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Abstract

In this article we give a brief overview of the start-of-the-art in software for the solution
of mixed integer nonlinear programs (MINLP). We establish several groupings with respect
to various features and give concise individual descriptions for each solver. The provided
information may guide the selection of a best solver for a particular MINLP problem.
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1 Introduction

The general form of an MINLP is

minimize f(x, y)

subject to g(x, y) ≤ 0 (P)

x ∈ X
y ∈ Y integer

The function f : Rn+s → R is a possibly nonlinear objective function and g : Rn+s → Rm

a possibly nonlinear constraint function. Most algorithms require the functions f and g to
be continuous and differentiable, but some may even allow for singular discontinuities. The
variables x and y are the decision variables, where y is required to be integer valued. The
sets X ⊆ Rn and Y ⊆ Rs are bounding-box-type restrictions on the variables. Additionally
to integer requirements on variables, other kinds of discrete constraints are commonly used.
These are, e.g., special-ordered-set constraints (only one (SOS type 1) or two consecutive
(SOS type 2) variables in an (ordered) set are allowed to be nonzero) [8], semicontinuous
variables (the variable is allowed to take either the value zero or a value above some bound),
semiinteger variables (like semicontinuous variables, but with an additional integer restric-
tion), and indicator variables (a binary variable indicates whether a certain set of constraints
has to be enforced). In all cases it is possible to reformulate such constraints into a standard
form by introducing additional variables and linear constraints. The purely continuous case
(s = 0) is not considered here, c.f. the chapter titled “NLP Software” for an overview.

Computational tractability depends significantly on whether the functions f(x, y) and
g(x, y) are convex or not, c.f. Sec. 3.3. In this chapter, we say an MINLP is convex if both
f(x, y) and g(x, y) are convex over X × Y . Otherwise the MINLP is said to be nonconvex.
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Note that some solvers for convex MINLPs can also be applied under less strict notions of
convexity, e.g., to the case where the set defined by the constraints g(x, y) ≤ 0 is convex, or
where the objective function and constraints are only pseudo-convex [70]. (A differentiable
function h : X → R is pseudo-convex on a convex set X ⊆ Rn if for every x, y ∈ X with
h(x) < h(y) it follows that 〈∇h(y), x − y〉 < 0. An important property of a pseudo-convex
function is the convexity of its level-sets.)

2 History

To the best of our knowledge, the earliest commercial software package that could solve
MINLP problems was SCICONIC in the mid 1970’s [7, 29, 59]. Rather than handling non-
linearities directly, linked Special-Ordered-Set variables provided a mechanism to represent
low dimensional nonlinear terms by a piecewise linear approximation and thus allowed to
use mixed-integer linear programming (MIP) to obtain solutions to an approximation of the
MINLP. In the mid 1980’s Grossmann and Kocis developed DICOPT, a general purpose
algorithm for convex MINLP based on the outer approximation method [19]. Since then, a
number of academic and commercial codes for convex MINLP have emerged, either based on
outer approximation using MIP relaxations [19], an integration of outer approximation into
a linear programming (LP) relaxation based branch and cut [52], or nonlinear programming
(NLP) relaxation based branch and bound algorithms [39]. For the global solution of noncon-
vex MINLP, the first general purpose solvers were alphaBB, BARON, and GLOP, all based
on convexification techniques for nonconvex constraints [5, 55, 60, 61]. See also Section 3.3
for a small discussion of MINLP algorithms.

3 Groupings

3.1 Embedded vs. independent

Due to the high complexity of MINLP and the wide range of applications that can be mod-
eled as MINLPs, it is sometimes desirable to customize the MINLP solver for a specific ap-
plication in order to achieve good computational performance [12, 13, 22]. Further, MINLP
solvers are often built by combining LP, MIP, and NLP solvers. These are two main rea-
sons for tightly integrating some MINLP solvers into modeling systems (general systems like
AIMMS [53], AMPL [30], and GAMS [31] or vendor specific systems like FICO Xpress-
Mosel, LINGO [58], and OPL [17]). For example, the AIMMS Outer Approximation solver
AOA allows modifications of its algorithm by the user. Further, the solvers DICOPT and
SBB are exclusively available for GAMS users since they revert to MIP and NLP solvers in
the GAMS system for the solution of subproblems. Also for an efficient use of the solver
OQNLP it is preferable to use one of the GAMS NLP solvers.

