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ABSTRACT. Let M be a real2m-torus equipped with a translation-invariant mettiand

a translation-invariant symplectic form; the latter we interpret as a magnetic field dh
The Hamiltonian flow of half the norm-squared function indddyh on 7% M (the “kinetic
energy”) with respect to the twisted symplectic foem- 5, + 7*w describes the trajectories
of a particle moving onV/ under the influence of the magnetic field If [w] is an integral
cohomology class, then we can study the geometric quaiotizaf the symplectic manifold
(T*M, wr-p + m*w) with the kinetic energy Hamiltonian. We say that the quanitons of
two such tori(My, hy,w1) and(Ma, he, ws) arequantum equivalenf their quantum spectra,
i.e., the spectra of the associated quantum Hamiltonianatqrs, coincide; these quantum
Hamiltonian operators are proportional to theinduced bundle Laplacians on powers of the
Hermitian line bundle o/ with Chern clasgw].

In this paper, we construct continuous familigs/, h;)}: of mutually nonisospectral flat
tori (M, h;), each endowed with a translation-invariant symplectiecitirew, such that the
associated classical Hamiltonian systems are pairwiseaqut. Ifw represents an integer co-
homology class, then thé\/, h;,w) also have the same quantum spectra. We show moreover
that for any translation-invariant metricand any translation-invariant symplectic structure
on M that represents an integer cohomology class, the asstcjantum spectrum deter-
mines whethefM, h, w) is Kahler, and that all translation-invariant Kahlerstiures(h, w)
of given volume onV/ have the same quantum spectra. Finally, we construct painagnetic
fields(M, h,w1), (M, h, ws) having the same quantum spectra but nonsymplectomorgisic cl
sical phase spaces. In some of these examples the pairstaniitsahler manifolds.

1. INTRODUCTION

Consider an even-dimensional torlis = Z*™\R?™. To each translation-invariant closed 2-
formw and translation-invariant (i.e., flat) Riemannian metrem M, associate a Hamiltonian
system(T*M, 2, H). Here() is the symplectic form ofi* M given byQ) = wy + 7m*w, where

wy is the Liouville form, andr : T*M — M is the projection. The Hamiltonian functidi

is given byH(q, &) = 3he(¢,€). In casew = 0, the Hamiltonian system gives the classical
geodesic flow. A nontrivial closeg-form w may be viewed as a magnetic field dn, and
the Hamiltonian system describes the dynamics of a chargeitle moving in the magnetic
field. We will say that( M, hy,w;) and(M, hy, w,) areclassically equivalenif the associated
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Hamiltonian systems are equivalent, i.e., if there is a dgotpmorphism of cotangent bundles
intertwining the Hamiltonian functions.

If, moreoverw represents an integer cohomology class, then there exitsmitian com-
plex line bundleL with Chern classw]. Choose a Hermitian connectidn with curvature
—2miw. The connection gives rise to a Hermitian connection, atswtkdV, on each tensor
powerL®* i.e., on the line bundles with Chern class, k € Z*.

According to the procedure of geometric quantization (sfwadly, with respect to the ver-
tical polarization on the cotangent bundle in the presericeeometaplectic correction), the
quantum Hilbert space at levél = 1/k (k € Z*') associated td7T*M,wy + 7*w) is the
L?-space of square integrable sectionsL8f. The quantum Hamiltonian associated to the
classical Hamiltoniarf is the operatoﬁk = %QA, whereA = —trace(V?). (See [9], and
note that the scalar curvature term appearing there is a@naricase. Also see Section 2 of [4]
for a brief outline of geometric quantization.)

For technical reasons, we will always assume tha nondegenerate, i.e., that it is a sym-
plectic structure ord/. Of course, there are more general magnetic fieldd/guescribed by
degenerate-forms, but nondegeneracy is crucial for certain isospditgresults €.f. Remark
3.2). We will see in Lemma 3.1 that the spectra of the opessa%rare independent of the
choice of the connectioW with curvature—2miw. Hence the spectra depend only.arh, and
of coursek, and will be denoted bgpec(kw, k). (This independence of the choice of connec-
tion is special to our setting of flat tori with translatiomsariant nondegenerate) We will say
that(M, hy,w;) and(M, hy, wy) arequantum equivalent Spec(kwy, hy) = Spec(kws, hs) for
allkezZ*.

