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Abstract. The method of torus actions developed by the first and third au-

thors yields examples of isospectral, non-isometric metrics on compact mani-
folds and isophasal, non-isometric metrics on non-compact manifolds. In con-

trast to most examples constructed by the Sunada method, the resulting ex-

amples have different local geometry. In this review we discuss insights into
the inverse spectral problem gained through both of these approaches.
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1. Introduction

One of Robert Brooks’ ongoing research interests–and an area in which he made
fundamental contributions–was the inverse spectral problem on Riemannian mani-
folds. Through ingenious constructions, he helped produce examples of Riemannian
manifolds which were sufficiently symmetric to have the same spectral and scatter-
ing data, and yet were not isometric. Such examples illuminate the inverse spectral
problem first of all by proving non-uniqueness, and secondly by helping to isolate
geometric properties of Riemannian manifolds which are not determined by spectral
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data. In the present paper, we will review recent constructions of compact manifolds
which are isospectral, and complete non-compact manifolds which are ‘isoscatter-
ing’ in a sense that we will make precise. We will emphasize recent progress in
understanding ‘isoscattering’ manifolds and recent applications of the method of
torus actions, due to the first and third authors, to ‘isoscattering’ problems.

We will consider the following inverse problems from the contrarian point of view
of trying to construct counterexamples.

Problem 1.1. (Inverse spectral problem for compact manifolds) If (M, g) is a
closed Riemannian manifold, the spectrum of the Laplacian consists of an infinite
sequence {λj}∞j=0 of nonnegative eigenvalues, and is described by the counting func-
tion

N(λ) = # {λj : λj ≤ λ} .
If (M, g) is a compact manifold with boundary and Dirichlet or Neumann condi-
tions are imposed, the spectrum is again an infinite sequence of eigenvalues. Find
manifolds (M1, g1) and (M2, g2) with the same spectrum.

We will call closed manifolds with the same spectrum (including multiplicities)
isospectral. For compact manifolds with boundary, one may refer to Dirichlet
isospectral or Neumann isospectral manifolds. For the constructions we will con-
sider, the manifolds will be both Dirichlet and Neumann isospectral, so we will
sometimes simply say “isospectral”. (There is, however, one example known [5] of
compact manifolds which are Neumann but not Dirichlet isospectral.)

Problem 1.2. (Inverse scattering problem, ‘absolute’ version) Let (M, g) be a non-
compact, complete Riemannian manifold with Laplacian ∆. Let R(z) = (∆− z)−1

be the resolvent operator, and suppose that the Laplacian has only continuous spec-
trum in [c,∞) for some c ≥ 0. Thus R(z), as a function from L2(M,dg) to
itself, is analytic in C\[c,∞). Suppose that R(z), viewed as a map from C∞0 (M)
to C∞(M), admits a meromorphic continuation to a Riemann surface which covers
the cut plane. Poles of the meromorphically continued operator are called scattering
resonances (or sometimes scattering poles). Find complete, non-compact manifolds
(M1, g1) and (M2, g2) with the same scattering resonances.

We will call manifolds with the same scattering resonances (including multiplic-
ities) isopolar.

Problem 1.3. (Inverse scattering problem, ‘relative’ version) Let (M, g0) be a
non-compact, complete Riemannian manifold of dimension n and suppose that g
is a compactly supported perturbation of g0 which is also a complete metric on M .
Let H0 be the Laplacian on (M, g0) and let H = τ∆τ∗ where ∆ is the Laplacian
on (M, g) and τ : L2 (M,dg) → L2(M,dg0) be the natural isometry. There is a
real-valued, locally integrable function ξ on R with the property that

Tr (f(H)− f(H0)) = −
∫
f ′(λ)ξ(λ) dλ

for all smooth functions f which vanish sufficiently rapidly at infinity. The metric
g0 and operator H0 are referred to as the background metric and the reference
operator and remain fixed throughout the discussion. The function ξ is called the
scattering phase for the pair (H,H0), and is analogous to the counting function
N(λ) in Problem 1.1. Find metrics g1 and g2 on M so that the pairs (H1,H0) and
(H2,H0) have the same scattering phase.



ISOSPECTRAL AND ISOSCATTERING MANIFOLDS 3

We will call such pairs of metrics isophasal and, when the common, fixed refer-
ence metric g0 is understood, we will also refer to g1 and g2 as “isophasal metrics”
and to (M, g1) and (M, g2) as “isophasal manifolds.”

The scenario outlined in Problem 1.2 happens, among other examples, for metric
perturbations of Rn and quotients of real hyperbolic space by geometrically finite
discrete groups. We will discuss the mathematical and physical meaning of scatter-
ing resonances in §2 of what follows. Relative scattering as discussed in Problem
1.3 makes sense for any complete manifold, as was shown in a striking paper of
Gilles Carron [20].

For Problem 1.1, there is a vast literature of examples of isospectral manifolds.
See [27] for a survey of examples prior to 2000. We will not attempt to survey all
the examples here but rather will emphasize the techniques and mention primar-
ily recent examples. There are, roughly speaking, three methods for constructing
examples of isospectral manifolds.

(1) Explicit Construction: Recent examples constructed by explicit computa-
tions include isospectral flat manifolds with surprising spectral properties
([43], [44], [45]), the first examples [58] of isospectral manifolds with bound-
ary having different local geometry (these partially motivated and were later
reinterpreted by the torus action method below) and the first examples of
pairs of isospectral metrics on balls and spheres [59].

(2) Representation-Theoretic Construction: Representation theoretic methods,
especially the celebrated Sunada technique [56], have provided the most
systematic and widely used methods for constructing isospectral manifolds
with the same local, but different global, geometry.

(3) Torus Actions. This method generally produces isospectral manifolds with
different local geometry.

Among the many examples constructed by Sunada’s method are Riemann sur-
faces of every genus greater than or equal to four [17], including huge families
of mutually isospectral surfaces in high genus [10], and examples of isospectral
plane domains [34]. As explained in §3 below, the Sunada technique (and other
representation-theoretic techniques) produce isospectral quotientsH1\M andH2\M
of a given Riemannian manifold M by discrete groups Hi of isometries; thus the
isospectral manifolds are locally isometric. Recently, however, Craig Sutton [57]
modified Sunada’s method to allow the subgroups Hi to be connected, and con-
structed isospectral simply-connected, normal homogenous spaces that are not lo-
cally isometric.

The method of torus actions ([26], [28], [29], [36], [52], [53], [54]) was developed
to construct isospectral manifolds with different local geometry. The first author
used this method to construct continuous families of isospectral metrics on the n-
ball and (n − 1)-sphere for all n ≥ 9. The third author lowered n to 8 and also
obtained pairs of isospectral metrics on the 6-ball and 5-sphere. She also showed
that in all cases, one can arrange that the metrics on the balls are Euclidean except
on an arbitrarily chosen smaller ball about the origin.

