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ABSTRACT. Let M be a real2m-torus equipped with a translation-invariant metrich and
a translation-invariant symplectic formω; the latter we interpret as a magnetic field onM .
The Hamiltonian flow of half the norm-squared function induced byh onT ∗M (the “kinetic
energy”) with respect to the twisted symplectic formωT∗M + π∗ω describes the trajectories
of a particle moving onM under the influence of the magnetic fieldω. If [ω] is an integral
cohomology class, then we can study the geometric quantization of the symplectic manifold
(T ∗M,ωT∗M + π∗ω) with the kinetic energy Hamiltonian. We say that the quantizations of
two such tori(M1, h1, ω1) and(M2, h2, ω2) arequantum equivalentif their quantum spectra,
i.e., the spectra of the associated quantum Hamiltonian operators, coincide; these quantum
Hamiltonian operators are proportional to thehj-induced bundle Laplacians on powers of the
Hermitian line bundle onM with Chern class[ω].

In this paper, we construct continuous families{(M,ht)}t of mutually nonisospectral flat
tori (M,ht), each endowed with a translation-invariant symplectic structureω, such that the
associated classical Hamiltonian systems are pairwise equivalent. Ifω represents an integer co-
homology class, then the(M,ht, ω) also have the same quantum spectra. We show moreover
that for any translation-invariant metrich and any translation-invariant symplectic structureω

on M that represents an integer cohomology class, the associated quantum spectrum deter-
mines whether(M,h, ω) is Kähler, and that all translation-invariant Kähler structures(h, ω)
of given volume onM have the same quantum spectra. Finally, we construct pairs of magnetic
fields(M,h, ω1), (M,h, ω2) having the same quantum spectra but nonsymplectomorphic clas-
sical phase spaces. In some of these examples the pairs consist of Kähler manifolds.

1. INTRODUCTION

Consider an even-dimensional torusM = Z2m\R2m. To each translation-invariant closed 2-
formω and translation-invariant (i.e., flat) Riemannian metrich onM , associate a Hamiltonian
system(T ∗M,Ω, H). HereΩ is the symplectic form onT ∗M given byΩ = ω0 + π∗ω, where
ω0 is the Liouville form, andπ : T ∗M → M is the projection. The Hamiltonian functionH
is given byH(q, ξ) = 1

2
hq(ξ, ξ). In caseω = 0, the Hamiltonian system gives the classical

geodesic flow. A nontrivial closed2-form ω may be viewed as a magnetic field onM , and
the Hamiltonian system describes the dynamics of a charged particle moving in the magnetic
field. We will say that(M,h1, ω1) and(M,h2, ω2) areclassically equivalentif the associated

2010Mathematics Subject Classification.Primary 58J53; Secondary 53C30, 53C20.
The first author and last author were supported in part by NSF Grants DMS 0605247 and DMS 0906169. The

third author was partially supported by DFG Sonderforschungsbereich 647. Moreover, the third author thanks
Dartmouth College and its Harris visiting program for greathospitality and support.

1



2 CAROLYN GORDON, WILLIAM KIRWIN, DOROTHEE SCHUETH, AND DAVID WEBB

Hamiltonian systems are equivalent, i.e., if there is a symplectomorphism of cotangent bundles
intertwining the Hamiltonian functions.

If, moreover,ω represents an integer cohomology class, then there exists aHermitian com-
plex line bundleL with Chern class[ω]. Choose a Hermitian connection∇ with curvature
−2πiω. The connection gives rise to a Hermitian connection, also denoted∇, on each tensor
powerL⊗k, i.e., on the line bundles with Chern classkω, k ∈ Z+.

According to the procedure of geometric quantization (specifically, with respect to the ver-
tical polarization on the cotangent bundle in the presence of the metaplectic correction), the
quantum Hilbert space at level~ = 1/k (k ∈ Z+) associated to(T ∗M,ω0 + π∗ω) is the
L2-space of square integrable sections ofL⊗k. The quantum Hamiltonian associated to the
classical HamiltonianH is the operator̂Hk = ~2

2
∆, where∆ = − trace(∇2). (See [9], and

note that the scalar curvature term appearing there is zero in our case. Also see Section 2 of [4]
for a brief outline of geometric quantization.)

For technical reasons, we will always assume thatω is nondegenerate, i.e., that it is a sym-
plectic structure onM . Of course, there are more general magnetic fields onM , described by
degenerate2-forms, but nondegeneracy is crucial for certain isospectrality results (c.f. Remark
3.2). We will see in Lemma 3.1 that the spectra of the operators Ĥk are independent of the
choice of the connection∇ with curvature−2πiω. Hence the spectra depend only onω, h, and
of coursek, and will be denoted bySpec(kω, h). (This independence of the choice of connec-
tion is special to our setting of flat tori with translation-invariant nondegenerateω.) We will say
that(M,h1, ω1) and(M,h2, ω2) arequantum equivalentif Spec(kω1, h1) = Spec(kω2, h2) for
all k ∈ Z

+.
Our main results are:

Theorem 1.1. Let ω be any translation-invariant symplectic structure onM := Z
2m\R2m.