Our main results are:

Theorem 1.1. Letw be any translation-invariant symplectic structure 8f := Z*™\R*™.
Then every translation-invariant metricon M lies in a continuous familys,} of mutually
nonisometric flat metrics such that/, h,, w) is classically equivalent t¢M/, h,w) for all t.
Moreover, ifw represents an integer cohomology class, then th&té:,, w) are also quantum
equivalent ta M, h,w) for all t.

For the remainder of the results, we assume that the farns= 1, 2) represent integer
cohomology classes. In Theorem 4.6, we give necessary #ient conditions for quantum
equivalence of pairs§M, hy,w;) and (M, he, ws), and we observe that in our setting, for any
choice ofw as aboveSpec(w, h) determinesSpec(kw, h) forall k € Z+.

We will say that(M, h,w) is Kéhler, or that(h,w) is aKahler structureon M, if there
exists a complex structutésuch tha{ M, h, w, J) is Kahler.

We then prove the following, fod/ = Z2™\R*™ with m arbitrary:

Theorem 1.2.For any translation-invariant symplectic formand translation-invariant met-
ric h on M, the spectrunbpec(w, h) determines whethgiM/, h,w) is Kahler. Moreover, all
translation-invariant Kahler structuregh, w) of given volume of/ are quantum equivalent.
(Here bothw and’ are allowed to vary.)
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Theorem 1.3. The collectionSpec(kw, h), k € Z*, does not determine the symplectic struc-
ture w on M nor the symplectic structur@ = w, + 7*w on T*M (nor the restriction of

to the cotangent bundle with the zero section removed). ttigodar, quantum equivalent
systems need not have the same classical phase space.

We pause to clarify the notion of classical phase space userlamd to motivate the par-
enthetical remark in Theorem 1.3. By considering the emttangent bundle, instead of the
cotangent bundle minus its zero section, we are using a shatestronger notion of equiv-
alence than is sometimes considered in the mathematiegdtlire. Indeed, our notion of
classical equivalence (Definition 2.1) implies thatiff, hy,w;) and(M,, hs, ws) are classi-
cally equivalent, thefiM;, w;) and(M,, w,) are symplectomorphic. The removal of the zero
section is mathematically rather than physically motidat©ften analytical considerations
necessitate replacing the Hamiltonian flow by a reparagagion that is not well behaved on
the zero section. This is the case, for example, in the aisatyshe singularities of the wave
trace [2] and in the study of regularizations of the Keplewf|@], [8]. Removing the zero
section also results in stronger — and more difficult — gemdagidity results, as in the arti-
cle [1] cited below. On the other hand, in classical mechanie phase space is the space of
all possible states of the system. For a particle moving oraaifmid under the influence of
a magnetic field, an initial condition consisting of a givesspion and zero momentum (i.e.,
an element of the zero sectionBf M) is perfectly acceptable. While the results above were
stated using the phase spa@& 1/, ), they remain true if one removes the zero section from
T*M. In particular, the resulting stronger version of Theoreg(the parenthetical comment)
is proven in Proposition 4.16.

Theorem 1.1 contrasts sharply with the case 0. C. Croke and B. Kleiner [1] showed that
the geodesic flow on a torus (& rigid, i.e., that any Riemannian manifold whose geodesic
flow is C° conjugate to that of a flat torus/, ) is isometric to the torugM, i). Note that
C°-conjugacy is a much weaker condition than classical etprive.

This is the second of two articles addressing questions ahigum equivalence. In the
first [4], we constructed examples of pairs (or finite fansjief Hermitian locally symmetric
spaces)M; for which the line bundles with Chern class defined by thel&@&ktructure and
their tensor powers over the varioli§ are isospectral for atl

This article was motivated by results of [3]. In fact, ouruks on quantum equivalence of
magnetic fields are a reinterpretation and expansion oflaoes 3.8 and 3.9 of [3].