Both the Sunada technique and the method of torus actions have been extended
to complete, noncompact manifolds in order to obtain non-isometric manifolds with
the same scattering resonances (the isopolar manifolds of Problem 1.2) and, in
some cases, the same scattering phase (the isophasal manifolds of Problem 1.3).
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As explained in §2, isophasality is a stronger condition than isopolarity in con-
texts where both notions are well-defined (see Remarks 2.2 and 2.3). The examples
constructed by these two methods account for all known examples of complete,
non-isometric manifolds with the same scattering data. The examples constructed
by variants of Sunada’s technique include finite-area Riemann surfaces (both isopo-
lar and isophasal–see Bérard [4] and Zelditch [66]), Riemann surfaces of infinite
area (isopolar and isophasal–see Guillopé-Zworski [38] and Brooks-Davidovich [8]),
three-dimensional Schottky manifolds (isopolar–see Brooks-Gornet-Perry [11]), and
surfaces that are isometric to Euclidean space outside a compact set (isopolar and
isophasal–see Brooks-Perry [12]).

The generalization of the torus action method to noncompact manifolds is more
recent ([31] and [47]). In [31], the first two authors showed the following: Let {gt}
be any of the families of isospectral metrics on the unit ball in Rn constructed
in [28] or [54], modified as in [54] so that the metrics are Euclidean outside of a
ball of smaller radius about the origin. Extend the metrics to all of Rn so that
they are Euclidean outside of the small ball. Then the resulting metrics are non-
isometric but are both isosphasal and isopolar. In [47], the last two authors show
how to use a similar construction to obtain non-isometric, isophasal and isopolar
families of metrics on Rn which are hyperbolic off a small ball or more generally
are perturbations of complete metrics which admit an O(n) action by isometries.

In what follows we first review basic notions of spectral and scattering theory for
the Laplacian on a Riemannian manifold (§2), recall the Sunada method (§3), and
discuss the method of torus actions (§4). Finally, we pose several open problems
(§5).

2. Spectral and Scattering Theory for the Laplacian

The Laplace-Beltrami operator on a Riemannian manifold is most easily defined
via the method of quadratic forms. For a closed manifold, we denote by H1(M, g)
the completion of C∞ (M) in the inner product

(2.1) 〈ϕ,ψ〉 =
∫
M

∇ϕ · ∇ψ dg +
∫
M

ϕψ dg.

For a complete, non-compact manifold, we denote by H1
0(M, g) the completion of

C∞0 (M) in the same inner product. If M is a compact manifold with boundary, we
denote by H1

D (M, g) the completion of C∞0 (M) in the inner product (2.1), and by
H1
N (M, g) the completion of C∞ (M)1 in the same inner product.
The Laplace-Beltrami operator on M is the positive operator ∆M associated to

the quadratic form

q (ϕ,ψ) =
∫
M

∇ϕ · ∇ψ dg,

with form domain given by:
• H1(M, g) if M is compact and without boundary,
• H1

D (M, g) if M is compact, ∂M 6= ∅ and Dirichlet boundary conditions
are imposed,

• H1
N (M, g) if M is compact, ∂M 6= ∅ and Neumann boundary conditions

are imposed, and

1If M is a manifold with boundary, C∞(M) denotes the restrictions of C∞ functions on the
double of M , i.e., the manifold obtained by gluing two copies of M along ∂M .
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• H1
0 (M, g) if (M, g) is non-compact and complete.

The spectral theory of the operator ∆M determines the behavior of solutions
to the wave equation on (M, g). Consider the initial value problem for a function
u : R → L2(M, g) and initial datum ψ ∈ L2(M, g):

utt = −∆Mu(2.2)

u(0) = ψ

ut(0) = 0

Formally, the solution to this equation is

u(t) = cos
(
t
√

∆M

)
ψ

where the solution operator

E(t) = cos
(
t
√

∆M

)
is defined by the functional calculus for the self-adjoint operator ∆M .

On the level of functional analysis, the spectral theory of the Laplace operator
determines the behavior of solutions in the following way. Recall that if ψ is a vector
in H, and A is a self-adjoint operator on H, the linear functional f 7→ (f(A)ψ,ψ)
on real-valued continuous functions f that vanish at infinity may be represented as
integration with respect to a Borel measure µψ on the real line:

(f(A)ψ,ψ) =
∫

R
f(λ) dµψ(λ).

This measure is called the spectral measure for ψ with respect to the self-adjoint
operator A. For any self-adjoint operator A on a Hilbert space H, the orthogonal
decomposition

H = Hp.p.(A)⊕Ha.c.(A)⊕Hs.c.(A)

holds, corresponding to vectors ψ ∈ H for which the spectral measure µψ is pure
point, absolutely continuous, or singularly continuous with respect to Lebesgue
measure on the line (see [49], chapter VII and §VIII.3). Roughly and informally,
initial data in Hp.p.(∆M ), Hp.p.(∆M ), and Hs.c. (∆M ) corresponds respectively to
bound, escaping, and recurrent orbits for the wave equation. On compact manifolds
H = Hp.p. (∆M ) so that there are only bound orbits. On non-compact manifolds
with simple geometry at infinity, we expect that H = Hp.p.(∆M )⊕Ha.c.(∆M ), i.e.,
all orbits are either bounded or escape to infinity, and there are no recurrent orbits.

2.1. Compact Manifolds. If M is a closed manifold or compact manifold with
boundary, the spectrum of the Laplacian consists of discrete eigenvalues λj as-
sociated to normalized eigenfunctions ϕj . The solution is written in the familiar
separation of variables form

(2.3) u(x, t) =
∞∑
j=0

(ϕj , ψ) cos
(
t
√
λj

)
ϕj(x).

where ( · , · ) is the L2(M, g)-inner product. The eigenfunctions ϕj and the numbers√
λj determine standing wave patterns and frequencies of oscillation. These are

determined by the geometry of the manifold and encode geometric data.
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For purposes of comparison with the non-compact case, it will be useful to note
that the numbers λj may be obtained as poles of the L2-resolvent operator

R(z) = (∆M − z)−1

whose residues project onto the appropriate eigenspaces. The solution operator
E(t) is obtained from the resolvent R(z) via the integral formula

(2.4) E(t) =
1

2πi

∫
Re(λ)=c

λR(−λ2)etλ dλ,

where c < 0, as follows from the inverse Laplace transform

(2.5) cos(tx) =
1

2πi

∫
Re(λ)=c

λ

λ2 + x2
etλ dλ,

true for any c < 0, together with the spectral theorem for self-adjoint operators.
One can recover the formula (2.3) from (2.5) and the meromorphy of the resolvent
operator.

2.2. Non-Compact Manifolds: Scattering Resonances. If (M, g) is not com-
pact but has “simple geometry at infinity,”2 the Laplace operator may have no
eigenvalues, corresponding to the fact that energy may “leak out” of any bounded
region. If we examine the behavior of a solution to (2.2) on a non-compact mani-
fold M with simple geometry at infinity, but restrict attention to a compact subset
of M , we find an expansion analogous to (2.3) in which the cosines are replaced
by complex exponentials and the eigenvalues are replaced by complex numbers ζ,
the scattering resonances of the Laplacian, whose real parts determine a frequency
of oscillation and whose imaginary parts determine a rate of energy decay for the
associated normal mode.3 For example, in the case of scattering by a compactly
supported perturbation in Rn when n is odd, the expansion4

χ cos
(
t
√

∆M

)
χψ ∼

∑
j

Nj∑
k=0

cj,kt
k exp (iζjt)ϕj(x)

holds, where χ ∈ C∞0 (Rn) is a cutoff function, the ϕj are resonance eigenfunctions,
and the numbers cj,k depend on the initial data ψ. The secular terms (involving
powers of t) may arise because the resonances are solutions of a non-self-adjoint
eigenvalue problem. More precisely, the resonances are poles of the analytically
continued operator