On the other side, there are many solvers that can be used independently of a modeling
system, even though they may still require the presence of an LP, MIP, or NLP solver plugin.
However, often also these “independent” solvers are used within a modeling system, since the
modeling system typically provides evaluators for nonlinear functions, gradients, and Hessians
and gives easy access to algebraic information about the problem.
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3.2 Extending MIP vs. extending NLP vs. starting from scratch

MINLP solvers are not always developed completely from scratch. In many cases, an MIP or
an NLP solver builds the basis for an extension towards MINLP. Solvers that can be cate-
gorized as extending an MIP solver with capabilities for nonlinear objectives and constraints
are BONMIN, Couenne, CPLEX, FICO Xpress-Optimizer, FilMINT, Gurobi, Lin-
doAPI without global solver option, MOSEK, and SCIP. On the other hand, solvers where
an NLP solver was extended to handle discrete variables are bnb, FICO Xpress-SLP, fmin-
conset, Knitro, MILANO, MINLP BB, MISQP, OQNLP, and SBB.

Finally, there is a group of solvers which were more-or-less developed from scratch,
but which may solve LP, MIP, NLP, or MINLP subproblems. In this category we have
ANTIGONE, alphaBB, AlphaECP, AOA, BARON, DICOPT, LaGO, LindoAPI, MI-
DACO, and MINOTAUR.

3.3 Algorithms

Algorithms for solving MINLPs are often build by combining algorithms from Linear Pro-
gramming, Integer Programming, and Nonlinear Programming, e.g., branch and bound, outer
approximation, local search, global optimization. We refer to the chapters titled “Funda-
mental Techniques”, “Nonlinear Programming and Global Optimization”, and “Models and
Algorithms” for an introduction into these topics.

Most of the solvers implement one (or several) of three algorithmic ideas to tackle MINLPs.
First, there are branch and bound solvers that use NLP relaxations: alphaBB, bnb, BON-
MIN (in B-BB mode), CPLEX, FICO Xpress-Optimizer, FICO Xpress-SLP (in “SLP
within MIP” mode), fminconset, Gurobi, Knitro, LindoAPI without global solver op-
tion, MILANO, MINLP BB, MINOTAUR, MOSEK, and SBB. Except for alphaBB, all
of them obtain the NLP relaxation by relaxing the integrality restriction in (P). Since the
NLP solver used to solve this possibly nonconvex NLP relaxation usually ensures only local
optimal solutions, these solvers work as heuristics in case of a nonconvex MINLP. The solver
alphaBB, however, generates a convex NLP relaxation by using convex underestimators for
the functions f(x, y) and g(x, y) in (P). This solver can therefore be applied also to nonconvex
MINLPs, too.

As an alternative to relaxing integrality restrictions and keeping nonlinear constraints,
some solvers keep the integrality constraints and instead replace the nonlinear functions
f(x, y) and g(x, y) by a linear relaxation. In an outer-approximation algorithm [19, 26],
a relaxation is obtained by using gradient-based linearizations of f(x, y) or g(x, y) at solution
points of NLP subproblems. The resulting MIP relaxation is then solved by an MIP solver.
Solvers in this class are AOA, BONMIN (in B-OA mode), CPLEX, DICOPT, Gurobi,
MISQP (with OA extension), and FICO Xpress-SLP (in “MIP within SLP” mode). Since
gradient-based linearizations yield an outer-approximation only for convex MINLPs, these
solvers ensure global optima only for convex MINLPs. In contrast to outer-approximation
based algorithms, an extended cutting plane algorithm solves a sequence of MIP relaxations
which encapsulate optimal solutions of (P) by cutting planes and supports of f(x, y) rather
than outer-approximating the whole feasible region of (P) [69]. This algorithm is implemented
by the solver AlphaECP, which can be applied to convex as well as pseudo-convex MINLPs.