2. CLASSICAL EQUIVALENCE OF MAGNETIC FLOWS

Definition 2.1. Given a Riemannian manifold\/, ) and a closed 2-forrw on M (which

we will always assume to be nondegenerateX2lee the symplectic structure @i M given

by Q := wy + 7*w, wherew is the Liouville form (i.e.,wy = —d\, where) is the canon-
ical 1-form onT*M) andrw : T*M — M is the projection. Defing? : T*M — R by
H(q, &) = 3he(&,€). We will refer to(7 M, 2, H) as the classical Hamiltonian system associ-
ated with(M, h,w). Given Riemannian manifolds\/;, h;), i = 1,2, and closed 2-forms; on

M;, we will say that(M;, hy,w;) and(M,, he, wo) areclassically equivalenif the associated
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Hamiltonian system&I™* M, Q);, H;) are equivalent, i.e., if there exists a symplectomorphism
d . (T*Ml, Ql) — (T*MQ, Qg) such thatHl = H2 o ®,

Theorem 2.2. Letw be a translation-invariant symplectic structure BA™, let A be a linear
symplectomorphism ¢RR?™, w), let h be a translation-invariant metric oR?™, and letL be

a lattice inRR?™. We will continue to denote by andh the induced structures on quotients of
R*™ by a lattice. Thed L\R*™ h,w) is classically equivalent toA(L)\R?*™, h,w).

Remark.3.

(i) The conclusion may be rephrased as the statement(thd@>™, A*h,w) is classically
equivalent tq L\R*™ h, w).

(ii) In Theorem 2.2, we do not require thdthave maximal rank ifR*™, i.e., thatC\R*™ be a
torus. However, in the case that it is a torus and ¢thegpresents an integer cohomology class
in L\R*™, the reformulation in (i) will give us different quantum Hétonians (Laplacians as-
sociated with different metrics) on the same complex linedbe. We will see in Corollary 4.8
that the systems are quantum equivalent.

Proof. Letn = 2m. Under the standard identification 6f R" with R?", the symplectic form
Q) = wy + 7w Is a translation-invariant 2-form and thus may be identifgth the bilinear
form onR?" with matrix
C 1Id
—Id 0

with respect to the standard basis, where each block is efrsiz n and whereC' is the
matrix of the anti-symmetric nondegenerate bilinear fomR6é defined byw. The linear map
$ : R?™ — R?" given by

®(q,p) = (Ag+ C'("A™" = 1d)p, p)

preserves), as can be seen by an easy computation usihg- —C and’ACA = C. The
HamiltonianH depends only op (sincer is translation invariant) and thus is also preserved
by ®. Thus® is a self-equivalence of the Hamiltonian systéiiR™, h, w). Finally, we have
®(q0 + q,p) = (Aqo,0) + ®(q,p) for all ¢go € R™ and, in particular, for alfy € £. Thus®
induces an equivalence betwegh\R*" h,w) and(A(L)\R*™, h,w). O

Corollary 2.4. Letw be a translation-invariant symplectic structure on a tofds= Z>™\R*™,
Then every translation-invariant Riemannian metsion M belongs to a continuous family
{h}, of mutually nonisometric translation-invariant Riemaamimetrics such that\/, h;, w)

is classically equivalent to)M, h, w) for all t. The parameter space of this deformation has
dimension at leastm.

Proof. h, is defined asA;h, where A, (with A, = Id) is a curve in the group of linear iso-
morphisms ofR?™ that preservev. This group is isomorphic t82m, R) and has dimension
m(2m + 1), while the group of linear isomorphisms that preséivs isomorphic taO(2m)
and has dimensiom(2m — 1). The corollary thus follows from Remark 2.3(i). O
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3. HERMITIAN LINE BUNDLES OVER TORI

3.1. Hermitian connections with the same translation-invariart curvature. Let M be a
compactC> manifold, L a Hermitian line bundle oved/, and letjw] € H?*(M;Z) be the
Chern class of.. The curvature of any Hermitian connection énies in —2ri[w]. (Our
notation differs from that of [4] by a factor @fr.) If V andV’ are two Hermitian connections
on L, thenV’ = V + 27i$ for some real-valued-form 5 on M. The two connections have
the same curvature if and onlydf; = 0, in which case5 = « + df for some harmoni¢-form

« and somef € C*(M). The termdf changes the connection only by a gauge equivalence:
in fact, letting€(L) denote the space of smooth sectiond.othen the magf (L) — £(L)
given by s — e>™fs intertwinesV + 2ridf andV. Given any Riemannian metricon M,
this map also intertwines the Laplaciansrace(V + 2midf)? and— trace(V?). Thus the two
Laplacians are isospectral. The same statement holdsd@stbociated Laplacians on all the
higher tensor powers di. Thus we may assume that= 0.