Then every translation-invariant metrich onM lies in a continuous family{ht} of mutually
nonisometric flat metrics such that(M,ht, ω) is classically equivalent to(M,h, ω) for all t.
Moreover, ifω represents an integer cohomology class, then these(M,ht, ω) are also quantum
equivalent to(M,h, ω) for all t.

For the remainder of the results, we assume that the formsωi (i = 1, 2) represent integer
cohomology classes. In Theorem 4.6, we give necessary and sufficient conditions for quantum
equivalence of pairs(M,h1, ω1) and(M,h2, ω2), and we observe that in our setting, for any
choice ofω as above,Spec(ω, h) determinesSpec(kω, h) for all k ∈ Z+.

We will say that(M,h, ω) is Kähler, or that(h, ω) is a Kähler structureon M , if there
exists a complex structureJ such that(M,h, ω, J) is Kähler.

We then prove the following, forM = Z2m\R2m with m arbitrary:

Theorem 1.2.For any translation-invariant symplectic formω and translation-invariant met-
ric h onM , the spectrumSpec(ω, h) determines whether(M,h, ω) is Kähler. Moreover, all
translation-invariant K̈ahler structures(h, ω) of given volume onM are quantum equivalent.
(Here bothω andh are allowed to vary.)



CLASSICAL EQUIVALENCE AND QUANTUM EQUIVALENCE OF MAGNETICFIELDS 3

Theorem 1.3. The collectionSpec(kω, h), k ∈ Z+, does not determine the symplectic struc-
ture ω on M nor the symplectic structureΩ = ω0 + π∗ω on T ∗M (nor the restriction ofΩ
to the cotangent bundle with the zero section removed). In particular, quantum equivalent
systems need not have the same classical phase space.

We pause to clarify the notion of classical phase space used here and to motivate the par-
enthetical remark in Theorem 1.3. By considering the entirecotangent bundle, instead of the
cotangent bundle minus its zero section, we are using a somewhat stronger notion of equiv-
alence than is sometimes considered in the mathematical literature. Indeed, our notion of
classical equivalence (Definition 2.1) implies that if(M1, h1, ω1) and(M2, h2, ω2) are classi-
cally equivalent, then(M1, ω1) and(M2, ω2) are symplectomorphic. The removal of the zero
section is mathematically rather than physically motivated. Often analytical considerations
necessitate replacing the Hamiltonian flow by a reparametrization that is not well behaved on
the zero section. This is the case, for example, in the analysis of the singularities of the wave
trace [2] and in the study of regularizations of the Kepler flow [7], [8]. Removing the zero
section also results in stronger — and more difficult — geodesic rigidity results, as in the arti-
cle [1] cited below. On the other hand, in classical mechanics, the phase space is the space of
all possible states of the system. For a particle moving on a manifold under the influence of
a magnetic field, an initial condition consisting of a given position and zero momentum (i.e.,
an element of the zero section ofT ∗M) is perfectly acceptable. While the results above were
stated using the phase space(T ∗M,Ω), they remain true if one removes the zero section from
T ∗M . In particular, the resulting stronger version of Theorem 1.3 (the parenthetical comment)
is proven in Proposition 4.16.

Theorem 1.1 contrasts sharply with the caseω = 0. C. Croke and B. Kleiner [1] showed that
the geodesic flow on a torus isC0 rigid, i.e., that any Riemannian manifold whose geodesic
flow is C0 conjugate to that of a flat torus(M,h) is isometric to the torus(M,h). Note that
C0-conjugacy is a much weaker condition than classical equivalence.

This is the second of two articles addressing questions of quantum equivalence. In the
first [4], we constructed examples of pairs (or finite families) of Hermitian locally symmetric
spacesMi for which the line bundles with Chern class defined by the Kähler structure and
their tensor powers over the variousMi are isospectral for alli.

This article was motivated by results of [3]. In fact, our results on quantum equivalence of
magnetic fields are a reinterpretation and expansion of Corollaries 3.8 and 3.9 of [3].

2. CLASSICAL EQUIVALENCE OF MAGNETIC FLOWS

Definition 2.1. Given a Riemannian manifold(M,h) and a closed 2-formω on M (which
we will always assume to be nondegenerate), letΩ be the symplectic structure onT ∗M given
by Ω := ω0 + π∗ω, whereω0 is the Liouville form (i.e.,ω0 = −dλ, whereλ is the canon-
ical 1-form on T ∗M) andπ : T ∗M → M is the projection. DefineH : T ∗M → R by
H(q, ξ) = 1

2
hq(ξ, ξ).We will refer to(T ∗M,Ω, H) as the classical Hamiltonian system associ-

ated with(M,h, ω). Given Riemannian manifolds(Mi, hi), i = 1, 2, and closed 2-formsωi on
Mi, we will say that(M1, h1, ω1) and(M2, h2, ω2) areclassically equivalentif the associated
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Hamiltonian systems(T ∗Mi,Ωi, Hi) are equivalent, i.e., if there exists a symplectomorphism
Φ : (T ∗M1,Ω1) → (T ∗M2,Ω2) such thatH1 = H2 ◦ Φ.