R̃(k) = χ
(
∆M − k2

)−1
χ.

initially defined on the half plane Im(k) < 0 (corresponding to the cut plane
C − [0,∞) in the λ = k2 variable) and extended to the complex k-plane. Like

2Examples include perturbations of the Euclidean metric and non-compact locally symmetric
spaces

3For an introduction to resonances and a review of earlier literature, see the surveys [67] and
[68]

4So-called resonance wave expansions of this kind were first proved by Vainberg [61] for acous-
tical scattering by an obstacle in Rn. Resonance wave expansions have also been obtained for

certain hyperbolic surfaces by Christiansen and Zworski [23] and for scattering on Rn by a com-
pactly supported perturbation by Tang and Zworski [60]. Although resonance wave expansions
are expected to hold in “reasonable” scattering situations, the proof involves delicate estimates

on the meromorphically continued resolvent and subtle remainder estimates.
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the resolvent of a non-symmetric matrix, the resolvent R̃(k) has a Laurent expan-
sion near a given singularity ζ whose polar part takes the form

∑Nζ

j=1Aj (k − ζ)−j .
Here the Aj are finite-rank operators and the Aj for j ≥ 2 are nilpotent. The
resonance eigenfunctions ϕj are determined by the finite-rank residues of the re-
solvent. The multiplicity of a scattering resonance ζ is the dimension, mζ , of the
space ⊕Nζ

j=1 Ran(Aj). The set of resonances ζ together with their multiplicities mζ

forms the resonance set for ∆M and constitutes a discrete set of ‘scattering’ data
analogous to the eigenvalues. This resonance set is the subject of the ‘absolute
scattering’ inverse problem, Problem 1.2.

In most cases of interest, the scattering poles for a complete, non-compact man-
ifold M with geometric boundary ∂∞M can also be characterized as poles of a
scattering matrix S(z) : C∞(∂∞M) → C∞(∂∞M).

2.3. Non-Compact Manifolds: Scattering Phase. Relative scattering theory
compares solutions of an evolution equation such as the wave equation (2.2) to
solutions of the same equation for a simpler, ‘unperturbed’ system. For example,
suppose that (M, g) = (Rn, g) where g is a metric on Rn which differs from the
Euclidean metric g0 only on a compact set. A natural comparison problem is then
the wave equation for the Laplacian ∆0 on (Rn, g0).

Thus, comparison or relative scattering theory is very naturally a branch of per-
turbation theory for linear operators. One of the most fruitful versions of scattering
theory at the level of operator theory is the trace-class scattering theory pioneered
by Kato, Birman, Krein, and others; Yafaev’s monongraph [64] gives a very com-
plete survey. For basics of scattering theory and a more concise review of the
trace-class theory of scattering, see [50]. The trace-class theory concerns spectral
and scattering theory for pairs of operators (A,B) for which ϕ(A)− ϕ(B) belongs
to the trace class for some monotone function ϕ. The following theorem of Carron
[20] (actually proved in somewhat greater generality there) shows that we can apply
trace-class scattering to many geometric situations.

Theorem 2.1. Suppose that (M, g0) is a complete Riemannian manifold and that
g is another complete metric on M with the property that g − g0 is compactly
supported. Let ∆0 and ∆ be the respective Laplacians on (M, g0) and (M, g), let
τ : L2(M, g) → L2(M, g0) be the natural isometry, let H0 = ∆0, and let H = τ∆τ∗.
Then for any integer k > n/2 and any z ∈ C− R, the operator

(H − z)−k − (H0 − z)−k

is a trace-class operator.

For such pairs (H,H0), the trace-class theory guarantees that for every solution
of the initial value problem

utt = −Hu
u(0) = ψ

ut(0) = 0
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with initial data ψ in the absolutely continuous spectral subspace for H, there are
corresponding initial data ψ± and solutions u± of the equation

utt = −H0u

u(0) = ψ±

ut(0) = 0

with the property that limt→±∞ ‖u(t)− u±(t)‖ = 0. That is, the solutions u±
of the unperturbed equation are asymptotic to the solution u of the perturbed
equation. The scattering operator is the map S(H,H0) : ψ− → ψ+ from the “past”
to the “future” asymptote.

The operator S(H,H0) commutes with H0. Thus, in a spectral representation
for H0, S(H,H0) acts by unitary operators S(λ) on Hilbert spaces Hλ that arise in
the spectral decomposition of H0; here λ ∈ [0,∞) is a spectral parameter. 5

In geometric situations, S(λ) can be viewed as an operator from C∞(∂∞M) to
itself: elements of C∞(∂∞M) should be thought of as ‘radiation patterns’ for a wave
of energy λ, and S(λ) as a map from incoming to outgoing radiation patterns. The
trace-class theory guarantees that S(λ) − I is a trace class operator, so that the
operator determinant detS(λ) is well-defined. Since S(λ) is unitary, it follows that

detS(λ) = exp(2πiσ(λ))

for a function σ on the real line. The function σ(λ) is called the scattering phase
and is determined by the pair (H,H0).6

A fundamental result of Birman and Krein relates the scattering phase to the
spectral shift function (SSF) for the pair (H,H0). Under the trace-class condition
in Theorem 2.1, there is a measurable, real-valued, and locally integrable function
ξ on R with the property for all admissible functions f (including C∞0 (R) functions
and the function f(λ) = exp(−tλ)), the trace formula

Tr (f(H)− f(H0)) = −
∫
f ′(λ)ξ(λ) dλ

holds. The celebrated Birman-Krein formula states that

(2.6) detS(λ) = exp(2πiξ(λ)).

5For example, if H0 is the Euclidean Laplacian, S(H, H0) acts on L2(Rn). LetHλ = L2(Sn−1),

and think of the space H = L2((0,∞)× Sn−1) as the ‘constant fibre direct integral’Z ⊕

(0,∞)
Hλ dλ.

If F is the Fourier transform, then the map

Vf(λ, ω) = 2−1/2λ(n−2)/4 (Ff) (λ1/2ω)

from L2(Rn) to H (here λ ∈ (0,∞) and ω ∈ Sn−1) gives the spectral representation for H0. The
operator VS(H, H0)V−1 acts on H as Z ⊕

(0,∞)
S(λ) dλ

where S(λ) is a unitary operator on Hλ and S(λ)− I is a trace-class operator on Hλ.
6As we have defined it, σ is defined only modulo the integers. The Birman-Krein formula (see

(2.6)) expresses the scattering phase in terms of the spectral shift function for the pair (H, H0),

which is uniquely determined.
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Setting f(λ) = exp(−tλ) yields a ‘relative heat trace’

H(t) = Tr (exp(−tH)− exp(−tH0))

= −t
∫

exp(−tλ) ξ(λ) dλ.

which is thus determined by the scattering phase. It is not difficult to see that if
pairs of operators (H1,H0) and (H2,H0) have the same relative heat trace, then
the spectral shift functions are equal almost everywhere.

The scattering phase is the subject of the ‘relative scattering inverse problem,’
Problem 1.3.

Remark 2.2. When (M, g0) is Euclidean space and g is a compactly supported
perturbation of g0, the scattering phase σ(λ) has a meromorphic extension to a
double cover (n odd) or an infinite cover (n even) of the cut plane whose poles
are exactly the scattering resonances. Thus the scattering phase determines the
scattering resonances. On the other hand, the scattering resonances determine σ(λ)
only up to finitely many parameters, in analogy to the fact that the zeros of an entire
function of finite order determine an entire function only up to an overall factor
which is the exponential of a polynomial (if n is odd, the additional parameters are
exactly the coefficients of a polynomial in such an exponential factor).