A third class of solvers are those which integrate the linearization of f(x, y) and g(x, y)
into the branch and cut process [52]. Thus, an LP relaxation is successively solved, new
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linearizations of f(x, y) and g(x, y) are generated to improve the relaxation, and integrality
constraints are enforced by branching on the y variables. Solvers which use gradient-based
linearizations are AOA, BONMIN (in B-QG mode) and FilMINT.

Since the use of gradient-based linearizations in a branch and cut algorithm ensures global
solutions only for convex MINLPs, solvers for nonconvex MINLPs use convexification tech-
niques to compute linear underestimators of a nonconvex function. However, the additional
convexification step may require to branch also on continuous variables in nonconvex terms (so
called spatial branching). Such a branch and cut algorithm is implemented by ANTIGONE,
BARON, CPLEX, Couenne, LaGO, LindoAPI, and SCIP. In difference to the other
solvers, ANTIGONE uses an MIP relaxation, i.e., does not relax integrality requirements.

The remaining solvers implement a different methodology. BONMIN (in B-Hyb mode)
alternates between LP and NLP relaxations during one branch and bound process. MISQP
integrates the handling of integrality restrictions into the solution of a nonlinear program via
sequential quadratic programming, i.e., it ensures that f(x, y) and g(x, y) are only evaluated
at points where y is integral. MIDACO applies an extended ant colony optimization method
and can use MISQP as a local solver. Finally, OQNLP applies a randomized approach by
sampling starting points and fixings of integer variables for the solution of NLP subproblems.

3.4 Capabilities

Not every solver accepts general MINLPs as input. Solvers that currently handle only
MINLPs where the objective function and constraints are quadratic (so-called MIQCPs)
or second order cone (SOC) programs are CPLEX, FICO Xpress-Optimizer, Gurobi,
and MOSEK. All solvers support convex quadratic functions. Further, nonconvex quadratic
functions that involve only binary variables are supported by CPLEX, Gurobi, and FICO
Xpress-Optimizer. Quadratic constraints that permit a SOC representation are supported
by CPLEX and Gurobi. SOC constraints are supported by MOSEK. Nonconvex quadratic
objective functions are supported by CPLEX.

Solvers that guarantee global optimal solutions for general convex MINLPs but not for gen-
eral nonconvex MINLP are AlphaECP, AOA, bnb, BONMIN, DICOPT, FICO Xpress-
SLP, FilMINT, fminconset, Knitro, LaGO, LindoAPI without global option, MI-
LANO, MINLP BB, MINOTAUR, MISQP with OA extension, and SBB. In case of a
nonconvex MINLP, these solvers can still be used as a heuristic. Especially branch and bound
based algorithms that use NLPs for bounding often find good solutions also for nonconvex
problems, while pure outer approximation based algorithms may easily run into infeasible
LP or MIP relaxations due to wrong cutting planes. Note, that AlphaECP ensures global
optimal solutions also for pseudo-convex MINLPs.

Solvers that also guarantee global optimality for nonconvex general MINLPs require an
algebraic representation of the functions f(x, y) and g(x, y) for the computation of convex
envelopes and underestimators. That is, each function needs to be provided as a composi-
tion of basic arithmetic operations and functions (addition, multiplication, power, exponen-
tial, trigonometric, ...) on constants and variables. The solvers alphaBB, ANTIGONE,
BARON, Couenne, LindoAPI, and SCIP belong into this category.