Theorem 2.2.Letω be a translation-invariant symplectic structure onR2m, letA be a linear
symplectomorphism of(R2m, ω), let h be a translation-invariant metric onR2m, and letL be
a lattice inR2m. We will continue to denote byω andh the induced structures on quotients of
R2m by a lattice. Then(L\R2m, h, ω) is classically equivalent to(A(L)\R2m, h, ω).

Remarks2.3.
(i) The conclusion may be rephrased as the statement that(L\R2m, A∗h, ω) is classically
equivalent to(L\R2m, h, ω).
(ii) In Theorem 2.2, we do not require thatL have maximal rank inR2m, i.e., thatL\R2m be a
torus. However, in the case that it is a torus and thatω represents an integer cohomology class
in L\R2m, the reformulation in (i) will give us different quantum Hamiltonians (Laplacians as-
sociated with different metrics) on the same complex line bundle. We will see in Corollary 4.8
that the systems are quantum equivalent.

Proof. Let n = 2m. Under the standard identification ofT ∗
R

n with R
2n, the symplectic form

Ω = ω0 + π∗ω is a translation-invariant 2-form and thus may be identifiedwith the bilinear
form onR2n with matrix [

C Id
− Id 0

]

with respect to the standard basis, where each block is of size n × n and whereC is the
matrix of the anti-symmetric nondegenerate bilinear form onRn defined byω. The linear map
Φ : R2n → R2n given by

Φ(q, p) = (Aq + C−1(tA−1 − Id)p, p)

preservesΩ, as can be seen by an easy computation usingtC = −C and tACA = C. The
HamiltonianH depends only onp (sinceh is translation invariant) and thus is also preserved
by Φ. ThusΦ is a self-equivalence of the Hamiltonian system(T ∗

R
n, h, ω). Finally, we have

Φ(q0 + q, p) = (Aq0, 0) + Φ(q, p) for all q0 ∈ Rn and, in particular, for allq0 ∈ L. ThusΦ
induces an equivalence between(L\R2m, h, ω) and(A(L)\R2m, h, ω). �

Corollary 2.4. Letω be a translation-invariant symplectic structure on a torusM = Z2m\R2m.
Then every translation-invariant Riemannian metrich onM belongs to a continuous family
{ht}t of mutually nonisometric translation-invariant Riemannian metrics such that(M,ht, ω)
is classically equivalent to(M,h, ω) for all t. The parameter space of this deformation has
dimension at least2m.

Proof. ht is defined asA∗

th, whereAt (with A0 = Id) is a curve in the group of linear iso-
morphisms ofR2m that preserveω. This group is isomorphic toSp(2m,R) and has dimension
m(2m + 1), while the group of linear isomorphisms that preserveh is isomorphic toO(2m)
and has dimensionm(2m− 1). The corollary thus follows from Remark 2.3(i). �
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3. HERMITIAN LINE BUNDLES OVER TORI

3.1. Hermitian connections with the same translation-invariant curvature. Let M be a
compactC∞ manifold,L a Hermitian line bundle overM , and let[ω] ∈ H2(M ;Z) be the
Chern class ofL. The curvature of any Hermitian connection onL lies in −2πi[ω]. (Our
notation differs from that of [4] by a factor of2π.) If ∇ and∇′ are two Hermitian connections
onL, then∇′ = ∇ + 2πiβ for some real-valued1-form β onM . The two connections have
the same curvature if and only ifdβ = 0, in which caseβ = α+df for some harmonic1-form
α and somef ∈ C∞(M). The termdf changes the connection only by a gauge equivalence:
in fact, lettingE(L) denote the space of smooth sections ofL, then the mapE(L) → E(L)
given bys 7→ e2πifs intertwines∇ + 2πidf and∇. Given any Riemannian metrich onM ,
this map also intertwines the Laplacians− trace(∇+ 2πidf)2 and− trace(∇2). Thus the two
Laplacians are isospectral. The same statement holds for the associated Laplacians on all the
higher tensor powers ofL. Thus we may assume thatf = 0.

In general, the addition of a harmonic 1-form2πiα to∇ will affect the spectrum. However,
we will see that in the case of line bundles with nondegenerate Chern class over flat tori,
endowed with a connection whose curvature form on the torus is translation invariant, the
addition of a harmonic term doesnot affect the spectrum; see Lemma 3.1 below. Thus in this
case, the spectrum of the Laplacian depends only on the metric on the torus and the curvature
of the connection on the bundle.