In general, the addition of a harmonic 1-fomia to V will affect the spectrum. However,
we will see that in the case of line bundles with nondegepeCGitern class over flat tori,
endowed with a connection whose curvature form on the t@ugnslation invariant, the
addition of a harmonic term doest affect the spectrum; see Lemma 3.1 below. Thus in this
case, the spectrum of the Laplacian depends only on theaoetthe torus and the curvature
of the connection on the bundle.

3.2. Principal circle bundles over tori. Let M = Z>™\R*", wherem is a positive inte-
ger. Letw be a translation-invariant symplectic structure fhthat represents an integer
cohomology class. We will first construct a principal cirblendle P with Chern clasgw].
The bundleP will be a quotient by a discrete subgroup of a two-step népotie group,
isomorphic to the Heisenberg group of dimensiom+ 1.

Sincew is translation invariant, it may be viewed as a nondegeeeanatisymmetric bilinear
mapw : R?™ x R?™ — R that takes integer values & x Z*™. We endowN := R?"+!
with the structure of a 2-step nilpotent Lie group with mpiitation

(w1, t1)(ug, to) = (wg + ug, ty +to + %W(UlaUQ))

for all uy,us € R*™ andt;, t, € R. ThenN is isomorphic to thg2m + 1)-dimensional
Heisenberg group. The coordinate vector figld= % is left invariant and spans the center
3 = {0} x R of the Lie algebrar of N. The center coincides with the derived algebra, so the
Lie bracket may be viewed as a bilinear mag : R*" x R?*™ — 3, which is given by

(X, V] =w(X,Y)Z.

Let ' C N be the subgroup generated by, 0), ..., (ea,0),(0,1) € R = N,
wheree; denotes theith standard basis vector @&*™. Then the projection of’ to R*™
is Z*™. The intersection of" with the center{0} x R of N is precisely{0} x Z, the
subgroup generated by the elemémtl). In fact, for X,Y € {=£eq,...,+es,} the com-
mutator(X, 0)(Y,0)(X,0)~1(Y,0)~ equals(X + Y, jw(X,Y))(—X - Y, sw(—X,-Y)) =
(0,w(X,Y)) which lies in{0} x Z sincew is integer valued ofZ*™ x Z*™; moreover, any
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product(X;,0) - ... (X, 0) with X;,..., X} € {£e1,...,xeapnandX; + ...+ X =0
can be written as a product of commutators as above.

In particular,I" is a uniform discrete subgroup @f. SetP = I'\N. The center ofN
projects to a circle, and the action of the center by traimlaton N induces a circle action
on P, giving P the structure of a principal circle bundle owvéf.

We identify the circleS!, given by the quotient of the center dfby its intersection with’,
with the unitary groug/(1). Its Lie algebra is thus identified with the space of purelpagn
inary complex numbers. Under this identification, the vedfoe 3 above corresponds to
271 € iR = T1U(1); hence, a connection diis specified by ars!-invariant 1-form2zip on
P such thalriu(Z) = 2ri; that is,u(Z) = 1. (Herep is real-valued.) The kerné{ of p is
called the horizontal distribution associated with theremstion. By abuse of terminology, we
will say thaty is left invariantif it pulls back to a left-invariant-form on N. In this caseH is
spanned by left-invariant vector fields (again in the sehatd left-invariant vector field o
induces a well-defined vector field dh= '\ N, which we refer to as left invariant) and thus
may be viewed as a subspacenafomplementary tg. Conversely, since every left-invariant
1-form is alsoS! invariant, any complement gfin n is the horizontal distribution associated
with some translation-invariant connection Bn

Suppose thatrip is a left-invariant connection oR. For X, Y € H, we have

2midp(X,Y) = —2mip([X,Y]) = —2mip(w(X,Y)Z) = —27miw(X,Y)

sinceu(Z) = 1. Thus every translation-invariant connection®mas curvature form-2miw.
Let o : R?™ — R be a linear functional. Because of the nondegeneracy, the map
n — n that sends¥ € R*" to o(X)Z and send¢ to zero is an inner derivation af and the
map/N — N given by(u,t) — (u,t+ «(u)) is an inner automorphism of.
It follows that if 1/’ is another left-invariant 1-form such that{ ) = 1, theny’ = poAd(a)
for somea € N, and the corresponding horizontal distribution satisfiés= Ad(a=')H.