MIDACO, MISQP, and OQNLP can handle general MINLPs, but do not guarantee
global optimality even on convex problems.
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4 MINLP solvers

In the following we briefly discuss individual solvers for MINLPs. We have excluded solvers
from this list that are clearly no longer available (e.g., SCICONIC). The solvers listed below
have different levels of reliability and activity with respect to development and maintenance.
Wide availability through modeling systems and other popular software indicates that a solver
has reached a decent level of maturity. Hence, in this list, we mention availability (e.g.,
open source, standalone binary, interfaces to general modeling systems) in addition to a
solver’s developer, capability, and algorithmic details. Table 1 summarizes the list of solvers
and indicates for each solver the availability via AIMMS, AMPL, GAMS, and the NEOS
server [16].

alphaBB (α-Branch-and-Bound) [4, 5]. This solver has been developed by the research
group of C. Floudas at the Computer-Aided Systems Laboratory of Princeton University. It
is available to their collaborators.

alphaBB can be applied for convex and nonconvex MINLPs. It implements a branch
and bound algorithm that utilizes convex NLPs for bounding. Convex envelopes and tight
convexifications are obtained for specially structured nonconvex terms (e.g., bilinear, trilin-
ear, multilinear, univariate concave, edge concave, generalized polynomials, fractional), and
convex α underestimators for general twice continuously differentiable functions. The latter
are determined by adding a non-positive convex function to the original nonconvex function
such that the Hessian of the sum is guaranteed to be positive semidefinite (PSD) [3]. Various
interval arithmetic based techniques for estimating rigorous bounds on the minimal eigenvalue
of the Hessian of the original nonconvex function are available.

AlphaECP (α-Extended Cutting Plane) [68, 70]. This solver has been developed
by the research group of T. Westerlund at the Process Design and Systems Engineering
Laboratory of the Åbo Akademi University, Finland. It is available as a commercial solver
within GAMS.

AlphaECP ensures global optimal solutions for convex and pseudo-convex MINLPs. It
generates and successively improves an MIP outer approximation of a neighborhood of the set
of optimal solutions of the MINLP and can solve NLP subproblems to find feasible solutions
early. The MIP is here refined by linearizing nonlinear constraints at solutions of the MIP
outer approximation. By shifting hyperplanes, pseudo-convex functions can also be handled.

ANTIGONE (Algorithms for coNTinuous/Integer Global Optimization) [46, 47].
This solver has been developed by R. Misener and C. Floudas at the Computer-Aided Systems
Laboratory of Princeton University. It is available as a commercial solver within GAMS.

ANTIGONE ensures global optimal solutions for convex and nonconvex MINLPs. It
implements a spatial branch-and-bound algorithm that utilizes MIPs for bounding. The
MIP relaxation is generated from a reformulation of the MINLP. Especially for quadratic
constraints, it employs a large collection of convexification and bound tightening techniques.

AOA (AIMMS Outer Approximation) [53]. This solver has been developed by Para-
gon Decision Technology. AOA is available as an “open solver” inside AIMMS. The open
solver approach allows the user to customize the algorithm for a specific application.
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AOA ensures global optimal solutions only for convex MINLPs. It generates and succes-
sively improves an MIP outer approximation of the MINLP and can solve NLP subproblems
to find feasible solutions early. In contrast to AlphaECP, AOA constructs an MIP outer
approximation of the feasible region of the MINLP by linearizing nonlinear functions in solu-
tions of NLP subproblems [19]. Since for a nonconvex constraint such a linearization may not
be valid, the MIP relaxation is modified such that the corresponding hyperplane is allowed to
move away from its support point. Recently, also a branch and bound algorithm that utilizes
LPs for bounding [52] has been added to AOA.

BARON (Branch-And-Reduce Optimization Navigator) [61, 62]. This solver was
originally developed by the group of N.V. Sahinidis at the University of Illinois at Urbana-
Champaign and is currently developed by N.V. Sahinidis at Carnegie Mellon University and
M. Tawarmalani at Purdue University. It is available as a commercial solver within AIMMS
and GAMS.