Remark 2.3. When (M, g) is a Riemann surface with finite geometry and infi-
nite area, there is also a natural ‘comparison scattering theory’ as explained in §3.
In these cases, the corresponding scattering phase can be continued to the complex
plane and has poles at the scattering resonances. One can show that the continued
scattering phase is an entire function of finite order so that it is determined by its
zeros up to finitely many parameters. For pairs of isopolar manifolds, the two scat-
tering phases have the same poles when analytically continued; for pairs of isophasal
manifolds, the scattering phases are actually the same, a stronger condition.

3. The Sunada Technique

Sunada’s technique [56] reduces the problem of constructing isospectral or isoscat-
teing manifolds to finding a geometric model for a triple of finite groups (G,H1,H2)
(sometimes called a Sunada triple) that obeys a simple conjugacy condition.

Definition 3.1. Let G be a finite group and let H1 and H2 be subgroups of G.
We will say that H1 is almost conjugate to H2 in G if each G-conjugacy class [g]G
intersects H1 and H2 in the same number of elements.

Remark 3.2. The almost conjugacy condition is equivalent to a representation
theoretic condition as follows. The left multiplication of G on the cosets in G/Hi

gives rise to a natural action of G on the finite-dimensional vector space L2(G/Hi).
The subgroups H1 and H2 of G are almost conjugate if and only if L2(G/H1) and
L2(G/H2) are isomorphic as G-modules.

Recall that a group G acts freely on a manifold M if the only g ∈ G with a
non-trivial fixed point set is the identity element. A group action is called effective
if no nontrivial group element acts as the identity.

Theorem 3.3. Let H1 and H2 be almost conjugate subgroups of a finite group
G. Let (M, g) be a compact Riemannian manifold on which G acts on the left by
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isometries. Assume that H1 and H2 act freely. Then

spec(H1\M, g) = spec(H2\M, g).

There are many proofs of this theorem, each one simple and elegant. (See the
survey [7] for a full discussion and references). Pierre Berard [4], motivated by an
example of Peter Buser, developed a proof by “transplantation” in which eigen-
functions on one manifold can be explicitly transplanted to eigenfunctions with the
same eigenvalue on the other manifold. See also Zelditch [65] for an independent
construction of transplantation. In our presentation below, we give a simplified
version of the transplantation argument by Robert Brooks and Orit Davidovich [8]
(see also [11] and [12] for similar constructions in different geometric contexts and
[30] for an expanded treatment of transplantation).

The transplantation argument is based on the representation-theoretic version of
the almost conjugacy condition given in Remark 3.2. Any G-module isomorphism τ
between L2(G/H1) and L2(G/H2) is uniquely determined by the image c = τ(χH1),
where χH1 ∈ L2(G/H1) is the map that takes the value 1 on the coset H1 and zero
elsewhere. We may view c as a function on G satisfying c(gh) = c(g) for all g ∈ G
and h ∈ H2. Under the hypothesis of Theorem 3.3, identify C∞(Hi\Mi) with
C∞(M)Hi , the space of smooth functions on M invariant under the action of Hi.
Then one shows that the map T : C∞(M) → C∞(M) given by

(3.1) T (f)(x) =
∑
g∈G

c(g)f(g · x)

is a linear isomorphism from C∞(M)H1 to C∞(M)H2 intertwining the Laplacians.
Given a finite group G and almost conjugate subgroups H1 and H2, one can

easily obtain examples of compact Riemannian manifolds M on which G acts by
isometries in such a way that Theorem 3.3 can be applied. Indeed let M0 be
any compact Riemannian manifold whose fundamental group admits a surjection
φ : π1(M0) → G, and let M be the Riemannian covering with fundamental group
ker(φ). Then G acts freely by isometries on M . (This condition is stronger than
what is needed in Theorem 3.3. There we require that H1 and H2 act freely so that
the quotients are manifolds but not that G act freely. In the more general case,
M0 = G\M is an orbifold.) In this way one obtains manifolds M1 and M2 which
are isospectral and are covers of M0, hence are locally isometric.

As noted in the introduction, Sunada’s theorem has been used extensively to
construct isospectral, non-isometric compact manifolds (see for example the first
author’s survey paper [27]), and there are a number of adaptations to the noncom-
pact setting (see [4], [8], [11], [12], [38], [65]). Here we review one such adaptation,
given by Brooks and Davidovich [8], to construct isopolar and isophasal Riemann
surfaces with cusps and/or funnels.

LetM be a complete Riemann surface of infinite area and finite geometry, and let
MC be a conformal compactification. MC has one boundary circle for each funnel
and one boundary point for each cusp. Thus if M has Nc cusps and Nf funnels,

a smooth function on ∂MC is an element of CNc ⊕
(
⊕Nf

j=1C∞(S1)
)
. Choose a

defining function on MC ; this is a function ρ which is positive on MC except at the
boundary circles and cusp points, where it vanishes exactly to first order. Clearly,
any two defining functions ρ and ρ′ are related by ρ = wρ′ for a strictly positive
function w ∈ C∞(MC).
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Let ∆ be the positive Laplacian on M with its natural hyperbolic metric. To
define the scattering matrix, we first need a uniqueness result for generalized eigen-
functions (see, for example [41]). This result should be viewed as an analogue of
uniqueness of solutions for the Dirichlet problem on a bounded domain.

Proposition 3.4. For s with Re(s) = 1/2 and s 6= 1/2, let f+ ∈ C∞(∂MC). Then
there exists a unique solution u ∈ C∞(M) of the eigenvalue equation

(∆− s(1− s))u = 0

with the property that
u ∼ ρ1−sf+ + ρsf− +O (ρ)

as ρ ↓ 0 for a function f− ∈ C∞(MC).

The uniqueness of u implies that the map S(s) : f+ → f− is well-defined; this
map is called the scattering matrix, a map from C∞(∂MC) to itself. The functions
f± can be thought of as incoming and outgoing radiation patterns. Although
initially defined for Re(s) = 1/2, the scattering matrix extends to a meromorphic
operator-valued function of s. Roughly and informally, the poles of S(s) coincide
with the poles of the resolvent (see, for example, [38] for a detailed discussion).
Two Riemann surfaces are called isopolar if the poles of their respective scattering
matrices coincide. Although the scattering matrix appears to depend on the choice
of defining function, this dependence is trivial and it can be shown that the poles
of the scattering matrix are independent of the choice of defining function.

To obtain isopolar surfaces, Brooks and Davidovich began with a complete sur-
face M0 whose fundamental group surjects on a finite group G containing almost
conjugate subgroups H1 and H2. They let MC

0 be a conformal compactification
and chose a defining function ρ0. Letting M be the complete Riemann surface that
covers M0 with covering group G, then a conformal compactification MC of M
covers MC

0 , and the defining function ρ0 lifts to a G-invariant defining function ρ
on MC . Let Mi = Hi\M . Then MC

i := Hi\(MC) is a conformal compactification
of Mi and ρ descends to a defining function ρi on MC

i . Identifying C∞(MC
i ) with

C∞(MC)Hi and C∞(∂MC
i ) with C∞(∂MC)Hi , then it is straightforward to check

that the transplantation map T defined by equation 3.1 both on C∞(MC) and on
C∞(∂MC) intertwines the scattering matrices of M1 and M2. Thus these manifolds
are isopolar. Brooks and Davidovich used this method (with very carefully chosen
M0) to construct isopolar surfaces of various genera with various numbers of ends
and also to construct isopolar congruence surfaces.