3.3. Associated Hermitian line bundles. Let w and P be as above and l&triu be a left-
invariant connection or®. The groupS* = U(1) acts onC in the standard way, hence
diagonally on the produd®? x C, giving rise to a Hermitian line bundle

L=(PxCQC)/~

where~ is the equivalence relation given By, w) ~ (pz~!, zw) forp € P, w € C, and
z € S'=U(1). The bundlel has Chern clasfs)].
The higher tensor powers éfare given by
L% = (P x C)/ ~y

where~;, is given by(p, w) ~; (pz~1, 2*w) forp € P,w € C,andz € St = U(1).
The spaceC>° (M, L®*) of smooth sections of ®* may be identified with the subspace
Cx(P,C) given by

(8.1) CX(P,C)={feC®P,C)| flpz"") =Ff(p)forallpe P,z e ' =U(1)}.
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Equivalently,
(3.2) CE(P,C)={feC™PC)| Zf=—2mikf}.

Because of the trivializatio P = P x n, any complexi-form on P may be viewed as
a map fromm to the space of smooth complex functions®nFor f € C;°(P,C), the map
corresponding to thé-form df + 2mik f i actually mapsh to Cp°(P, C) and vanishes og;
hence, it induces a well-defined map fr@&A\" to C;°(P,C). Recalling Equation (3.1) and
identifying R?™ with the tangent space at each point\df we thus getamap'f : TM —
C>=(M, L®*). This defines the Hermitian connecti®on L** associated with the connection
2mip on the principal bundle. (Here we are using the same notatiéor the connection on
each of the bundles®*. The connectiorV on L®* is of course the usual connection on the
kth tensor power of the bundle arising from the connectioW on L.) For X € TM and X
any horizontal vector i’ P with 7,.X = X, wherer : P — M is the bundle projection, we
have

Vx f=Xf.
The curvature oV is —27ikw.

Given a flat metrich on M (i.e., an inner product o*™), let {X1,..., X5,,} be an or-
thonormal basis of the Lie algebB2™ of M, and letX, ..., X,,, be the horizontal lifts to
vector fields on the principal bundle. Then under the identification &> (M, L=*) with
C°(P,C) as in Equation (3.1), the Laplacian 6A°(M, L®*) defined by the connectid¥ is
given by

A(f) == X3,

Let p denote the representation of the nilpotent Lie graupn L?( P) given by(p(a) f)(p) =
f(pa) and letp, be the representation of the Lie algelargiven by the differential op. Then
by Fourier decomposition with respect to the action of theeeof V, we have

L*(P) = ®yez L (P)
where
LE(P)={f e L*(P)| p(z" 1) f = fforall z € S' = U(1)}.

l.e., L:(P) is the closure of:°(P,C) in L?(P). Given a translation-invariant connection on
L (and thus onl.®* for all £ € Z*) and a flat metric orl/, the associated Laplacian, viewed
as an operator o6¢°( P, C), extends td . (P) as the densely defined operator

(3.3) A== p(X)"

Lemma 3.1. We continue to assume thatis a translation-invariant symplectic structure on
the torusM and that the cohomology classwfs integral. LetL be a Hermitian line bundle
with Chern classw], and letV and V' be two connections oh with curvature—2riw. Then
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given any flat metric on\/, the Laplacians, and thus the quantum Hamiltonians,[6#
defined byV andV’ are isospectral for alk € Z*.

Proof. Note thatl is determined by its Chern class up to a bundle isomorphisiocing the
identity map onV/. Such isomorphisms preserve the curvature forms of theemdiams which
they intertwine, and the spectra of the corresponding lubdplacians coincide. Therefore,
we may assume thdtis the Hermitian line bundle which we explicitly construti@bove.

Let V be the connection associated with the principal conne&iap as above. By the
discussion in Subsection 3.1, we may assumeWiat V + 27wia for some harmonic 1-form
aonM. Viewing « as a linear functional oR*™, the map — ngivenbyX +cZ — «a(X)Z
(for all X € R?™ andc € R) is an inner derivation an¥’ is the connection o, associated
with a principal connectio@rip o Ad(a) for somea € N. The horizontal distributiofi’ is
given by Ad(a—')H. It follows that the Laplacian associated wRH on C¢°(P, C) is given

by

2m 2m

A=Y pAd(@H)X)? = 3 pla)p(X;)%0(a) = pla~") o Ao pla).