BARON can be applied to convex and nonconvex MINLPs. It implements a spatial
branch and bound algorithm that utilizes LPs for bounding. The linear outer-approximation
is based on a reformulation of (P) that it constructed (by adding auxiliary variables) in a way
that it contains only nonconvex terms for which a convex underestimator (or concave overes-
timator) is known. The algorithm is enhanced by using advanced box reduction techniques
and new convexification techniques for quadratic functions [6]. Further, BARON is able to
use NLP relaxations for bounding [33], even though this option is not encouraged.

bnb (Branch ’n Bound) . This solver has been developed by K. Kuipers of the Depart-
ment of Applied Physics at the University of Groningen. It is available as Matlab [45]
source.

bnb ensures global optimal solutions for convex MINLPs. It implements a branch and
bound algorithm utilizing nonlinear relaxations for the bounding step [39]. The NLPs are
solved by the Matlab Optimization Toolbox routine fmincon.

BONMIN (Basic Open-source Nonlinear Mixed Integer Programming) [11]. This
open-source solver has been developed primarily by P. Bonami in a cooperation of Carnegie
Mellon University and IBM Research. It is available in source code and as standalone binaries
from COIN-OR (Computational Infrastructure for Operations Research) [42], has an AMPL
interface, and is distributed as a free solver within GAMS.

BONMIN ensures global optimal solutions only for convex MINLPs. Among others, it
implements the following four algorithms: B-OA is an outer-approximation algorithm that
generates and successively improves an MIP outer approximation of (P) [19], B-QG is a
branch and bound algorithm that utilizes LPs for bounding [52], B-BB is a branch and bound
algorithm that utilizes NLPs for bounding [39], and B-Hyb is a hybrid of B-QG and B-
BB which alternates between LP and NLP relaxations for bounding. BONMIN has been
implemented on top of the MIP solver CBC [28] and can use filterSQP [27] and IPOPT [67]
as NLP solvers.

Couenne (Convex Over and Under ENvelopes for Nonlinear Estimation) [9]. This
open-source solver has been developed primarily by P. Belotti, originally in a cooperation of
Carnegie Mellon University and IBM Research, and now at FICO. It is available in source
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code and as standalone binaries from COIN-OR, has an AMPL interface, and is distributed
as a free solver within GAMS.

Couenne ensures global optimal solutions for convex and nonconvex MINLPs. It im-
plements a spatial branch and bound algorithm that utilizes LPs for bounding. Similar to
BARON, the linear outer-approximation is generated from a reformulation of the MINLP.
The algorithm is enhanced by bound tightening techniques, disjunctive cuts, MINLP heuris-
tics, and symmetry handling. Couenne has been implemented on top of BONMIN.

CPLEX. This solver has been developed by CPLEX Optimization, Inc. (later acquired by
ILOG and recently acquired by IBM). It is available as standalone binaries and as a component
in many modeling systems.

CPLEX can solve convex MIQCPs. For models that only have binary variables in the
potentially indefinite quadratic matrices, CPLEX automatically reformulates the problem
to an equivalent MIQCP with PSD matrices. For convex MIQCPs, CPLEX implements a
branch and bound algorithm that utilizes LPs or QCPs for bounding. Recently, nonconvex
quadratic objective functions can be handled by using a spatial branch and bound algorithm
that uses LPs or quadratic programs for bounding. Further, an option to solve general
nonconvex MIQCPs by a branch and bound algorithm that utilizes NLPs for bounding [39]
is also available, but global optimality is not guaranteed for this case.

DICOPT (Discrete and Continuous Optimizer) [31, 37]. This solver has been devel-
oped by the research group of I. E. Grossmann at the Engineering Research Design Center
at Carnegie Mellon University. It is available as a commercial solver within GAMS.

DICOPT ensures global optimal solutions for convex MINLPs. Starting with the NLP
relaxation (obtained from (P) by relaxing the integer requirement on y), it alternates between
solving MIP outer approximations and NLP subproblems of (P) to compute lower and upper
bounds [19]. To accommodate also nonconvex MINLPs, nonlinear equality constraints are
relaxed by replacing them with inequalities where the linearizations of the nonlinear functions
are allowed to move away from their support point by the use of slack variables and through
an augmented penalty function in the MIP relaxation. Since for this case valid lower bounds
cannot be obtained, the termination criterion is based on lack of improvement in the objective
of the NLP subproblem.