3.2. Principal circle bundles over tori. Let M = Z2m\R2m, wherem is a positive inte-
ger. Letω be a translation-invariant symplectic structure onM that represents an integer
cohomology class. We will first construct a principal circlebundleP with Chern class[ω].
The bundleP will be a quotient by a discrete subgroup of a two-step nilpotent Lie groupN ,
isomorphic to the Heisenberg group of dimension2m+ 1.

Sinceω is translation invariant, it may be viewed as a nondegenerate antisymmetric bilinear
mapω : R2m × R

2m → R that takes integer values onZ2m × Z
2m. We endowN := R

2m+1

with the structure of a 2-step nilpotent Lie group with multiplication

(u1, t1)(u2, t2) = (u1 + u2, t1 + t2 +
1

2
ω(u1, u2))

for all u1, u2 ∈ R
2m and t1, t2 ∈ R. ThenN is isomorphic to the(2m + 1)-dimensional

Heisenberg group. The coordinate vector fieldZ := ∂
∂t

is left invariant and spans the center
z = {0} × R of the Lie algebran of N . The center coincides with the derived algebra, so the
Lie bracket may be viewed as a bilinear map[ , ] : R2m × R2m → z, which is given by

[X, Y ] = ω(X, Y )Z.

Let Γ ⊂ N be the subgroup generated by(e1, 0), . . . , (e2m, 0), (0, 1) ∈ R2m+1 = N ,
whereej denotes thejth standard basis vector ofR2m. Then the projection ofΓ to R2m

is Z2m. The intersection ofΓ with the center{0} × R of N is precisely{0} × Z, the
subgroup generated by the element(0, 1). In fact, forX, Y ∈ {±e1, . . . ,±e2m} the com-
mutator(X, 0)(Y, 0)(X, 0)−1(Y, 0)−1 equals(X + Y, 1

2
ω(X, Y ))(−X − Y, 1

2
ω(−X,−Y )) =

(0, ω(X, Y )) which lies in{0} × Z sinceω is integer valued onZ2m × Z
2m; moreover, any
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product(X1, 0) · . . . · (Xk, 0) with X1, . . . , Xk ∈ {±e1, . . . ,±e2m} andX1 + . . . + Xk = 0
can be written as a product of commutators as above.

In particular,Γ is a uniform discrete subgroup ofN . SetP = Γ\N . The center ofN
projects to a circle, and the action of the center by translations onN induces a circle action
onP , givingP the structure of a principal circle bundle overM .

We identify the circleS1, given by the quotient of the center ofN by its intersection withΓ,
with the unitary groupU(1). Its Lie algebra is thus identified with the space of purely imag-
inary complex numbers. Under this identification, the vector Z ∈ z above corresponds to
2πi ∈ iR = T1U(1); hence, a connection onP is specified by anS1-invariant 1-form2πiµ on
P such that2πiµ(Z) ≡ 2πi; that is,µ(Z) ≡ 1. (Hereµ is real-valued.) The kernelH of µ is
called the horizontal distribution associated with the connection. By abuse of terminology, we
will say thatµ is left invariantif it pulls back to a left-invariant1-form onN . In this case,H is
spanned by left-invariant vector fields (again in the sense that a left-invariant vector field onN
induces a well-defined vector field onP = Γ\N , which we refer to as left invariant) and thus
may be viewed as a subspace ofn complementary toz. Conversely, since every left-invariant
1-form is alsoS1 invariant, any complement ofz in n is the horizontal distribution associated
with some translation-invariant connection onP .

Suppose that2πiµ is a left-invariant connection onP . ForX, Y ∈ H, we have

2πidµ(X, Y ) = −2πiµ([X, Y ]) = −2πiµ(ω(X, Y )Z) = −2πiω(X, Y )

sinceµ(Z) = 1. Thus every translation-invariant connection onP has curvature form−2πiω.
Let α : R2m → R be a linear functional. Because of the nondegeneracy ofω, the map

n → n that sendsX ∈ R2m to α(X)Z and sendsZ to zero is an inner derivation ofn, and the
mapN → N given by(u, t) 7→ (u, t+ α(u)) is an inner automorphism ofN .

It follows that ifµ′ is another left-invariant 1-form such thatµ′(Z) = 1, thenµ′ = µ◦Ad(a)
for somea ∈ N , and the corresponding horizontal distribution satisfiesH′ = Ad(a−1)H.

3.3. Associated Hermitian line bundles. Let ω andP be as above and let2πiµ be a left-
invariant connection onP . The groupS1 = U(1) acts onC in the standard way, hence
diagonally on the productP × C, giving rise to a Hermitian line bundle

L = (P × C)/ ∼
where∼ is the equivalence relation given by(p, w) ∼ (pz−1, zw) for p ∈ P , w ∈ C, and
z ∈ S1 = U(1). The bundleL has Chern class[ω].