J=1 J=1

0

Remark3.2 The hypothesis of nondegeneracy.ofs essential here. At the other extreme in
whichw = 0 so thatL is the trivial bundle, the spectra of the various Laplaciafg— 2mia)?
associated with the (harmonic) connections of curvature fo#&m the Bloch spectrum of the
torus.

Notation 3.3. In the notation of Lemma 3.1, we will write
Speckw, h)
for the spectrum of the operat(ﬁ‘,C = %A, whereh = % and A is the Laplacian or,®*

defined by the flat metrié on Z>™\R?™ and any connectioR on L with curvature—2miw.
By the lemma, this spectrum is well defined.

4. QUANTUM EQUIVALENT LINE BUNDLES
Notation 4.1. Denote the standard coordinatesi®it by (z, 1) = (21, ..., T, Y15 - - - Ym)-
Given anm-tupler = (ry, ..., r,,) of positive integers such that
(4.2) rilre || T,
define a translation-invariant symplectic fowponR?™ by

Wy = Z rjdz; N\ dy;.
j=1
Proposition 4.2.[6, p. 304]Letw be a translation-invariant symplectic structure &3i™
such thafw] € H?(M;Z). Then there exists a unique-tupler satisfying Equation 4.1 such
that A*w = w, for someA € SL(2m,Z). We refer to the entries of this-tuple as theChern
invariant factors
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Thus by a linear change of coordinates preservfg, we may assume when convenient
thatw = w, for somer satisfying 4.1.

Remark4.3. Line bundles are of course classified by their Chern class®shy the Chern
invariant factors. Then-tupler is a complete homeomorphism invariantgfin the sense
that given two integral symplectic structures with the s&hern invariant factors, there is a
self-homeomorphism of the base space pulling back oneraitegmplectic structure to the
other; however, integral symplectic structures with thes&hern invariant factors need not
be cohomologous and thus may give rise to inequivalent imslles.

Notation 4.4.

(i) Given a translation-invariant symplectic structurand a translation-invariant Riemannian
metrich onRR?™, viewed as bilinear forms, define a linear transformafionR>™ — R>™ by
the condition

w(u,v) = h(F(u),v)
for all u,v € R?>™. Let h andw denote the Gram matrices of the bilinear formandw with

respect to the standard basisfgf*. The matrix of the linear transformatidnin this basis is
given by

F=h"w.
Note thatF is antisymmetric relative to the inner productand its eigenvalues are purely
imaginary; we denote them hyd?i, . . ., +d? .

The linear transformatio” may be expressed in terms of the “musical isomorphisms”:
Given a finite-dimensional real vector spadceand a nondegenerate bilinear fodn: V' x
V — R, denote byB’ : V — V* the isomorphism froni/ to its dual space given by
B’(u) = B(-,u), i.e.,(B(u))(v) = B(v,u) foru,v € V, and byB* : V* — V the inverse
of B°. ThenF = hf o w’.

(i) Let M = Z*™\R*™. Set

1
Vi, = v/det(w) :/ —w™
u m!

the symplectic volumef M. Since the standard basis Rf”” is a basis ofZ?>™ we have, in
particular,V,,, = riry ... 7.

Proposition 4.5. We use Notation 3.3 and 4.4. Léf = Z*™\R?™, letw be a translation-
invariant symplectic structure of/ representing an integer cohomology class, andhléie
any flat metric onM/. Given anm-tuplej = (j1, ..., j,») Of nonnegative integers, let

v(j) =m ) d(2ji+1).

i=1

Then Spe@:w, &) is the collection of all-v(j), j € Ni', each counted™V, times.



10 CAROLYN GORDON, WILLIAM KIRWIN, DOROTHEE SCHUETH, AND DA/ID WEBB

Proof. Recalling Notation 3.3, we see that? Speckw, h) is the spectrum of the operator in
Equation (3.3) acting o} (P). Rather than carry out the computation here, we refer to [5],
Section 3, where a similar computation is performed. Weciaigi here how to translate the
computation in [5] to our setting. We assume that w, for somer = (rq,...,7,,) as above.
Perform a change of coordinates B#", letting «;, = r;z; andy, = y; fori = 1,...,m. In
these new coordinates,= ;" , duz/Ady;, and the lattic&*™ is the collection of all elements
with coordinates imZ x --- x r,,Z x Z™. This change of coordinates aligns our notation
with that in [5]. Next, in [5], the operator under study is thaplacianAp associated with
the Riemannian metric on the Heisenberg manifBld= I"\ N induced by the left-invariant
metric onN for which the basi§ X, . .., X,,,, Z} is orthonormal, wheré, . . ., X,,, are as