FICO Xpress-Optimizer [25]. This solver has been developed by Dash Optimization
(later acquired by FICO). It is available as standalone binaries and as a component in many
modeling systems.

FICO Xpress-Optimizer can solve convex MIQCPs. For models that only have bi-
nary variables in the potentially indefinite quadratic matrices, FICO Xpress-Optimizer
automatically reformulates the problem to an equivalent MIQCP with PSD matrices. It
implements a branch and bound algorithm that utilizes QCPs for bounding.

FICO Xpress-SLP [24]. This solver has been developed by Dash Optimization (later
acquired by FICO). It is available as standalone binaries and as a FICO Xpress-Mosel
module.

FICO Xpress-SLP ensures global optimal solutions for convex MINLPs. It implements
three algorithms: The (default) “SLP within MIP” variant is a branch and bound algorithm
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that utilizes NLPs for bounding [39]. The NLP subproblems are solved by Successive Linear
Programming (SLP). Solving MIPs as subproblems of the SLP algorithm leads to the “MIP
within SLP” variant, which is comparable with an MIP relaxation based outer-approximation
algorithm [19]. A third variant (“SLP then MIP”) solves first an NLP relaxation (by SLP),
then an MIP relaxation, and finally an NLP subproblem to obtain a feasible solution to the
MINLP [24]. To accommodate also nonconvex constraints, in all variants, the hyperplanes
obtained from gradient-based linearizations in SLP can move away from their support point.

FilMINT (Filter-Mixed Integer Optimizer) [1]. This solver has been developed by
the research groups of S. Leyffer at the Laboratory for Advanced Numerical Simulations of
Argonne National Laboratory and J. Linderoth at the Department of Industrial and Systems
Engineering of Lehigh University. It has an AMPL interface.

FilMINT ensures global optimal solutions only for convex MINLPs. It implements a
branch and bound algorithm that utilizes LPs for bounding [52], where different strategies for
choosing the linearization point for the nonlinear functions are available. Further, FilMINT
includes several variants of disjunctive cutting planes for convex MINLP and a feasibility
pump. FilMINT has been implemented on top of the MIP solver MINTO [50] and the NLP
solver filterSQP [27].

fminconset. This solver had been developed by I. Solberg at the Department of Engineering
Cybernetics of the University of Trondheim (now NTNU). It is available as Matlab source.

fminconset ensures global optimal solutions for convex MINLPs. It implements a branch
and bound algorithm utilizing nonlinear relaxations for the bounding step [39]. The NLPs
are solved by the Matlab Optimization Toolbox routine fmincon.

Gurobi [54]. This solver has been developed by Gurobi Optimization, Inc. It is available
as standalone binaries and as a component in many modeling systems.

Gurobi can solve convex MIQCPs. Products of binary variables are linearized by in-
troducing additional variables and constraints. Gurobi implements a branch and bound
algorithm that utilizes LPs or QCPs for bounding.

Knitro [15]. This solver has been developed by Ziena Optimization, Inc. It is available as
standalone binary and as a component in many modeling systems.

Knitro ensures global optimal solutions for convex MINLPs. MINLPs are solved by
branch and bound, where both linear or nonlinear problems can be used for the bounding
step [39, 52].

LaGO (Lagrangian Global Optimizer) [51]. This open-source solver had been devel-
oped by the research group of I. Nowak at the Department of Mathematics of Humboldt
University Berlin. It is available in source code from COIN-OR and provides AMPL and
GAMS interfaces.

