dξ)

∣∣∣∣
= sup

x∈X

∣∣∣∣∫Ξ
Φ(q(ξ), h(x, ξ))P(dξ)−

∫
Ξ

Φ(q(ξ), h(x, ξ))Pn(dξ)

∣∣∣∣
holds due to Proposition 1 for every Pn ∈ Pn(Ξ). Hence, the optimal scenario generation problem
(6) with uniform weights may be reformulated as:
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Determine P∗n ∈ Pn(Ξ) such that its scenarios ξ i, i = 1, . . . , n, with uniform weight 1
n solve the best

uniform approximation problem

min
(ξ1,...,ξn)∈Ξn

sup
x∈X

∣∣∣∣∣
∫

Ξ
Φ(q(ξ), h(x, ξ))P(dξ)− 1

n

n

∑
i=1

Φ(q(ξ i), h(x, ξ i))

∣∣∣∣∣ (16)

for the expected recourse function FP(x) :=
∫

Ξ Φ(q(ξ), h(x, ξ))P(dξ). All functions belonging
to the class {Φ(q(·), h(x, ·)) : x ∈ X} from Ξ to R are finite, continuous and piecewise linear-
quadratic on Ξ. They are linear-quadratic on each convex polyhedral set

Ξj(x) =
{

ξ ∈ Ξ : (q(ξ), h(x, ξ)) ∈ Kj
}

(j = 1, . . . , `),

where the convex polyhedral cones Kj, j = 1, . . . , `, represent a decomposition of the domain
D×W(Rm̄

+) of Φ, which is itself a convex polyhedral cone in Rm̄+s. Problem (16) is equivalent to
a generalized semi-infinite problem in which the infinite index set of the constraints depends on
the decisions.

Proposition 3. Assume (A0)–(A2). Then (16) is equivalent to the generalized semi-infinite program

min
t≥0,ξ̂=(ξ1,...,ξn)∈Ξn

t

∣∣∣∣∣∣∣∣∣∣
1
n

n
∑

i=1
〈h(x, ξ i), zi〉 ≤ t + FP(x)

FP(x) ≤ t + 1
n

n
∑

i=1
〈q(ξ i), yi〉

∀(x, y, z) ∈ M(ξ1, . . . , ξn)

 , (17)

where the constraint-index set mappingM : Ξn → Rm+(m̄+s)n is given by

M(ξ̂) =
{
(x, y, z) ∈ X×Rm̄n

+ ×Rsn : Wyi = h(x, ξ i), W>zi ≤ q(ξ i), i = 1, . . . , n
}

.

We note that theory and numerical methods for generalized semi-infinite programs are well-
developed (see the survey [11]). If either right-hand sides or costs of the two-stage model are
random, problem (17) is convex and can be further simplified.

Proposition 4. Assume (A0)–(A2). Let the function h be affine and let either h or q be random. Then
the generalized semi-infinite program (17) is convex and can be transformed into an equivalent (standard)
linear semi-infinite program.

Of course, the expected recourse function FP can only be calculated approximately even if the
probability measure P is completely known. For numerical computations FP has to be replaced by
its Monte Carlo or Quasi-Monte Carlo approximation with a large sample size N > n. For proofs
and details it is referred to [18].

Acknowledgement: At different stages of my scientific career I owe much to several persons. I wish
to thank my collaborators, many of whom became friends, my Post-docs and PhD students who obtained
excellent results and provided a pleasant working environment.
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