in Subsection 3.3. We havkr = A + (p,Z)? for A as in Equation (3.3). (In the notation of
[5], we are settingyy,,,+1 equal tol.) Writing L?(P) = @&z Li(P), then it is shown in [5]
that fork = 0, the spectrum of\ p restricted toLZ (P) is given by the collection of numbers
47?k* + 2|k|v(j), each occurring with multiplicityk|™r; . ..r,,. (Our|k| is denoted by in
[5].) The operatokp.Z)?* acts onLZ(P) as multiplication byir?k?. Correcting for this term
and takingt € Z*, we obtain the proposition. O

Theorem 4.6. We use Notation 3.3 and 4.4. Letandw’ be two translation-invariant sym-
plectic structures onV/ representing integer cohomology classes, andhletnd 2’ be flat
metrics onM . Then the following are equivalent:
(i) Spe€w, h) = Specw’, h').
(i) Spe¢kw, h) = Spec¢kw’, h') forall k € Z*.
(i) The linear transformationa! o w’ and 7 o w” (equivalently the matrices 'w and
h’'~'w’) have the same eigenvalue spectrum, &ne= V,,.

Proof. It is clear from Proposition 4.2 that (i) and (ii) are equevatl and that (iii) implies (i)
and (ii). To see that (i) implies (iii), note that the lowegjenvalue occurring irspecw, h)
is(d? + - -+ + d2,), with multiplicity preciselyV,,. ThusV,, is spectrally determined. If we
order thed; so thatd} < d3 + --- < d2,, then2rd; is the difference between the first two
distinct eigenvalueg; andu,. From the multiplicity ofu,, we can determine how many of
the d; equalds; denote this number by. Since we know) ™, d; from i, and we know
d3, we can determine all eigenvalue§) for which j,,; = --- = j,, = 0, along with their
multiplicities. Removing all these from the spectrum, tbavést remaining eigenvalue is
v(j) wherej,,, = 1 and all otherj,'s are zero. This enables us to determifie, and its
multiplicity, and we continue inductively.

Remark4.7. If the symplectic volume$/, andV,, coincide, then the first part of condition
(iii) in the previous theorem can be replaced by the conditi@t/ andh’ have the same de-
terminant, or equivalently thabl(M, h) = vol(M, h'), since the determinant is multiplicative

andV, = vdet w.

Corollary 4.8. Letw be a translation-invariant symplectic structure af = Z>™\R*™ that
represents an integer conomology class. Given any traieslahvariant metrich on M, let
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{h;}, be a family of metrics constructed as in the proof of Corgllar4d. Then M, h;,w) is
quantum equivalent as well as classically equivaler{titb i, w) for all t.

Proof. Classical equivalence was shown in Corollary 2.4. Quantgaivalence follows from
Theorem 4.6; in fact, ifA, (and hence, ') preserves; andh, = A*h then we have
h'w=A'h'wA,.
O
Definition 4.9. We will say that( M, h, w) is Kahler, or that the paith, w) is aKéhler structure

on M, if there exists a complex structugeon M such that(M, h, J) is a Kahler manifold
whose associated Kahler formus

Proposition 4.10. The tuple(M, h,w) is Kahler if and only if all the eigenvalues &f o «”
(equivalently, of the matrik 'w) are +i.

Proof. The latter condition is equivalent t62 = — Id for the h-antisymmetric mag: =
h* o w” from Notation 4.4(i). But this is equivalent {3/, h, w) being Kahler (with complex
structurer’). O

Corollary 4.11. Specw, h) determines whethefM, h,w) is Kahler. Moreover, any two
K&hler structuresgh,w) and (1, w’) that have the same volume are quantum equivalent.

Note that in the Kahler case, the symplectic volurieequals the Riemannian volume of
(M, h); recall Remark 4.7 together with Proposition 4.10.
For the construction of examples, we will restrict attentio metrics of the form

m

hap = Y _ (a3 da + b3 dy?),

=1
whenw = w, = 7% | rjdx; A dy;, wherea = (ay, ..., ay),b = (b1, ..., by,) € R™,

Remark4.12 The eigenvalues de;}D w, are given byt
volumeV,,_ equalsrirs .. .7, by Notationd.4(ii).