The higher tensor powers ofL are given by

L⊗k = (P × C)/ ∼k

where∼k is given by(p, w) ∼k (pz−1, zkw) for p ∈ P , w ∈ C, andz ∈ S1 = U(1).
The spaceC∞(M,L⊗k) of smooth sections ofL⊗k may be identified with the subspace

C∞

k (P,C) given by

(3.1) C∞

k (P,C) = {f ∈ C∞(P,C) | f(pz−1) = zkf(p) for all p ∈ P, z ∈ S1 = U(1)}.
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Equivalently,

(3.2) C∞

k (P,C) = {f ∈ C∞(P,C) | Zf = −2πikf}.
Because of the trivializationTP ∼= P × n, any complex1-form onP may be viewed as

a map fromn to the space of smooth complex functions onP . For f ∈ C∞

k (P,C), the map
corresponding to the1-form df + 2πikfµ actually mapsn to C∞

k (P,C) and vanishes onz;
hence, it induces a well-defined map fromR2m to C∞

k (P,C). Recalling Equation (3.1) and
identifyingR2m with the tangent space at each point ofM , we thus get a map∇f : TM →
C∞(M,L⊗k). This defines the Hermitian connection∇ onL⊗k associated with the connection
2πiµ on the principal bundle. (Here we are using the same notation∇ for the connection on
each of the bundlesL⊗k. The connection∇ onL⊗k is of course the usual connection on the
kth tensor power of the bundleL arising from the connection∇ onL.) ForX ∈ TM andX̃
any horizontal vector inTP with π∗X̃ = X, whereπ : P → M is the bundle projection, we
have

∇X f = X̃f.

The curvature of∇ is −2πikω.
Given a flat metrich on M (i.e., an inner product onR2m), let {X1, . . . , X2m} be an or-

thonormal basis of the Lie algebraR2m of M , and letX̃1, . . . , X̃2m be the horizontal lifts to
vector fields on the principal bundleP . Then under the identification ofC∞(M,L⊗k) with
C∞

k (P,C) as in Equation (3.1), the Laplacian onC∞(M,L⊗k) defined by the connection∇ is
given by

∆(f) = −
2m∑

j=1

X̃2

j (f).

Letρ denote the representation of the nilpotent Lie groupN onL2(P ) given by(ρ(a)f)(p) =
f(pa) and letρ∗ be the representation of the Lie algebran given by the differential ofρ. Then
by Fourier decomposition with respect to the action of the center ofN , we have

L2(P ) = ⊕k∈Z L
2

k(P )

where
L2

k(P ) = {f ∈ L2(P ) | ρ(z−1)f = zkf for all z ∈ S1 = U(1)}.
I.e.,L2

k(P ) is the closure ofC∞

k (P,C) in L2(P ). Given a translation-invariant connection on
L (and thus onL⊗k for all k ∈ Z+) and a flat metric onM , the associated Laplacian, viewed
as an operator onC∞

k (P,C), extends toL2
k(P ) as the densely defined operator

(3.3) ∆ = −
2m∑

j=1

ρ∗(X̃j)
2.

Lemma 3.1. We continue to assume thatω is a translation-invariant symplectic structure on
the torusM and that the cohomology class ofω is integral. LetL be a Hermitian line bundle
with Chern class[ω], and let∇ and∇′ be two connections onL with curvature−2πiω. Then
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given any flat metric onM , the Laplacians, and thus the quantum Hamiltonians, onL⊗k

defined by∇ and∇′ are isospectral for allk ∈ Z+.

Proof. Note thatL is determined by its Chern class up to a bundle isomorphism inducing the
identity map onM . Such isomorphisms preserve the curvature forms of the connections which
they intertwine, and the spectra of the corresponding bundle Laplacians coincide. Therefore,
we may assume thatL is the Hermitian line bundle which we explicitly constructed above.

Let ∇ be the connection associated with the principal connection2πiµ as above. By the
discussion in Subsection 3.1, we may assume that∇′ = ∇+ 2πiα for some harmonic 1-form
α onM . Viewingα as a linear functional onR2m, the mapn → n given byX+cZ 7→ α(X)Z
(for all X ∈ R2m andc ∈ R) is an inner derivation and∇′ is the connection onL associated
with a principal connection2πiµ ◦ Ad(a) for somea ∈ N . The horizontal distributionH′ is
given byAd(a−1)H. It follows that the Laplacian associated with∇′ onC∞

k (P,C) is given
by

∆′ =
2m∑

j=1

ρ∗(Ad(a
−1)X̃j)

2 =
2m∑

j=1

ρ(a−1)ρ∗(X̃j)
2ρ(a) = ρ(a−1) ◦∆ ◦ ρ(a).