As shown in [38], it is possible to define relative scattering from a Riemann
surface of infinite area and finite geometry. For such a Riemann surface M ,

M = Z ∪
(
∪NC
i=1Ci

)
∪

(
∪Nf

j=1Fj

)
where Ci are cusps and Fj are funnels. The absolute scattering operator S(s) acts

on C∞(∂MC) = CNc ⊕
(
⊕Nf

j=1C∞(S1)
)
; if

S0(s) = 1⊕
(
⊕Nf

j=1SFj (s)
)

where 1 is the identity on CNC and SFj (s) is the scattering matrix for a hyperbolic
half-funnel with Dirichlet conditions, then the relative scattering matrix is Srel(s) =
S(s)S0(s)−1 and compares wave motion on M with wave motion on a disjoint
union of funnels. The scattering phase is given by det(Srel(s)) = exp(2πiξ(s)). The
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counterexamples constructed by Brooks and Davidovich (as well as earlier examples
constructed by Guillopé and Zworski in [38]) are also isophasal.

4. The Method of Torus Actions

By a torus we will always mean a compact connected abelian Lie group. At
the beginning of the development of the so-called method of torus actions lay the
first author’s observation of the general principle expressed in the theorem below.
She used this idea to obtain the first examples of pairs of locally nonisometric
isospectral closed manifolds (certain two-step nilmanifolds). (Earlier Z. Szabo had
announced the first examples of locally nonisometric, isospectral manifolds with
boundary, later published in [58].)

Theorem 4.1. [26] If a torus T acts on two closed Riemannian manifolds (M, g),
(M ′, g′) freely and isometrically with totally geodesic orbits, and if the quotients
of the manifolds by any subtorus W of codimension at most one are isospectral
when endowed with the submersion metrics gW , g′W , then (M, g) and (M ′, g′) are
isospectral.

The proof is quite simple: We use the fact that if M → M is a Riemannian
submersion with totally geodesic fibers, then the spectrum of M coincides with
the spectrum of the Laplacian on M restricted to functions constant on the fibers.
Using Fourier decomposition with respect to the T -action and the fact that the
T -orbits are totally geodesic (and hence that the W -orbits are also totally geodesic
for each subtorus W ), one thus shows that

spec(M, g) = spec(M/T, gT ) ∪
⋃
W

(
spec(M/W, gW ) \ spec(M/T, gT )

)
,

where multiplicities are taken into account andW runs through the set of all subtori
W ⊂ T of codimension one. Since the analogous decomposition of the spectrum
also holds for (M ′, g′), the theorem follows immediately.

In view of this, the theorem above seems almost tautological. Its usefulness,
however, lies in the fact that there are lots of examples in which the submersion
quotients (M/W, gW ) and (M ′/W, g′W ) are actually isometric (and thus trivially
isospectral), but still the “big” isospectral manifolds (M, g), (M ′, g′) are noniso-
metric.

Particularly simple examples of this kind occur in the case where M = M ′ =
N × T for some closed manifold N and the T -action is the canonical action on the
second factor. Fix a Riemannian metric h on N and a translation invariant (i.e.,
flat) metric on T . The metric on T is specified by an inner product 〈 , 〉 on the
Lie algebra t. For each (x, t) ∈ N × T the tangent space T(x,t)(N × T ) is a direct
sum TxN ⊕ t. Given a t-valued 1-form λ on N , we construct a metric gλ on N × T
so that the projection π : (N × T, gλ) → (N,h) is a Riemannian submersion with
fibres isometric to T with its given metric. We specify gλ at each (x, t) ∈ N × T
by defining Hor(x,t) (i.e., the gλ-orthogonal complement of the tangent space to the
T -orbit through (x, t)) to be the graph of −λx : TxN → t and requiring:

• gλ(U, V ) = 〈U, V 〉 for U, V ∈ t,
• Hor(x,t) ⊥ t, and
•

(
Hor(x,t), 〈 · , · 〉g

)
→ (TxN, 〈 · , · 〉h) is an isometry.
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Remark 4.2. The pull-back of λ to N × T by the projection N × T → N is a
T -equivariant 1-form λ̃ that vanishes on vectors tangent to the T -orbits. Letting g
denote the product metric on N×T defined by the metric h on N and the given flat
metric on T , then the metric gλ defined above may be expressed as gλ(X,Y ) = g(X+
λ̃(X), Y +λ̃(Y )) for X,Y ∈ T (N×T ). (This is one reason for the minus sign in the
definition of Hor(x,t). Also, the connection form on the principal T -bundle N × T
which has the same horizontal distribution as gλ is given by (X,Z) 7→ λ(X) + Z
for all X ∈ TxN , Z ∈ t.)

Suppose now that gλ1 and gλ2 are two such metrics and that there is an isometry
F of N with the property that λ2 = F ∗λ1. Then the map (F, Id) : (N × T, gλ1) →
(N × T, gλ2) is easily seen to be an isometry.

By the very construction of gλ we have gTλ = h for all λ. Let W ⊂ T be a
subtorus of codimension one. Then T/W ∼= S1 is a 1-dimensional torus with Lie
algebra t/w, and ((N × T )/W, gWλ ) is isometric to (N × (T/W ), gλW ), where λW is
the t/w-valued 1-form on N given by λ, followed by the canonical projection. Here,
w denotes the Lie algebra of W . We may view λW as a real-valued 1-form on N
by choosing µ ∈ t∗ with kerµ = w and identifying λW with µ ◦ λ.

Now let λ′ be a second t-valued 1-form on N . By our observations above, the two
submersion quotients ((N × T )/W, gWλ ) and ((N × T )/W, gWλ′ ) will be isometric if
the two t/w-valued 1-forms λW and λ′W are intertwined by an isometry of (N,h).
We have thus proved:

Theorem 4.3. [53] Let λ, λ′ be t-valued 1-forms on N . Assume that for each
µ ∈ t∗ there exists Fµ ∈ Isom(N,h) such that µ ◦ λ = F ∗µ(µ ◦ λ′). Then (N × T, gλ)
and (N × T, gλ′) are isospectral.

In all the applications thus far of Theorem 4.3, mild genericity conditions on the
choices of λ have sufficed to guarantee that the metrics gλ and gλ′ are not isometric,
provided of course that λ′ 6= F ∗λ for any isometry F of (N,h).

The dependence of the isometry Fµ on µ is crucial here: If there were an isometry
F of (N,h) satisfying the condition above for all µ, then λ and λ′ themselves would
be intertwined by F and hence give rise to isometric metrics gλ and gλ′ .

There are several generalizations of this theorem. In its most general version
(see Theorem 4.10 below), the torus action is not even required to be free anymore.
However, already Theorem 4.3 has many nice applications. In most of them, the key
to constructing suitable 1-forms λ, λ′ are pairs or families of so-called isospectral
j-maps, defined as follows:

Let H be a compact connected semisimple Lie group with Lie algebra h, and let
the Lie algebra t of T be endowed with a fixed euclidean inner product.