+i-"=— . The symplectic

a:}n, R P e
Examples 4.13.
(i) Let m = 2. Seth = dz? + dy? + dx3 + 4 dy3, so the representing matrix is
10 00
h =

o O O
SO =
O = O

0
0 )
4
and let
w=2dx; Ndy, +2dzs ANdys and ' = dxy A dy; + 4dzs A dys.
Then bothh'w andh™'w’ have eigenvaluesi and+2i. Thusw andw’ are quantum

equivalent magnetic fields q*\R*, h). The two structure€Z*\R*, h, w) and(Z*\R*, h, ')
are not Kahler.
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(ii) Seth = dz? + 4 dy? + dz3 + 4 dy3, so the representing matrix is

h =

OO O
O O = O
O = OO
- O O O

w = 2dx; ANdy; + 2dxs N dys,
h' = dx? + dy? + 4 dx3 + 4 dy3, so the representing matrix is

000

—_

W =

o O O
S O =
S = O
- O O

and
W' =dxy Ady, + 4dxg A dys.

Then all eigenvalues di~'w and of b’ 'w’ are+i. Thus(Z*\R*, h,w) and(Z*\R*, i/, ')
are quantum equivalent Kahler structures. Note thahd /' are isometric via the map that
interchanges the coordinatgs and x,; sow and the corresponding pullback of can be
viewed as quantum equivalent Kahler structures on the saugherlying Riemannian manifold.

Remarkd.14 The first of the two examples above first appeared in a sligtitigrent context
in [3].

In examples of pairs of quantum equivalent line bundlesragif'om Theorem 4.6, the
cotangent bundles endowed with the associated symplecticsfwill in general be nonsym-
plectomorphic. In particular, this is the case for the pair&xample 4.13. In fact, we have:

Proposition 4.15. Let w, w’ be two translation-invariant symplectic structures on tbeus
M = 7*™\R*" with Chern invariant factors = (ry,...,7,) andr’ = (r},...,7 ), re-
spectively. Lef) := 7w + wg and 2 := 7w’ + wy be the associated symplectic forms
on T*M, wherewy is the Liouville form. Ifr # v/, then(7T*M, ) and (T*M,<)’) are not
symplectomorphic.

Proof. Fork = 1,...,m, we consider the values of the integer cohomology class&s bf
represented bp* = Q A ... A Q on integer homology classes 6f /. We havel™ M =

M x R*™_ In particular, each integer homology classin, (7 M; Z) can be represented by
a suitable smooth closed cycleid x {0} (a finite sum of oriente@k-dimensional subtori).
We consider the integrals 6" := Q A ... A Q over such2k-cycles. These are equal to
the integrals ofu* over the corresponding cycles iW. Obviously, the minimal nonzero
absolute value of these integralsris- ... - r,. Thus, if there were a symplectomorphism
(T*M,Q) — (T*M,Q), thenry - ...-rp, =71]-... -1, foreachk = 1,...,m, and thus
r=r. d
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The next proposition shows that the previous result coesria hold if we remove the zero
section from the cotangent bundle, as it might seem natardbtin some contexts (see the
comments after Theorem 1.3): LEtM \ 0 = M x (R*™ ~ {0}) denote the manifold of all
nonvanishing cotangent vectorsio (this is an open submanifold @t M1).

Proposition 4.16. In the situation of Proposition 4.15,# r’ also implies that7*M \ 0, Q)
and(7*M ~ 0,€) are not symplectomorphic.

Proof. Let X € R?*" ~\ {0} be arbitrary. Forj < 2m — 2, the jth homology group of
T*M ~0 = M x (R*™~.{0}) is stillisomorphic to theth homology group ofi/, and each of
its cycles can be represented by a suitable cycl in{ X }. Therefore, by the same argument
as in the proof of Proposition 4.15 we see that the sympleatphism class of) determines
r1,...,Tm_1. In Order to see that it also determines note thatty,,, (M x (R*™~{0}); Z) =

7 @ Z>™, whereZ corresponds tdls,, (M; Z) andZ*™ is generated by products dfcycles

in M with a(2m —1)-cycle inR?™ \ {0} generatingdy,,, 1 (R*™~.{0}; Z). Since the integral
of 2 over such products vanishes, we still have that the miniraakzaro absolute value of
the integrals of)™ over 2m-cycles representing integral homology classe§iA/ ~ 0 is
T1+ o T ]
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