�

Remark3.2. The hypothesis of nondegeneracy ofω is essential here. At the other extreme in
whichω = 0 so thatL is the trivial bundle, the spectra of the various Laplacians−(d−2πiα)2

associated with the (harmonic) connections of curvature zero form the Bloch spectrum of the
torus.

Notation 3.3. In the notation of Lemma 3.1, we will write

Spec(kω, h)

for the spectrum of the operator̂Hk = ~2

2
∆, where~ = 1

k
and∆ is the Laplacian onL⊗k

defined by the flat metrich onZ2m\R2m and any connection∇ onL with curvature−2πiω.
By the lemma, this spectrum is well defined.

4. QUANTUM EQUIVALENT LINE BUNDLES

Notation 4.1. Denote the standard coordinates onR
2m by (x, y) = (x1, . . . , xm, y1, . . . , ym).

Given anm-tupler = (r1, . . . , rm) of positive integers such that

(4.1) r1 | r2 | . . . | rm,
define a translation-invariant symplectic formωr onR2m by

ωr =
m∑

j=1

rj dxj ∧ dyj.

Proposition 4.2. [6, p. 304]Let ω be a translation-invariant symplectic structure onR2m

such that[ω] ∈ H2(M ;Z). Then there exists a uniquem-tupler satisfying Equation 4.1 such
thatA∗ω = ωr for someA ∈ SL(2m,Z). We refer to the entries of thism-tuple as theChern
invariant factors.
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Thus by a linear change of coordinates preservingZ2m, we may assume when convenient
thatω = ωr for somer satisfying 4.1.

Remark4.3. Line bundles are of course classified by their Chern classes,not by the Chern
invariant factors. Them-tuple r is a complete homeomorphism invariant ofω, in the sense
that given two integral symplectic structures with the sameChern invariant factors, there is a
self-homeomorphism of the base space pulling back one integral symplectic structure to the
other; however, integral symplectic structures with the same Chern invariant factors need not
be cohomologous and thus may give rise to inequivalent line bundles.

Notation 4.4.

(i) Given a translation-invariant symplectic structureω and a translation-invariant Riemannian
metrich onR2m, viewed as bilinear forms, define a linear transformationF : R2m → R2m by
the condition

ω(u, v) = h(F (u), v)

for all u, v ∈ R2m. Leth andω denote the Gram matrices of the bilinear formsh andω with
respect to the standard basis ofR2m. The matrix of the linear transformationF in this basis is
given by

F = h
−1
ω.

Note thatF is antisymmetric relative to the inner producth, and its eigenvalues are purely
imaginary; we denote them by±d21i, . . . ,±d2mi.

The linear transformationF may be expressed in terms of the “musical isomorphisms”:
Given a finite-dimensional real vector spaceV and a nondegenerate bilinear formB : V ×
V → R, denote byB♭ : V → V ∗ the isomorphism fromV to its dual space given by
B♭(u) = B(·, u), i.e., (B♭(u))(v) = B(v, u) for u, v ∈ V , and byB♯ : V ∗ → V the inverse
of B♭. ThenF = h♯ ◦ ω♭.

(ii) Let M = Z2m\R2m. Set

Vω =
√
det(ω) =

∫

M

1

m!
ωm ,

the symplectic volumeof M . Since the standard basis ofR2m is a basis ofZ2m we have, in
particular,Vωr

= r1r2 . . . rm.

Proposition 4.5. We use Notation 3.3 and 4.4. LetM = Z2m\R2m, let ω be a translation-
invariant symplectic structure onM representing an integer cohomology class, and leth be
any flat metric onM . Given anm-tuplej = (j1, . . . , jm) of nonnegative integers, let

ν(j) = π
m∑

i=1

d2i (2ji + 1).

Then Spec(kω, h) is the collection of all1
k
ν(j), j ∈ Nm

0 , each countedkmVω times.
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Proof. Recalling Notation 3.3, we see that2k2 Spec(kω, h) is the spectrum of the operator in
Equation (3.3) acting onL2

k(P ). Rather than carry out the computation here, we refer to [5],
Section 3, where a similar computation is performed. We indicate here how to translate the
computation in [5] to our setting. We assume thatω = ωr for somer = (r1, . . . , rm) as above.
Perform a change of coordinates onR2m, lettingx′

i = rixi andy′i = yi for i = 1, . . . , m. In
these new coordinates,ω =

∑m
i=1

dx′

i∧dy′i, and the latticeZ2m is the collection of all elements
with coordinates inr1Z × · · · × rmZ × Zm. This change of coordinates aligns our notation
with that in [5]. Next, in [5], the operator under study is theLaplacian∆P associated with
the Riemannian metric on the Heisenberg manifoldP = Γ\N induced by the left-invariant
metric onN for which the basis{X̃1, . . . , X̃2m, Z} is orthonormal, wherẽX1, . . . , X̃2m are as
in Subsection 3.3. We have∆P = ∆+ (ρ∗Z)