Definition 4.4. (i) Two linear maps j, j′ : t → h are called isospectral if for each
Z ∈ t there is aZ ∈ H such that j′Z = AdaZ

(jZ).
(ii) j and j′ are called equivalent if there is Φ ∈ Aut(h) and C ∈ O(t) such that

j′Z = Φ(jC(Z)) for all Z ∈ t.

Remark 4.5. Let t = R2, equipped with the standard metric, and denote by J the
vector space of all linear maps from t to h.

(i) [36] If h = so(m), where m is any positive integer other than 1, 2, 3, 4, or
6, then there is a Zariski open subset O of J such that each j ∈ O belongs
to a d-parameter family of isospectral, inequivalent elements of J . Here
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d ≥ m(m− 1)/2− [m/2]([m/2] + 2) > 1. For m = 6, there exist at least
1-parameter families in J with these properties.

(ii) [53] If h = su(m), where m ≥ 3, then there is a Zariski open subset O
of J such that each j ∈ O belongs to a continuous family of isospectral,
inequivalent elements of J .

(iii) [48] Recently, Emily Proctor established results analogous to those in (i)
(multiparameter families) for su(m ≥ 5) and sp(m ≥ 2).

Example 4.6. [29] Let (N,h) := Sm−1≥4, endowed with the standard metric. Let
T be two-dimensional. For each linear map j : t → so(m) define a T -valued 1-form
λj on Sm−1 by

〈λjq(X), Z〉 := 〈jZq,X〉
for all X ∈ TqS

m−1. If two such maps j, j′ : t → so(m) are isospectral, then the
associated forms λj , λj

′
satisfy the condition of Theorem 4.3. In fact, if µ ∈ t∗

and Z ∈ t is the dual vector with respect to the inner product on t, and aZ is
chosen as in Definition 4.4(i), then the isometry Fµ := aZ ∈ SO(m) of Sm−1

satisfies µ ◦ λj = Fµ(µ ◦ λj
′
). Theorem 4.3 thus yields pairs of isospectral metrics

on Sm−1 × T .

Actually the construction of these manifolds (Sm−1 × T, gλj ) in [29] had not
been done using the approach above of associating metrics to certain 1-forms λ;
rather, the manifolds there occurred as submanifolds of certain two-step nilponent
Lie groups with a left invariant metric. These submanifolds, in turn, were the
boundaries of certain Dirichlet- and Neumann-isospectral subdomains diffeomor-
phic to the product Bm × T of a ball with a torus, which had been given in [36].
The latter had been the first examples of continuous families of isospectral metrics
which were not locally isometric.

The isospectral metrics constructed above on Sm−1×T are in general not locally
isometric when j and j′ are inequivalent. For example, the metrics can in general
be distinguished by the maximum of the associated scalar curvature function on
the manifold.

By using multiparameter families of isospectral j-maps one obtains multiparam-
eter families of isospectral metrics on Sm−1 × T which, again, can be shown to be
nontrivial in most cases.

Independently of [29], Szabo had constructed pairs of isospectral metrics on
certain products of spheres (or balls) with tori [58]. Excitingly, these examples
include a pair of manifolds where one is homogeneous and the other is not even
locally so.

Example 4.7. Although in the example above the dimension of the sphere factor
was required to be at least four, pairs of t ∼= R2-valued 1-forms λ, λ′ (not aris-
ing from j-maps) which satisfy the condition of Theorem 4.3 nontrivially can be
found even on S2. Using such 1-forms, the third author constructed in [53] pairs of
isospectral metrics on S2 × T (with T two-dimensional) which can be distinguished
by the dimension of the locus of the maximal scalar curvature. No examples of
locally nonisometric isospectral manifolds in dimension lower than four are known
so far.

Example 4.8. [53] Let again dim(t) = 2, let h be any of the Lie algebras from
Remark 4.5, and let H be a Lie group with Lie algebra h, endowed with a bi-
invariant metric h. We will let H play the role of the manifold N in the discussion
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above, so that each t-valued 1-form λ gives rise to a Riemannian metric gλ on
H × T . If we choose λ to be left-invariant (i.,e., λ is defined by a linear map
h → t), then gλ will be a left-invariant metric on H × T .

For each linear map j : t → h, define a left invariant t-valued 1-form λj on H
by

〈λj(X), Z〉 = 〈jZ , X〉
for all Z ∈ t and all X ∈ h. If j, j′ : t → h are isospectral, then λj , λj

′
again satisfy

the conditions of Theorem 4.3: For µ ∈ t, the isometry Fµ of (H,h) which satisfies
µ◦λj = F ∗µ(µ◦λj′) is now conjugation IaZ

= LaZ
◦R−1

az
∈ Isom(H,h), where again

Z is the vector dual to µ, and aZ ∈ H is chosen as in Definition 4.4(i). Theorem
4.3 thus gives us isospectral left-invariant metrics on H × T .

The metrics in this example are homogeneous and can in general be distin-
guished, as shown in [53], by the norm of the associated Ricci tensor.

Remark 4.9. The construction of the 1-forms 〈λj(.), Z〉 on Sm−1 in Example 4.6
can be interpreted as taking duals to the Killing vectorfields corresponding to the
jZ ∈ so(m), induced on Sm−1 by the action of SO(m). Viewed in this way, the
construction immediately generalizes to any other base manifold (N,h) admitting
an effective isometric H-action, where H is a Lie group whose Lie algebra is one
of those from Remark 4.5. Then one canonically obtains isospectral metrics of the
type gλj on N × T , using pairs or families of isospectral j-maps from t to h.

As an illustration, if we endow N := H with a bi-invariant metric and consider
the left action of H on itself, then we obtain right invariant isospectral metrics gλj

on H × T . The left invariant isospectral metrics gλj from Example 4.8 correspond,
in the same sense, to the right action of H on itself (up to the sign of the 1-forms
λj).

The two cases above, namely, that N is chosen to be either Sm−1 (in case
H = SO(m)) or to be H itself, are in a sense extreme; see [55] for a discussion of
the case of other homogeneous spaces N = H/K.

Below we will, as promised, present the current state of the art—as formulated
in Theorem 4.10—concerning the method of torus actions. There had been several
intermediate steps:

• The case of nontrivial T -bundles with totally geodesic fibers: [26] (certain
two-step nilmanifolds, constituting the first examples of locally nonisomet-
ric isospectral manifolds), [52] (the first examples of isospectral metrics
on simply connected manifolds; namely, certain products of spheres); [53]
(including continuous isospectral families of left invariant metrics on irre-
ducible compact Lie groups);

• the case without the assumption of totally geodesic fibers, but still with a
free T -action: [33] (including examples of continuous isospectral families of
negatively curved manifolds with boundary), [53] (including the first exam-
ples of pairs of conformally equivalent, locally nonisometric manifolds);

• general T -actions, but still for compact manifolds [28] (the first examples of
continuous families of isospectral metrics on spheres and balls; namely, con-
tinuous families on Bn≥9 and Sn−1≥8), [54] (continuous families of isospec-
tral metrics on B8 and S7, and pairs on B6 and S5); [32] (the first examples
of isospectral potentials and conformally equivalent isospectral metrics on
simply connected manifolds);
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• finally, general T -actions on noncompact manifolds [31] (isophasal scatter-
ing metrics which are compact perturbations of the euclidean metric on
Rn), [47] (isophasal scattering metrics which are compact perturbations of
any rotational metric on Rn).