LaGO ensures global optimal solutions for convex MINLPs and nonconvex MIQCPs.
It implements a spatial branch and bound algorithm utilizing a linear relaxation for the
bounding step. The relaxation is obtained by linearizing convex functions, underestimat-
ing quadratic nonconvex functions, and approximating nonconvex nonquadratic functions by
quadratic ones.
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LindoAPI [41]. This solver library has been developed by LINDO Systems, Inc. It is
available within the LINDO environment, LINGO [58], What’sBest!, and as a commercial
solver within GAMS.

LindoAPI ensures global optimal solutions for convex and nonconvex MINLPs. It im-
plements a branch and cut algorithm that utilizes LPs for bounding [32, 41]. Branching is
performed for subproblems that are not provably infeasible and where nonconvex constraints
are present or the LP relaxation has a fractional solution. LindoAPI can also handle some
nonsmooth or discontinuous functions like abs(x), floor(x), and max(x,y).

Additionally, LindoAPI allows to disable the global solver components, by what the
MIP solver is used together with nonlinear relaxations for the bounding step [39]. This
option still ensures global optimal solutions for convex MINLPs. It was the first commercially
available solver implementing a branch and bound algorithm utilizing nonlinear relaxations
for bounding. The NLP relaxations are solved by CONOPT [18, 31].

MIDACO (Mixed Integer Distributed Ant Colony Optimization) [56, 57]. This
solver has been developed by M. Schlüter at the Theoretical & Computational Optimization
Group of the University of Birmingham, now at Hokkaido University. It works as a library
with C/C++, Fortran, Matlab, and Python interfaces and is available from the author on
request.

MIDACO can be applied to convex and nonconvex MINLPs. It implements an extended
ant colony search method based on an oracle penalty function and can be combined with
MISQP as solver for local searches in (P). It targets applications where the problem formu-
lation is unknown (f(x, y) and g(x, y) are black-box functions) or involves critical properties
like nonconvexities, discontinuities, flat spots, or stochastic distortions. Further, MIDACO
can exploit distributed computer architectures by parallelizing function evaluation calls.

MILANO (Mixed-Integer Linear and Nonlinear Optimizer) [10]. This solver is
developed by H. Y. Benson at the Department of Decision Sciences of Drexel University. It
is still in development and available as Matlab source.

MILANO ensures global optimal solutions for convex MINLPs. It implements a branch
and bound algorithm utilizing nonlinear relaxations for the bounding step [39]. The NLPs are
solved by LOQO [64], where special emphasis is put on how to warmstart this interior-point
solver.

MINLP BB (Mixed Integer Nonlinear Programming Branch-and-Bound) [39].
This solver had been developed by R. Fletcher and S. Leyffer at the University of Dundee.
It provides an AMPL interface and is available for Matlab via the TOMLAB Optimization
Environment [36].

MINLP BB ensures global optimal solutions for convex MINLPs. It implements a branch
and bound algorithm utilizing nonlinear relaxations for the bounding step [39]. The NLPs
are solved by filterSQP.

MINOTAUR (Mixed-Integer Nonconvex Optimization Toolbox – Algorithms,
Underestimators, Relaxations) [43, 44]. This solver is developed by S. Leyffer, J. Lin-
deroth, J. Luedtke, A. Mahajan, and T. Munson at Argonne National Laboratory and the
University of Wisconsin-Madison. It provides an AMPL interface.
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MINOTAUR ensures global optimal solutions for convex MINLPs. It implements a
branch and bound algorithm utilizing nonlinear relaxations for the bounding step [39], where
the NLPs are solved by IPOPT or filterSQP. Additionally, it offers to replace the NLP
relaxations by faster to solve QP approximations, can recognize unions of second-order cones,
and is continuously extended towards a solver for nonconvex MINLPs.

MISQP (Mixed Integer Sequential Quadratic Programming) [21, 20]. This solver
has been developed by the research group of K. Schittkowski at the Department of Com-
puter Science of the University of Bayreuth. It works as a standalone library with a Fortran
interface.