2 for ∆ as in Equation (3.3). (In the notation of
[5], we are settingg2m+1 equal to1.) Writing L2(P ) = ⊕k∈Z L

2
k(P ), then it is shown in [5]

that fork 6= 0, the spectrum of∆P restricted toL2
k(P ) is given by the collection of numbers

4π2k2 + 2|k|ν(j), each occurring with multiplicity|k|mr1 . . . rm. (Our |k| is denoted byc in
[5].) The operator(ρ∗Z)2 acts onL2

k(P ) as multiplication by4π2k2. Correcting for this term
and takingk ∈ Z+, we obtain the proposition. �

Theorem 4.6. We use Notation 3.3 and 4.4. Letω andω′ be two translation-invariant sym-
plectic structures onM representing integer cohomology classes, and leth and h′ be flat
metrics onM . Then the following are equivalent:

(i) Spec(ω, h) = Spec(ω′, h′).
(ii) Spec(kω, h) = Spec(kω′, h′) for all k ∈ Z+.

(iii) The linear transformationsh♯ ◦ ω♭ andh′♯ ◦ ω′♭ (equivalently the matricesh−1
ω and

h
′−1

ω
′) have the same eigenvalue spectrum, andVω = Vω′.

Proof. It is clear from Proposition 4.2 that (i) and (ii) are equivalent and that (iii) implies (i)
and (ii). To see that (i) implies (iii), note that the lowest eigenvalue occurring inSpec(ω, h)
is π(d21 + · · · + d2m), with multiplicity preciselyVω. ThusVω is spectrally determined. If we
order thedj so thatd21 ≤ d22 + · · · ≤ d2m, then2πd21 is the difference between the first two
distinct eigenvaluesµ1 andµ2. From the multiplicity ofµ2, we can determine how many of
the d2j equald21; denote this number byp. Since we know

∑m
j=1

d2j from µ1 and we know
d21, we can determine all eigenvaluesν(j) for which jp+1 = · · · = jm = 0, along with their
multiplicities. Removing all these from the spectrum, the lowest remaining eigenvalue is
ν(j) wherejp+1 = 1 and all otherjl’s are zero. This enables us to determined2p+1 and its
multiplicity, and we continue inductively. �

Remark4.7. If the symplectic volumesVω andVω′ coincide, then the first part of condition
(iii) in the previous theorem can be replaced by the condition thath andh′ have the same de-
terminant, or equivalently thatvol(M,h) = vol(M,h′), since the determinant is multiplicative
andVω =

√
detω.

Corollary 4.8. Letω be a translation-invariant symplectic structure onM = Z2m\R2m that
represents an integer cohomology class. Given any translation-invariant metrich onM , let
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{ht}t be a family of metrics constructed as in the proof of Corollary 2.4. Then(M,ht, ω) is
quantum equivalent as well as classically equivalent to(M,h, ω) for all t.

Proof. Classical equivalence was shown in Corollary 2.4. Quantum equivalence follows from
Theorem 4.6; in fact, ifAt (and henceA−1

t ) preservesω andht = A∗

th then we have

h
−1

t ω = A
−1

t h
−1
ωAt.

�

Definition 4.9. We will say that(M,h, ω) isKähler, or that the pair(h, ω) is aKähler structure
on M , if there exists a complex structureJ on M such that(M,h, J) is a Kähler manifold
whose associated Kähler form isω.

Proposition 4.10. The tuple(M,h, ω) is Kähler if and only if all the eigenvalues ofh♯ ◦ ω♭

(equivalently, of the matrixh−1
ω) are±i.

Proof. The latter condition is equivalent toF 2 = − Id for the h-antisymmetric mapF =
h♯ ◦ ω♭ from Notation 4.4(i). But this is equivalent to(M,h, ω) being Kähler (with complex
structureF ). �

Corollary 4.11. Spec(ω, h) determines whether(M,h, ω) is Kähler. Moreover, any two
Kähler structures(h, ω) and(h′, ω′) that have the same volume are quantum equivalent.

Note that in the Kähler case, the symplectic volumeVω equals the Riemannian volume of
(M,h); recall Remark 4.7 together with Proposition 4.10.

For the construction of examples, we will restrict attention to metrics of the form

ha,b =
m∑

j=1

(a2j dx
2

j + b2j dy
2

j ),

whenω = ωr =
∑m

j=1
rj dxj ∧ dyj, wherea = (a1, . . . , am),b = (b1, . . . , bm) ∈ R

m.

Remark4.12. The eigenvalues ofh−1

a,bωr are given by±i r1
a1b1

, . . . ,±i rm
ambm

. The symplectic
volumeVωr

equalsr1r2 . . . rm, by Notation4.4(ii).