We remark that Z. Szabo [59] constructed the first examples of pairs of isospectral
pairs of metrics on balls and spheres using a different technique involving explicit
computations. His construction slightly preceded the construction cited above of
continuous families of isospectral metrics on balls and spheres.

Before presenting the method we will use for constructing isosphasal metrics,
we review basic properties of group actions, in particular, torus actions. Given an
action of a compact Lie group G on a manifold M , the principal orbits are the orbits
with minimal isotropy. The union of the principal orbits is an open dense subset
M̂ of M . There exists a subgroup H of G such the isotropy group of every element
of M̂ is conjugate to H. Moreover, the isotropy group of an arbitrary element of
M contains a subgroup conjugate to H. In case G is a torus, it follows that the
isotropy group of every element contains H itself. In particular, if a torus action
is effective, then H is trivial and so the action on the principal orbits is free. Thus
M̂ is a principal G-bundle.

Theorem 4.10. Let T be a torus which acts effectively on two complete Riemann-
ian manifolds (M, g) and (M ′, g′) by isometries. For each subtorus W ⊂ T of
codimension one, suppose that there exists a T -equivariant diffeomorphism FW :
M → M ′ which satisfies F ∗W dvolg′ = dvolg and induces an isometry F̄W between
the quotient manifolds (M̂/W, gW ) and (M̂ ′/W, g′W ), where M̂ (resp. M̂ ′) denote
the union of the principal orbits in M (resp. M ′).

(i) Suppose (M, g) and (M ′, g′) are compact. Then (M, g) and (M ′, g′) are
isospectral; if the manifolds have boundary then they are Dirichlet and Neu-
mann isospectral.

(ii) Suppose M = M ′, M is noncompact, and that g and g′ are compact per-
turbations of a complete T -invariant Riemannian metric g0 on M with
dvolg0 = dvolg = dvolg′ . Furthermore, assume that the maps FW can be
chosen such that they commute with ∆g0 . Then (∆g,∆g0) and (∆g′ ,∆g0)
have the same scattering phase.

Part (i) of this theorem was first formulated in a slightly different version by
the first author in [28]. For the proof of (i) (in the version above) and (ii) see [54]
and [47], respectively. In each case, the heart of the proof consists in showing that
there exists an L2-norm preserving isometry from H1(M, g′) to H1(M, g), where
H1 actually means either H1 (closed case) or H1

D resp. H1
N (case with boundary)

in (i), and H1
0 in (ii), as explained in section 2.

To construct this isometry, we decompose H := H1(M, g) and H′ := H1(M ′, g′)
using Fourier decomposition with respect to the T -action and obtain

H = HT ⊕
⊕

W
(HW 	HT ), H′ = H′T ⊕

⊕
W

(H′W 	H′T ),

where the sum runs over all subtoriW ⊂ T of codimension one, andHW denotes the
subspace of W -invariant functions (similarly for T and for H′). Therefore, it suffices
to find an L2-norm preserving isometry from H′W to HW for each W . It turns out
that the pullbacks F ∗W by the maps FW chosen as in the assumptions do map H′W
to HW isometrically. Preservation of L2-norms is trivial here by the assumption
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F ∗W (dvolg′) = dvolg; preservation of H1-norms then follows from preservation of
norms of gradients (of smooth W -invariant functions), which in turn follows from
the assumption that FW induces an isometry from (M/W, gW ) to (M ′/W, g′W ).

There is a useful specialization of Theorem 4.10 in which M = M ′, and g, g′ arise
from g0 by changing the horizontal distribution on M̂ using a pair λ, λ′ of t-valued
1-forms on M ; this specialization is actually a generalization of Theorem 4.3. (See
Remark 4.2 to clarify the relationship between Theorem 4.3 and the construction
below.)

Begin with a complete Riemannian manifold (M, g0) on which a torus T acts by
isometries. For Z ∈ t, the action of T on M gives rise to a vector field Z∗ on M
given by Z∗p = d

dt

∣∣
t=0

etZ · p. Given a t-valued 1-form λ on M which is T -invariant
and vanishes on vectors tangent to the T -orbits, we define a new metric gλ on M
by

gλ(X,Y ) := g0(X + λ(X)∗, Y + λ(Y )∗)
for all X,Y ∈ TpM , p ∈ M . Note that by the presupposed properties of λ, the
metric gλ is again a T -invariant Riemannian metric, coincides with g0 on vectors
tangent to the T -orbits, and satisfies gT0 = gTλ . The metrics g0 and gλ differ only
by the associated horizontal distributions on M̂ , which are related by

Horp(gλ) = {X − λ(X)∗ | X ∈ Horp(g0)}
where Horp(g) denotes the g-orthogonal complement of t in Tp(M). In particular,
the volume elements of g0 and g coincide. In this situation we have:

Theorem 4.11. [47], [54] Let λ, λ′ be T -invariant, t-valued 1-forms on M which
vanish on vectors tangent to the T -orbits. Assume that for each µ ∈ t∗ there exists
a T -equivariant isometry Fµ of (M, g0) such that µ ◦ λ = F ∗µ(µ ◦ λ′). Moreover,
assume λ, λ′ to be compactly supported (in case M is noncompact). Then (M, gλ)
and (M, gλ′) satisfy the conditions of Theorem 4.10 (with respect to g0 in part (ii)).

A typical situation in which Theorem 4.11 can be applied occurs when (M, g0)
admits an effective isometric H ×T -action, where H is a compact Lie group whose
Lie algebra h is one of the Lie algebras from Remark 4.5, and T is two-dimensional.
Again one considers pairs or families of isospectral maps j : t → h, and for each j
defines a t-valued 1-form λj on M by letting 〈λj(.), Z〉 be dual to the Killing field
corresponding to jZ ∈ h on M , induced by the action of H (compare Remark 4.9).
Here, 〈 , 〉 denotes some fixed auxiliary scalar product on t (not to be confused with
the metrics on any of the T -orbits, which now anyway are, in general, no longer
isometric to each other).

Since the actions of H and T commute, it is clear that these λj will be T -
invariant. Also, if j and j′ are isospectral, then for each Z ∈ t the 1-form 〈λj(.), Z〉
is the pullback of 〈λj′(.), Z〉 by the element aZ ∈ H from the isospectrality condition
on j, j′; so these aZ ∈ H can serve as the T -equivariant g0-isometries Fµ required
in the assumption of Theorem 4.11. There is one difficulty, namely, the condition
that the λj vanish on vectors tangent to the T -orbits. This can be ensured by
assuming the action of H × T on M to be such that T -orbits and H-orbits meet
g0-orthogonally in every point. Even if this is not the case, one can achieve this
condition by modifying the λj a bit: Namely, by first multiplying them with the
squared norm of the volume form of the T -orbits, and then projecting the form
thus obtained to its horizontal part (which will then still be smooth); see [55].
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In the case that M is noncompact, the 1-forms constructed above will have
noncompact support. This, however, can easily be mended using an idea from
[54]: If one already has some pair of t-valued 1-forms λ, λ′ on M which satisfy the
conditions of the theorem, then so do ψλ, ψλ′, where ψ is any smooth function on
M which is invariant under T and under all the Fµ from the assumption (more
precisely, with the property that the Fµ can be chosen such that they preserve ψ).
In our case, where the Fµ are actually elements of the compact group H, we can
choose ψ to be any nontrivial smooth H × T -invariant function on M ; e.g., with
support in an invariant neighborhood of any of the H × T -orbits. This idea can
be used in the compact case, too: It shows that the 1-forms can be chosen to have
support in arbitrary small subsets of (M, g0), outside which the associated metrics
will be equal to g0.