MISQP can be applied to convex and nonconvex MINLPs, but assumes that the values
of the nonlinear functions f(x, y) and g(x, y) do not change drastically as a function of y.
MISQP implements a modified sequential quadratic programming (SQP) method, where
functions are only evaluated at points (x, y) with y integer. It targets applications where the
evaluation of f(x, y) or g(x, y) may be expensive. Additionally, a combination with outer-
approximation [19] that guarantees convergence for convex MINLPs is available [38].

MOSEK [49]. This solver has been developed by MOSEK ApS. It is available as a stan-
dalone binary, has AMPL and Matlab interfaces, and is distributed as a commercial solver
within AIMMS and GAMS.

MOSEK can be applied to convex MIQCPs and to mixed-integer conic programs. It im-
plements a branch and bound method that utilizes QCPs or SOC programs for bounding [52].

OQNLP (OptQuest Nonlinear Programming) [31, 63]. This solver has been jointly
developed by OptTek Systems, Inc. and Optimal Methods, Inc. It is available as a standalone
library, for Matlab via the TOMLAB Optimization Environment, and is distributed as a
commercial solver within GAMS.

OQNLP is a heuristic that can be applied to any MINLP. It implements a multistart
scatter search algorithm which solves NLP subproblems with fixed discrete variables.

SBB (Simple Branch-and-Bound) [31]. This solver has been developed by ARKI Con-
sulting and Development A/S. It is available as a commercial solver within GAMS.

SBB ensures global optimal solutions for convex MINLPs. It implements a branch and
bound algorithm utilizing nonlinear relaxations for the bounding step [39]. The NLP relax-
ations are solved by one (or several) of the NLP solvers available with GAMS. Using the
GAMS Branch-Cut-and-Heuristic facility [13], SBB allows the user to implement a model-
specify heuristic in the GAMS language.

SCIP (Solving Constraint Integer Programs) [2, 66]. This solver has been developed
by the Optimization Department at the Zuse Institute Berlin and its collaborators. For
academic institutions, it is available in source code and as standalone binary and is distributed
within GAMS.

SCIP ensures global optimal solutions for convex and nonconvex MINLPs. It implements
a spatial branch and bound algorithm that utilizes LPs for the bounding step. Similar to
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BARON, the outer-approximation is generated from a reformulation of the MINLP. Ad-
ditionally, SCIP includes large-neighborhood search heuristics and a new sub-MIP MINLP
heuristic.

5 Outlook and Summary

Combining discrete and nonlinear optimization results in a rich modeling paradigm applica-
ble to many real world optimization problems. At the same time, mixed integer nonlinear
programming represents a theoretically and computationally challenging problem class and
hence provides many interesting research opportunities. Software for solving MINLP mod-
els facilitates co-operation between research and application and explains the popularity and
increased level of activity around MINLP.

While state-of-the-art MIP solvers typically implement advanced automatic reformula-
tion and preprocessing algorithms, such techniques are less commonly available in MINLP
solvers, and in a limited form. Therefore, the modeler’s choice of problem formulation is
still very important when solving an MINLP. However, software for guided automatic model
reformulations and relaxations has recently been developed. LogMIP [65], one of the first
systems available, translates an MINLP with disjunctions into a standard MINLP by applying
bigM and convex hull reformulations [35]. More recently, frameworks like GAMS/EMP (Ex-
tended Mathematical Programming) [23] and ROSE (Reformulation/Optimization Software
Engine) [40] provide a growing toolbox for reformulating MINLPs. Other recent activities
like libMC [48] focus on (convex) relaxations for (nonconvex) MINLP.

Another important area is the collection and dissemination of MINLP models. Instance
collections like MacMINLP1 and MINLPLib [14] provide valuable test cases for solver devel-
opers. The new Cyber-Infrastructure for MINLP [34] features a growing library of problems
with high level model descriptions, reformulations, and problem instances.

In this paper we have given a concise description of the state-of-the-art in MINLP solvers
and have established several groupings with respect to various features of the software. We
hope that these groupings and the individual descriptions give sufficient information to guide
the selection of the best solver for a particular MINLP problem.
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