Examples 4.13.
(i) Let m = 2. Seth = dx2

1 + dy21 + dx2
2 + 4 dy22, so the representing matrix is

h =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 4


 ,

and let
ω = 2 dx1 ∧ dy1 + 2 dx2 ∧ dy2 and ω′ = dx1 ∧ dy1 + 4 dx2 ∧ dy2.

Then bothh−1
ω andh−1

ω
′ have eigenvalues±i and±2i. Thusω andω′ are quantum

equivalent magnetic fields on(Z4\R4, h). The two structures(Z4\R4, h, ω) and(Z4\R4, h, ω′)
are not Kähler.
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(ii) Seth = dx2
1 + 4 dy21 + dx2

2 + 4 dy22, so the representing matrix is

h =




1 0 0 0
0 4 0 0
0 0 1 0
0 0 0 4


 ,

ω = 2 dx1 ∧ dy1 + 2 dx2 ∧ dy2,

h′ = dx2
1 + dy21 + 4 dx2

2 + 4 dy22, so the representing matrix is

h
′ =




1 0 0 0
0 1 0 0
0 0 4 0
0 0 0 4


 ,

and

ω′ = dx1 ∧ dy1 + 4 dx2 ∧ dy2.

Then all eigenvalues ofh−1
ω and ofh′−1

ω
′ are±i. Thus(Z4\R4, h, ω) and(Z4\R4, h′, ω′)

are quantum equivalent Kähler structures. Note thath andh′ are isometric via the map that
interchanges the coordinatesy1 andx2; so ω and the corresponding pullback ofω′ can be
viewed as quantum equivalent Kähler structures on the sameunderlying Riemannian manifold.

Remark4.14. The first of the two examples above first appeared in a slightlydifferent context
in [3].

In examples of pairs of quantum equivalent line bundles arising from Theorem 4.6, the
cotangent bundles endowed with the associated symplectic forms will in general be nonsym-
plectomorphic. In particular, this is the case for the pairsin Example 4.13. In fact, we have:

Proposition 4.15. Let ω, ω′ be two translation-invariant symplectic structures on thetorus
M = Z2m\R2m with Chern invariant factorsr = (r1, . . . , rm) and r′ = (r′1, . . . , r

′

m), re-
spectively. LetΩ := π∗ω + ω0 and Ω := π∗ω′ + ω0 be the associated symplectic forms
on T ∗M , whereω0 is the Liouville form. Ifr 6= r′, then(T ∗M,Ω) and (T ∗M,Ω′) are not
symplectomorphic.

Proof. For k = 1, . . . , m, we consider the values of the integer cohomology classes ofT ∗M
represented byΩk := Ω ∧ . . . ∧ Ω on integer homology classes ofT ∗M . We haveT ∗M ∼=
M × R2m. In particular, each integer homology class inH2k(T

∗M ;Z) can be represented by
a suitable smooth closed cycle inM × {0} (a finite sum of oriented2k-dimensional subtori).
We consider the integrals ofΩk := Ω ∧ . . . ∧ Ω over such2k-cycles. These are equal to
the integrals ofωk over the corresponding cycles inM . Obviously, the minimal nonzero
absolute value of these integrals isr1 · . . . · rk. Thus, if there were a symplectomorphism
(T ∗M,Ω) → (T ∗M,Ω′), thenr1 · . . . · rk = r′1 · . . . · r′k for eachk = 1, . . . , m, and thus
r = r′. �
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The next proposition shows that the previous result continues to hold if we remove the zero
section from the cotangent bundle, as it might seem natural to do in some contexts (see the
comments after Theorem 1.3): LetT ∗M r 0 ∼= M × (R2m

r {0}) denote the manifold of all
nonvanishing cotangent vectors toM (this is an open submanifold ofT ∗M).

Proposition 4.16. In the situation of Proposition 4.15,r 6= r′ also implies that(T ∗M r 0,Ω)
and(T ∗M r 0,Ω′) are not symplectomorphic.

Proof. Let X ∈ R2m r {0} be arbitrary. Forj ≤ 2m − 2, the jth homology group of
T ∗Mr0 ∼= M×(R2mr{0}) is still isomorphic to thejth homology group ofM , and each of
its cycles can be represented by a suitable cycle inM×{X}. Therefore, by the same argument
as in the proof of Proposition 4.15 we see that the symplectomorphism class ofΩ determines
r1, . . . , rm−1. In order to see that it also determinesrm, note thatH2m(M×(R2mr{0});Z) =
Z ⊕ Z2m, whereZ corresponds toH2m(M ;Z) andZ2m is generated by products of1-cycles
in M with a(2m−1)-cycle inR2mr{0} generatingH2m−1(R

2mr{0};Z). Since the integral
of Ωm over such products vanishes, we still have that the minimal nonzero absolute value of
the integrals ofΩm over 2m-cycles representing integral homology classes inT ∗M r 0 is
r1 · . . . · rm. �
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