In the following examples, the isospectral (resp. isophasal) metrics either turned
out to be, or were constructed to be, of the type just described; that is, they are
associated with t-valued 1-forms on M which are of the above form λj—possibly
modified as mentioned to ensure horizontality and/or compact support. Here we
only list examples with a nonfree T -action:

• [28] Continuous multiparameter families of isospectral metrics on Sm+3≥8

and Bm+4≥9, associated with the standard action of SO(m)×T ⊂ SO(m)×
SO(4) ⊂ SO(m+ 4) on Rm+4;

• [54] Continuous families of isospectral metrics on S7 and B8 associated with
the action of SU(3)× T ⊂ U(3)×U(1) ⊂ U(4) on C4 ∼= R8;

• [31] Continuous multiparameter families of isophasal scattering metrics on
Rm+4≥9 which are compact perturbations of the Euclidean metric;

• [47] Continuous multiparameter families of isophasal scattering metrics on
Rm+4≥9 which are compact perturbations of any rotational (that is, O(m+
4)-invariant) metric on Rm+4; for example, compact perturbations of the
hyperbolic metric.

The same SO(m) × T -action on Rm+4 as in the first item is used in the third
and fourth one. Using the SU(3)×T -action from the second item, one also obtains
isophasal scattering metrics on R8.

Finally, we mention that using certain suitable pairs of t ∼= R2-valued 1-forms
λ, λ′ related to those used in Example 4.7, it is possible to apply Theorem 4.11 to
obtain pairs of isospectral, resp. isophasal, metrics also on S2 × S3 [2], S5, B6 [54]
and R6.

5. Summary and Open Problems

5.1. Structure of isospectral or isopolar sets of metrics. We list below, in
various contexts, the lowest dimensions in which examples of isospectral or isopolar
manifolds are known.

• Pairs of isospectral manifolds with different global, though the same local,
geometry: dimension 2 [63]. (As discussed in Section 3, there are large
families of isospectral Riemann surfaces constructed by Sunada’s technique
[10].)

• Continuous isospectral deformations with different global, though the same
local, geometry: dimension 5 [35]

• Pairs of isospectral metrics with different local geometry: dimension 4.
(Metrics on S2 × T 2 [53]; see Section 4.)
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• Continuous isospectral deformations with different local geometry: dimen-
sion 6. (Metrics on S4 × T 2 [29]; see Section 4.)

• Pairs of isospectral simply-connected manifolds: dimension 5. (Metrics on
S2 × S3 [2] and on S5 [54]; see Section 4.)

• Continuous isospectral deformations of metrics on a simply-connected man-
ifold: dimension 7. (Metrics on S7 [54], see section 4.)

• Pairs of isophasal manifolds with same global, different local geometry:
dimension 2. (Riemann surfaces [8], [38]; see Section 3.)

• Pairs of isophasal metrics with different local geometry: dimension 6. (Com-
pactly supported perturbations of the Euclidean metric on R6; see Section
4.)

• Continuous isophasal deformations of metrics with different local geometry:
dimension 8. (Compactly supported perturbations of the Euclidean metric
on R8; see Section 4.)

Problem 5.1. In all cases above for which the lowest known dimension is greater
than two, it remains open whether lower-dimensional examples exist. What is the
critical dimension in each case?

Given a closed Riemannian manifold (M, g), the set of all Riemannian metrics
on M isospectral to g will be called the isospectral set of g. A more general problem
than the one above is to describe the structure of the isospectral set of a metric.
One can define a C∞ topology on the set of all isometry classes of metrics on M .

Problem 5.2. Is the isospectral set of a metric always compact in the C∞ topology?

In dimension 2, the answer is yes, as proven by Osgood, Phillips, and Sarnak
[46]. In higher dimensions, the problem remains open, although a number of partial
results are known (in conformal classes on 3-manifolds [16], [21], [22]; on negatively
curved 3-manifolds [1], [13]; for 3-manifolds with metrics in a spectrally determined
neighborhood of a constant curvature metric [15]).

Negatively curved metrics on closed manifolds are spectrally rigid; i.e., they do
not admit nontrivial continuous isospectral deformations; this fact was proven by
Guillemin and Kazhdan [37] in dimension 2 and by Croke and Sharafutdinov [24],
[25] in arbitrary dimension. In two dimensions, this local rigidity along with the
compactness result cited above leads one to ask the following question:

Problem 5.3. Is the isospectral set of a negatively curved metric on a surface
always finite?

For Riemann surfaces with the hyperbolic metric, McKean proved that isospec-
tral sets are always finite and P. Buser [19] obtained an explicit, though huge,
upper bound depending only on the genus. However, the problem remains open for
surfaces of variable negative curvature.

5.2. Geometry of the Spectrum. The various examples of isospectral manifolds
reveal a number of geometric and topological properties that are not spectrally
determined. In the following list, we indicate the first example which revealed that
the specified property is not spectrally determined. (This list is not complete.)

(a) Fundamental group [62].
(b) Diameter [18].
(c) Maximal scalar curvature [29]
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(d)
∫
M

Scal2g dvg,
∫
M
‖Ricg ‖2dvg, and

∫
M
‖Rg‖2dvg. [52], [53]. (Note that a

specific linear combination of these three integrals gives the second heat
invariant, a spectrally determined quantity.)

(e) Whether a closed manifold is homogeneous and whether it is locally homo-
geneous [58], [59].

(f) Whether a closed manifold has constant scalar curvature; whether a mani-
fold with boundary is Einstein and whether its curvature tensor is parallel
[33].

Of course there is still a large gap between the known spectral invariants and the
geometric invariants that the counterexamples tell us are not spectrally determined.
Some questions suggested by the list above are:

Problem 5.4. The heat invariants are integrals of (in general very complicated)
polynomial expressions in the curvature and its covariants. Are the heat invariants
the only spectral invariants of that form? (See (d) above.)

Problem 5.5. Does the spectrum of a closed Riemannian manifold determine
whether the manifold is Einstein and whether it is locally symmetric? (See (f)
above.)

5.3. Obstacle Scattering. The most interesting open problem in inverse scatter-
ing involves obstacle scattering. Let O be a compact connected subset of Rn with
smooth boundary, let H0 be the Euclidean Laplacian on Rn, let Ω = Rn \ O, and
let H be the Laplacian on Ω with Dirichlet boundary conditions on ∂O. Although
the pair (H,H0) act on different spaces, one can define relative scattering theory
and a spectral shift for the pair (H,H0). Given the scattering phase for an obstacle
O, its isophasal set is the set of all obstacles in Rn modulo isometries of Rn which
have the same scattering phase. Hassell and Zelditch [39] showed that the isophasal
set of a given obstacle in R2 is compact in a suitable topology on obstacles. Hassell
and Zworski [40] showed that the sphere S2 is uniquely determined by its scattering
poles (when viewed as the boundary of an obstacle O ⊂ R3).

Problem 5.6. Does the isophasal set of an obstacle contain more than one ele-
ment?

Problem 5.7. What is the ‘critical dimension’ for polar and phasal rigidity for
obstacle scattering?
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